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1. ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) has
been shown by several workers to protect the heart against
ischaemia/reperfusion damage.  Melatonin, both in the
picomolar and micromolar range, significantly reduces
infarct size and improves functional recovery during
reperfusion. This may be due to its free radical scavenging
and anti-oxidant effects, while the melatonin receptor and
its marked anti-adrenergic actions may also be involved.
The latter is mediated by nitric oxide (NO), guanylyl
cyclase and protein kinase C (PKC). Melatonin-induced
cardioprotection is associated with activation of protein
kinase B (PKB), extracellular signal-regulated kinase
(ERK1/2) (the Reperfusion Injury Salvage Kinase (RISK)
pathway) and  signal activator and transducer 3 (STAT-3)
(the Survivor Activating Factor Enhancement (SAFE)
pathway) during reperfusion and inhibition of the
mitochondrial permeability transition pore (MPTP).  Very
little is known about the effect of melatonin on myocardial
substrate metabolism.  Melatonin was demonstrated to be
involved in the regulation of whole body glucose
homeostasis via its effects on pancreatic insulin secretion
and may thus indirectly affect myocardial substrate
metabolism in a circadian manner.

2. INTRODUCTION

Melatonin (N-acetyl-5-methoxytryptamine) is a
highly conserved molecule found in organisms from
unicells to vertebrates (1). Produced by the pineal gland, it
has pleiotropic bioactivities which include, amongst others,
several endocrinological processes (for a review see ref 2).
The finding by Tan et al (3) that melatonin is a potent free
radical scavenger and an anti-oxidant, has elicited
enormous interest, stimulated considerable research efforts
and several reviews have appeared on this topic (4-6).
Since the major metabolites of melatonin, N1-acetyl-N2-
formyl-5-methoxykynuramine (AFMK) and N-acetyl-5-
methoxykynuramine (AMK) also have free radical
scavenging abilities, one molecule of melatonin can
scavenge up to 10 reactive oxygen (ROS) or nitrogen
(RNS) species (4).

Melatonin has beneficial effects in a surprising
number of pathophysiological conditions purportedly
associated with increased oxidative stress such as
cardiovascular disease (7), Alzheimer’s disease (8),
diabetes (9), drug-mediated ototoxicity (10), to name but a
few. In addition, melatonin has marked effects on the
ageing process: its production is known to diminish in
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Figure 1. Effects of melatonin on myocardial
ischaemia;/reperfusion injury.  It may act via (i) scavenging
of free radicals produced during I/R, thereby attenuating
lipid peroxidation, mitochondrial cardiolipin loss and the
reduction in mitochondrial function and/or via its receptors
by (ii) attenuating the stimulation of the beta-adrenergic
pathway during ischaemia and (iii) activation of the RISK
and SAFE pathways, leading to inhibition of the
mitochondrial permeability transition pore (MPTP).

elderly persons (11) and it is suggested to play a role in the
elevated oxidative damage observed in this population (for
a review see ref 12).  Although the ageing process is
complex and multifactorial, melatonin and its metabolites
have multiple effects that may be beneficial for an ageing
individual. It has recently been proposed that melatonin
acts via increased expression of SIRT1, which reduces
inflammatory and apoptotic signaling related to p53,
increases NO bioavailability, vasodilatation and down
regulates oxidative stress (13).

Melatonin has significant beneficial effects in
several cardiovascular conditions such as hypertension,
myocardial hypertrophy and ischaemia/reperfusion (I/R)
injury (14). This review will focus mainly on the effects of
melatonin on I/R injury as well as on its effects on
myocardial substrate metabolism.

3. MELATONIN AND THE HEART

Under normal conditions melatonin treatment has
no effects on heart function (15, 16), but long-term
melatonin consumption reduces the absolute and relative
heart weights (16,17) and increases its glycogen content
(18).  Melatonin also has beneficial effects on the heart in
physiological conditions such as ageing: Petrosillo and
coworkers (19) showed that melatonin administration to

aged rats counteracted the increased susceptibility to Ca2+-
induced mitochondrial permeability transition pore opening
associated with increased cytochrome C release as well as
cardiolipin oxidation/depletion. In addition, it improves
other pathophysiological conditions, for example
hyperthyroidism (20), cadmium-induced oxidative damage
(21) and myocardial hypertrophy (22).

