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1.  ABSTRACT

Over the past decade the cardiovascular
regenerative medicine field has made significant advances
in our understanding and treatment of injured myocardium.
Prior to stem cell therapy, available treatments for
cardiovascular disease were unable to repair or regenerate
the damaged heart. Stem cell therapy is increasingly
becoming a viable option to prevent and treat cardiac
dysfunction. A number of exogenous stem cell populations
have been examined for their ability to participate in
cardiac repair.  Their application in the clinical setting will
be reviewed here. The molecular pathways that work in
concert to orchestrate a systemic endogenous stem cell
response to cardiac injury have also begun to be defined. A
potential strategy for future therapeutics is the manipulation
of these endogenous pathways via pharmacological or
biopharmaceutical approaches.  In this review we begin to
formulate the discussion that the best future therapeutic
option to regenerate end organ function will be a
combination of programmed stem cells and
biopharmaceuticals that modulate regenerative signaling to
bolster the natural in vivo cellular and signaling
mechanisms.

2.  INTRODUCTION

Cardiovascular diseases (CVD) represent the
most important cause of death in the United States and
industrialized world (1). The most common cause of heart
failure is acute myocardial infarction (AMI) (1).  The
chronic adverse remodeling following loss of cardiac
myocytes at the time of AMI leads to heart failure. The
success of present day therapies for acute myocardial
infarction has increased the prevalence of chronic heart
failure (2).

While there is an increasing prevalence of
ischemic cardiomyopathy with the aging population, there
is also a significant increase in the prevalence of aortic
stenosis and dilated cardiomyopathies, both of which
significantly contribute to the increased prevalence of
chronic heart failure. These events result in pathological
remodeling of the heart leading to increased ventricle size,
altered ventricular shape, and decreased function. Current
therapies for cardiac diseases include angiotensin-
converting enzyme inhibitors, beta-blockers, angiotensin-
receptor blockers, and diuretics (3).  These treatments
improve symptoms and prolong life, but none of these
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Table 1. Summary of characteristics of different cell populations of interest for cardiac regenerative medicine.
Exogenous Cell Therapy Pros Cons
Skeletal Myoblasts  Improve function Do not become functional cardiac myocytes

Potentially arrythmogenic
Fetal/Embryonic Myocytes  Improve function

 Stably engraft
Low engraftment
Immature phenotype
Ethical issues

Embryonic Stem Cells/Induced
Pluripotent Stem Cells

 Improve function
 Potential to become all cardiac cell types
 Autologously derived (IPSC)

Cardiac cells have to be efficiently derived and
purified
Teratoma potential
Ethical issues

Hematopoietic Stem Cells  Improve function
 Increase neoangiogenesis
 Reduce apoptosis

Do not become functional cardiac myocytes

Mesenchymal Stem Cells  Improve function
 Low immunogenicity
 Decrease scar size
 Recruit endogenous stem cells
 Increase neoangiogenesis

In vivo fate unclear
Unlikely to replace lost cardiac myocytes

Multipotent Adult Progenitor Cells  Improve function
 Low immunogenicity
 Participate directly in neoangiogeneis
 Secrete cardioprotective signals

Do not become cardiac myocytes in vivo

Endothelial Progenitor Cells  Improve Function
 Participate directly in angiogenesis

Do not become cardiac myocytes

Cardiac Stem Cells  Improve Function
 Potential to become all cardiac cell types
 Decrease Scar Size
 Increase neoangiogenesis

No definitive marker
Derivation for therapeutic application is
inconvenient

therapies lead to improved tissue function or replacement
of the lost cardiac myocytes (4).

As suggested above, a common theme in adverse
ventricular remodeling and cardiac dysfunction is a
significant loss of resident cardiac myocytes. As a result,
considerable effort is being devoted to develop new cell
and regenerative therapies. While available
pharmacological treatments focus on alleviating symptoms
or reducing cardiac workload, a regenerative approach
provides the opportunity to repair or replace the injured
tissue in order to re-establish cardiac function.
Regenerative strategies have been both in the prevention of
loss of cardiac myocytes in acute disease through blocking
apoptosis and decreasing inflammation in an attempt to
improve remodeling after AMI, or to improve cardiac
remodeling in CHF through the induction of angiogenesis,
activation of cardiac myocytes to enter cell cycle, or cell
therapy to replace lost cells.  Additional therapeutic targets
are directed at improving stem and progenitor cell survival,
restoring progenitor cell populations, and driving the
cardiac fate of progenitor cells.

3. EXOGENOUS STEM AND PROGENITOR CELL
THERAPY

The initial focus for regenerative therapy was
directed at exploring exogenous stem cells to reconstruct
the damaged myocardium.  A number of sources have been
used to isolate stem cells – embryonic, skeletal muscle, and
bone marrow (Table 1).  Each population has its benefits
and downfalls.  While the exact mechanisms associated
with benefits associated with stem cell therapy remains to
be elucidated, it would appear that a significant benefit of
stem cell therapy to date is the induction of endogenous
stem cell based repair.  Importantly, several strategies

involving exogenous cell transplantation appear to have
therapeutic potential and are reviewed below.