Pinealectomy has profound effects on the
myocardium: not only does it increase its susceptibility to
I/R damage (see below), but it affects the heart by causing
increased serum cholesterol and cardiac malondialdehyde
levels, as well as heart weight.  Furthermore, hearts from
pinealectomized animals exhibited increased myocardial
fibrosis, myxomatous degeneration of the valves and
thickening of the left atrial endocardium (23).

A further link between melatonin and the heart in
pathophysiological conditions is the fact that nocturnal
melatonin has been reported to be decreased in patients
with coronary heart disease (24) or acute myocardial
infarction (25).  In addition, the observed circadian rhythm
of sudden death caused by heart disease correlates inversely
with the rhythm of circulating melatonin (26,27).
Interestingly, the rate of sudden cardiac death is highest in
the early morning hours when plasma melatonin levels are
at their lowest.

4. MELATONIN AND ISCHAEMIA/REPERFUSION
INJURY

In view of the pivotal role of generation of free
radicals in I/R injury, the possible beneficial effects of
melatonin on the ischaemic reperfused heart have received
much attention during the past few years, as evidenced by a
number of recent reviews (7,28-30).

Most of the studies thus far employed the rat as
experimental animal, using pharmacological concentrations
of the hormone.  Briefly, using the isolated perfused heart
as model, melatonin was shown to reduce premature
ventricular contractions and fibrillation (31-33), improve
functional recovery during reperfusion (29-32) and to
reduce infarct size (34-37).  Melatonin-induced
cardioprotection was found to be associated with
suppression of myeloperoxidase activity (MPO) (38-40)
and malondialdehyde (MDA) levels (38, 40), suggesting a
reduction in lipid peroxidation (Figure 1).

In view of the generation of large amounts of free
radicals at the onset of reperfusion (41), it is important that
melatonin is present in the heart at the time of reperfusion:
thus it has to be administered both before and after
ischaemia or during reperfusion only to induce
cardioprotection in vitro (35).  However, melatonin
administered in vivo before the ischaemic insult, was also
effective (39).  It is assumed that, under these
circumstances, melatonin was still present in sufficient
quantities at the onset of reperfusion to induce effective
protection (39).  Interestingly, melatonin given in a
preconditioning mode (brief administration followed by
washout before onset of ischaemia), elicits cardioprotection
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Figure 2. Melatonin treatment reduced infarct size whether
administered in the perfusate (50microM) for (i) 10 min
before and after exposure of the heart to 35 min coronary
artery ligation (pretreatment) or (ii) before ischaemia
followed by 10 min reperfusion (preconditioning mode) or
injected intraperitoneally (5mg/kg) before perfusion in the
absence of melatonin (n=6/group) (Lochner et al,
unpublished data). *P<0.05 vs control.

(432) (See Figure 2).  Melatonin is capable of producing
long-term cardioprotection since intraperitoneal
administration 24h prior to experimentation or oral
administration for several days followed by subsequent
perfusion in the absence of the hormone, also caused a
reduction in infarct size (Lochner, unpublished data). We
concluded from these studies that melatonin is indeed a
powerful protectant against ischaemic damage.

A wide range of pharmacological concentrations
of melatonin (in the micromolar range) was used in most of
the above studies (33-35).  However, a recent report
showed that reduction of endogenous circulating melatonin
by pinealectomy, exacerbated myocardial injury as
indicated by a larger infarct size and an increased mortality
resulting from irreversible ventricular fibrillation (43,44).
These findings suggested that the relatively low
endogenous melatonin levels normally present in the
circulation, are effective in reducing I/R-induced myocyte
damage and it was suggested by these workers that
pharmacological concentrations of melatonin did not add to
its beneficial actions (43,44).  A recent study by Lamont
and coworkers (42) also found melatonin in the picomolar
range to be protective in retrogradely perfused rat hearts.
However, using the isolated perfused working rat heart, it
was shown that melatonin was effective in the micromolar
range only (35).  As far as we know, the effects of
melatonin, at concentrations in the picomolar range, have
not been studied yet in the working rat heart model.  It is
possible that melatonin has a biphasic effect in these in
vitro perfused hearts, but this remains to be determined.

5. MELATONIN SIGNALLING

5.1. Role of melatonin receptors
It is generally accepted that melatonin exerts its

cardioprotective actions via its free radical scavenging
activities as well as the induction of anti-oxidant enzymes
(45-47).  Convincing evidence also exists for a role for the
melatonin receptors in this regard (see below).

In mammals, melatonin signals through activation
of at least two high-affinity G protein-coupled receptors,
MT1 and MT2 (for review see ref 48).  The MT1 receptor
has been identified in chicken (49) and human (50)
coronary arteries as well as in chicken (51) and rat hearts
(52), coronary arteries and aorta (50).  As far as we know,
the presence of the MT3 receptor has not yet been
demonstrated in heart muscle.  The significance of the
melatonin receptor in melatonin-induced cardioprotection
was convincingly demonstrated by the finding that
luzindole, a non-selective melatonin receptor antagonist,
abolished its cardioprotective actions, using infarct size as
endpoint (35).

Most, if not all, studies on the interactions
between melatonin and the heart, focussed on the effects of
exogenous melatonin on the myocardial response to I/R.  In
contrast, a recent study investigated the effects of
myocardial infarction on the synthesis, concentration and
receptor expression of endogenous melatonin.  Sallinen and
coworkers (53) showed that induction of myocardial
infarction in rats caused a significant increase in left
ventricular and plasma melatonin levels within 1 day,
followed by a significant (2.8 fold) increase in MT1 mRNA
levels after 14 days,  suggesting that melatonin is an
important endogenous protector against I/R injury.

5.2. Intracellular signalling
The MT1 and MT2 receptors signal by coupling to

heterotrimeric Gi proteins and downstream effector
mechanisms which include adenylyl cyclase, PKC,
phospholipase C, phospholipase A2, potassium channels,
guanylyl cyclase and calcium channels (for reviews see
29,48,54).  Melatonin regulates coronary vasomotor tone
via the MT2 receptor and stimulation of PDE5, which in
turn, increases degradation of cGMP (55).  Melatonin is
also known to reduce cAMP accumulation in most tissues
(54).

5.3. Anti-adrenergic effects
It is well-established that activation of the

adrenergic nervous system and generation of cAMP play an
important role in the genesis of dysrhythmias during
reperfusion of the ischaemic heart (56).  Since several
workers have reported that melatonin reduces the incidence
of ventricular fibrillation and arrhythmias during
reperfusion of isolated rat hearts (31,33,34), it is possible
that this may be due to its anti-adrenergic actions, as
demonstrated by its effects on the contractility of isolated
papillary  muscles (52,57).  This phenomenon was further
investigated by determining the effects of melatonin on
isoproterenol-induced beta-adrenergic stimulation.  Genade
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Figure 3. Melatonin-induced cardioprotection is ERK as
well as STAT-3 dependent. Hearts were perfused with
melatonin (50microM) with or without PD98059
(10microM) or AG-490 (5microM) administered before
and after 35 min regional ischaemia (n=6/

and coworkers (58) showed that melatonin significantly
counteracted the powerful beta-adrenergic stimulation by
both forskolin and isoproterenol in a receptor-dependent
manner as indicated by tissue cAMP levels in normoxic
perfused hearts.  Nitric oxide (NO), guanylyl cyclase as
well as PKC were involved in these potent anti-adrenergic
actions of melatonin, since the inhibitors L-NAME, ODQ
and bisindolyl-maleimide respectively, significantly
counteracted these actions. As discussed above, melatonin
activates PKC in a number of cell types (59,60).  Should
this also occur in heart muscle, it could be responsible for
counteracting isoproterenol-induced cAMP generation via
inhibitory cross-talk between PKC and PKA (61,62). These
results suggest its anti-adrenergic actions may play a role in
melatonin-induced cardioprotection, with a pivotal role for
NO.  A role for NO in the melatonin-induced preservation
of liver function and structure during ischaemia/reperfusion
has also been reported (63).

It is known that melatonin can protect the heart
against beta-adrenergic (isoproterenol)-induced oxidative
stress by restoring the activities and levels of anti-oxidant
enzymes and by reducing free radical generation (64).
Using the model of isoproterenol-induced myocardial
infarction, Patel and coworkers (15) demonstrated that
melatonin pretreatment reduced myocardial total
cholesterol levels and increased phospholipids, compared
to isoproterenol treatment alone.  Whether melatonin has
similar actions in the scenario of I/R remains to be
established.

6. EVENTS DOWNSTREAM OF MELATONIN
RECEPTOR STIMULATION

6.1. RISK and SAFE pathways
It was recently shown that the Reperfusion Injury

Salvage Kinase (RISK) pathway, which includes the
survival kinases protein kinase B (PKB)/Akt and
extracellular signal-regulated kinase (ERK) 1/2, is
associated with powerful cardioprotection when activated

at the onset of reperfusion (for review see ref 65).  In
addition to this signalling pathway, it is also known that the
cytokine tumor necrosis factor alpha (TNF-alpha)
contributes to myocardial adaptation and plays a role in the
protection conferred by ischaemic pre- and
postconditioning (66). TNF-alpha initiates the so-called
Survivor Activating Factor Enhancement (SAFE) pathway
which is characterized by activation of Janus kinase (JAK)
and signal transducer and activation of transcription 3
(STAT-3) (66).  To test the involvement of the RISK and
SAFE pathways in melatonin-induced cardioprotection,
hearts were subjected to ischaemia and freeze-clamped
after 10 min of reperfusion (in the presence and absence of
melatonin) and Western blotting applied (58; Lochner,
unpublished data).  Under these conditions the prosurvival
kinases ERK1/2, PKB/Akt as well as STAT-3 were
significantly phosphorylated (thus activated), with
concomitant inactivation of the pro-apoptotic kinase, p38
MAPK.

Using a different experimental protocol (hearts
were pretreated with picomolar quantities of melatonin,
followed by washout before freeze-clamping), Lamont and
coworkers (42) showed increased STAT-3 activation before
the onset of sustained ischaemia to be associated with a
reduction in infarct size during reperfusion.  Involvement
of TNF-alpha and STAT-3 in melatonin-induced
cardioprotection was further demonstrated by the fact that
hearts from TNF receptor 2 knockout and cardiac STAT-3-
deficient mice could not be protected against I/R injury by
melatonin (42).  This observation lends a new perspective
to the ability of melatonin to protect the heart, suggesting
that activation of the SAFE pathway before the onset of
ischaemia may also play a role in subsequent
cardioprotection. Whether this holds true for PKB/Akt and
ERK1/2 activation before ischaemia is not known. It is,
however, known that administration of melatonin during
reperfusion only can very effectively induce protection,
suggesting that activation of these pathways before
ischaemia is perhaps not a prerequisite (35).

The significance of ERK1/2 and STAT-3
activation either before or after ischaemia in melatonin-
induced cardioprotection was confirmed by the fact that
PD98059, an ERK1/2 inhibitor and AG490, a STAT-3
inhibitor, abolished protection (42, Figure 3).

6.2. Melatonin and mitochondria
6.2.1. Mitochondrial function

Mitochondria are considered the main
intracellular source of ROS production and paradoxically,
the major target of a free radical attack.  During normal
physiological conditions, ROS are generated at very low
levels, but can increase dramatically in pathophysiological
conditions such as myocardial I/R (67), causing a loss in
the phospholipid cardiolipin, which in turn, is responsible
for the loss of activity of the respiratory chain complexes I,
III and IV and mitochondrial dysfunction (68,69).

Petrosillo and coworkers (70) demonstrated
convincingly that, at pharmacological concentrations (50
microM), melatonin effectively protects against I/R
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damage: it caused a reduction in lipid peroxidation and
counteracted the reduction in State 3 respiration and the
respiratory control ratio in rat heart mitochondria, isolated
after exposure of the heart to I/R.  These workers showed
that the protection afforded by melatonin against
mitochondrial dysfunction was associated with
improvement in functional recovery during reperfusion.

6.2.2. Mitochondrial permeability transition pore
Cardioprotection associated with activation of the

RISK and SAFE pathways at the time of reperfusion was
demonstrated to be due to inhibition of the mitochondrial
permeability transition pore (66,71).

Multiple studies suggest a role for the MPTP in
apoptosis or necrosis with release of cytochrome C, as well
as other proteins, from the mitochondria, playing a central
role.  Petrosillo and coworkers (72) recently reported that
exogenous oxidized cardiolipin added to mitochondria,
causes opening of the MPTP and cytochrome C release.  A
further study showed that oxidation of intramitochondrial
cardiolipin molecules causes MPTP induction, which can
be inhibited by melatonin (73).

These findings were confirmed by the
observation made by Petrosillo and coworkers that
melatonin protects the heart against I/R injury by inhibiting
MPTP opening (74).  It was found that mitochondria
isolated from melatonin-perfused hearts were less sensitive
than mitochondria from untreated reperfused hearts to
Ca2+-induced MPTP opening, as assessed by the calcium
retention capacity of the mitochondria.

7. MYOCARDIAL SUBSTRATE METABOLISM

As far as we know, no information is available
about the direct effects of melatonin on myocardial
substrate metabolism in normoxia or during
ischaemia/reperfusion.

The studies referred to above (35,42,58) used the
isolated perfused heart as model with glucose as the only
substrate present.  It is well-established that glucose is an
important source of energy during ischaemia, due to its
ability to generate ATP in the absence of oxygen and the
increased glycolytic ATP production may be sufficient to
maintain ionic homeostasis in a model of regional
ischaemia.  Although the rate of glucose oxidation is
usually depressed during reperfusion (for review see ref
75), it remains a major source of energy production and any
stimulation of glucose uptake should be beneficial for
recovery of the heart during reperfusion.

Whether the melatonin-induced increases in the
activation of the survival kinases and STAT-3 during
reperfusion are associated with changes in substrate
metabolism, is not known.  PKB/Akt (76) as well as ERK
(77-79) activation may stimulate glucose uptake (79) while
the JAK-STAT pathway does not seem to be involved in
this process (80).  However, as stated above, the effects of
melatonin on myocardial substrate metabolism during
reperfusion remains to be determined.

Despite the lack of information regarding the effect
of melatonin on myocardial glucose metabolism, data obtained
from experimental animals in vivo and in vitro suggest that the
hormone contributes to the regulation of whole body glucose
homeostasis.  This is confirmed by the fact that pinealectomy
induces insulin resistance and glucose intolerance (81,82). A
recent study by Muhlbauer et al (83), using melatonin receptor
knock out mice, indicated an active role of these receptors in
the regulation of blood glucose levels. It has been reported
several years ago that melatonin decreases insulin secretion in
vitro (84) and in vivo (85), mediated by the MT1 receptor.
Melatonin effects on the pancreatic beta-cells are mediated by
3 intracellular pathways, viz. the Gi-alpha-protein dependent
cAMP pathway, the cGMP pathway and by modulation of
pathways activated by the muscarinic-acetylcholine receptor
(86).

An important observation recently made was the fact
that removal of the melatonin receptor type 1 (MT1)
significantly impairs the ability of mice to metabolize glucose
and probably induces insulin resistance in these animals (87).
Convincing evidence has been presented that melatonin
stimulates the rate of glucose uptake by C2C12 mouse myotube
cells, via an IRS-1/PI-3K pathway which appears to be
receptor mediated (88), with involvement of PKC, but not
AMPK, activation (88,89).  Despite the lack of experimental
evidence on the effects of melatonin on myocardial glucose
uptake, indirect evidence suggests a role for the hormone in
this regard:  it has been shown that melatonin treatment
restores GLUT4 gene expression and glucose uptake in
cardiomyocytes which were inhibited by administration of
3,5,3'-triiodo-L-thyronine (20). In addition, melatonin
completely restores the level of MEF2, a regulator of GLUT4
transcription.

In contrast to the above, Sartori and coworkers (90)
could not demonstrate an effect of melatonin on insulin-
stimulated Akt phosphorylation or glucose uptake in skeletal
muscle of normal mice in vivo. However, in a model of diet-
induced insulin resistance and vascular dysfunction, melatonin
markedly improved glucose homeostasis and restored
endothelial vascular insulin signaling and responsiveness (84).
These observations support the notion previously suggested
that melatonin often exerts its effects in pathophysiological
conditions, while having little effect in normal conditions (16).

In summary, it appears very likely that melatonin
may directly affect myocardial glucose metabolism. Since
myocardial substrate uptake is regulated by its circulating
levels (91), the effects of melatonin on glucose homeostasis
(83), may indirectly affect glucose uptake. In addition, the
heart utilizes, amongst others, fatty acids as substrates, which
can profoundly affect the outcome of I/R.  As far as we know,
the effect of melatonin on myocardial fatty acid metabolism
has not been studied, neither in normoxia nor I/R.

8. MELATONIN AND INTRACELLULAR CALCIUM
HANDLING

Melatonin has been suggested to modulate
intracellular Ca2+ via activation of its G-protein coupled
membrane receptors or through a direct, but weak,
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interaction with calmodulin (92).  Using confocal
microscopy and the fluorophore fluo3, it has been shown
that melatonin reduced intracellular calcium in
cardiomyotyes exposed to chemical hypoxia and caused a
reversal of hypoxia-induced morphological changes (93).

It is known that myocardial infarction is
associated with a reduction in the activities of membrane-
bound Na+K+ATPase and Mg2+ATPase and an increase in
Ca2+ATPase activity (15), all of which were reversed by
melatonin pretreatment. In addition, the cardioprotective
effects of melatonin were associated with reduced TNF-
alpha levels and myeloperoxidase (MPO) activity (94)
which could be very important in view of the harmful
effects of TNF-alpha on altering calcium homeostasis,
excitation-contraction coupling, NO metabolism and
signaling (93). This, however, is in contrast with the
suggestion that the TNF-alpha receptor is involved in
melatonin-induced cardioprotection (42) and should be
further investigated.

8.1. Melatonin and the sarcoplasmic reticulum
It has recently been shown that melatonin

ameliorates changes in calcium homeostasis which were
observed in rat hearts exposed to chronic hypoxia (96).
Cardiomyocytes isolated from such hearts exhibited
increases in resting calcium levels and I/R-induced
calcium overload, impairment of the function of SR
calcium handling proteins as well as attenuation of
SERCA protein expression.  Cardiomyocytes isolated
from hearts of melatonin-treated hypoxic rats, showed
that melatonin treatment preserved the SR-calcium
content and prevented downregulation of SERCA
expression.  Thus melatonin treatment significantly
mitigated the calcium handling in hypoxic hearts by
preserving SERCA expression.  However, the
involvement of the anti-oxidant effects of melatonin in
SERCA regulation remains to be established.

In contrast to the above, long-term
administration of melatonin to rats after coronary artery
ligation, may have different effects on Ca2+homeostasis:
exogenous melatonin administration diminished the
mRNA expression of the dihydropyridine receptor
(DHPR), the ryanodine receptor (RyR) and SERCA2
proteins, while a 1.9 fold increase in the level of MT2

proteins was observed (97). Unfortunately these
observations were not correlated with SERCA function
and intracellular calcium homeostasis. It was suggested
that these changes contributed to the beneficial actions
of melatonin postinfarction. The fact that melatonin
elicited different responses in different
pathophysiological conditions needs to be further
investigated.

8.2. Melatonin and ANP
The above study also showed that melatonin

administered postinfarction, increased the concentration of
left ventricular ANP to over 5-fold.  It is well-established
that myocardial infarction itself leads to a profound
increase in the release of ANP (for a review see ref 98)
which has vasodilating, diuretic and natriuretic effects (98).

It is possible that the increased LV ANP levels after
myocardial infarction adds one more way by which
melatonin can protect the heart against I/R injury.  Clearly,
this possibility needs to be further investigated.

9. CONCLUSIONS

It can be stated that the pineal gland hormone,
melatonin, is indeed an effective cardioprotectant against
myocardial ischaemia/reperfusion damage. This may be due to
its free radical scavenging and anti-oxidant properties, but
there is also convincing evidence for its receptor-mediated
actions. In this regard the powerful anti-adrenergic actions of
melatonin may be of importance in protecting the heart against
damage.

Although very little is known about the effects of
melatonin on myocardial substrate metabolism in both
normoxia and in I/R, observations made in pinealectomized
and melatonin receptor knockout animals suggest that the
hormone may have a profound effect on glucose metabolism.
This may occur indirectly in view of the effects of circulating
substrate levels on the uptake thereof by the heart.

Finally, recent observations indicated participation
of the RISK and SAFE pathways in the cardioprotective
actions of melatonin. Whether these two pathways converge
on the mitochondrial permeability transition pore remains to be
established, but experimental evidence suggests that melatonin,
similar to many other cardioprotective interventions, exerts its
effects via this, as yet uncharacterized, protein channel.
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