3.1. Myogenic cell therapy
One of the earliest cells used for myocardial repair in

ischemic cardiomyopathy was skeletal myoblasts.
Myoblasts are easily isolated both from autologous skeletal
muscle and have the ability to proliferate in culture to
generate a number of cells appropriate for a therapeutic
approach.  Injection of skeletal myoblasts can improve
cardiac function after AMI (5).  There is no evidence,
however, that the skeletal myoblasts have the ability to
transdifferentiate into cardiac myocytes (6). Moreover,
skeletal myoblasts were found to increase the
arrythmogenic potential of myocardial scar (5, 7).  This has
been attributed to the inability of skeletal myoblasts to
electrically couple with the myocardium due to a lack of
appropriate connexin protein expression (5).

Another myogenic cell that has been
implemented in pre-clinical studies is direct engraftment of
cardiac myocytes.  Fetal and neonatal cardiac myocytes
when delivered directly into the myocardium after a cardiac
injury can form stable grafts improving heart function (8,
9).  However, they maintain an immature phenotype and
have low engraftment levels contributing only a small
percentage of viable cells to the heart (10).

3.2. Embryonic stem cells
Embryonic stem cells (ESC) have been proposed

as an alternative source of cardiac myocytes.  ESC are
derived from the inner cell mass of the blastocyst.  ESC can
be cultured indefinitely in a stable undifferentiated state
and have the ability to differentiate into cell types from the
three primary germ layers (11, 12).  This pluripotentiality
constitutes a potential risk for the therapeutic use of these
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cells.  Injection of uninduced or unpurified ESC can
generate teratomas (13).  It is therefore necessary to isolate
cardiac myocytes or their precursors from ESC cultures.
Functional cardiac myocytes can be obtained from murine
and human ESC.  When ESC differentiation is induced
using the standard embryoid body method, the cardiac
myocyte yield is extremely low (human ESC <1% of total
cells).  Information learned through developmental biology
has allowed researchers to attempt directed differentiation
of ESC to a cardiac phenotype.  Using human ESC,
Laflamme et al demonstrated that serial administration of
TGF-eta proteins, Activin A and BMP4, greatly increases
the efficiency of cardiac myocyte differentiation (14).
Activin A was also demonstrated to improve cardiac
differentiation of ESC co-cultured with definitive
endoderm, improving differentiation efficiency from 11
fold to 30 fold (15).  It is important to note that individual
ESC lines are sensitive to the levels of the Activin A and
BMP4 and that specific protocols need to be optimized for
each cell line (16).  Injection of ESC into infarcted hearts,
improves cardiac function by engraftment of the ESC-
derived cardiac myocytes into functional myocardium (13-
15).  Interestingly, when ESC derived cardiac myocytes are
used to treat chronic heart failure, although the cells engraft
with the host myocardium, cardiac remodeling is not
attenuated, suggesting cardiac myocytes cell therapy is
more specific for an acute injury where a large number of
cells are lost, that ESC derived cardiac myocytes need to
integrated into contractile units through tissue engineering
before being introduced to the injured myocardium, or that
the effects of ESC engraftment are paracrine factor
mediated and insufficient to induce endogenous repair in
ischemic cardiomyopathy (17).  Future studies will define
which mechanism(s) are involved.  That said cardiac
myocytes derived from culturing of mesenchymal cells
from the human amniotic membrane when transplanted into
the heart following AMI significantly improve cardiac
function through paracrine factor mechanisms (18, 19).
These data strongly support induction of endogenous repair
as potentially a primary mechanism of action even in the
setting of exogenous cardiac myocyte engraftment.

As ESC have been at the center of ethical
controversy, the field has recently focused on induced
pluripotent stem cells (IPSC) as a source of cardiac
myocytes.  IPSC are somatic cells that have been
reprogrammed by forcing the expression of four stem cell
genes, acquiring an ESC-like phenotype (20-23). IPSC
have an additional benefit in that they can be derived from
autologous somatic cells, reducing the complication of
immunogenicity, although recent data suggests this may not
be the case.  IPSC have the potential to become functional
cardiac myocytes (24-26). The efficiency of differentiation
can be improved as described for ESC (21, 27).  Ieda, et al,
began the reprogramming process with a more committed
mesodermal tissue, forcing cardiac transcription factor
expression to induce fibroblasts to take on a cardiac
myocyte type phenotype in vivo (28).  Injection of IPSC
into an infarcted heart was shown to improve cardiac
function, regenerating cardiac myocytes and smooth
muscle cell (29).  IPSC derived cardiac progenitor cells
injected into an infarcted heart resulted in an overall

functional benefit due to their in vivo differentiation to
cardiac lineages (25). Therapeutic use of IPSC is not
devoid of problems and a concern of their tumorogenic and
immunogenic potential induced through the expression of
non-self MHC proteins exists (30).

3.3. Bone marrow derived stem and progenitor cells
Bone marrow derived stem cells have also been

actively investigated.  This is due to their relative ease of
isolation, lack of significant ethical concerns, and the
ability for the cells to be autologous or allogeneic
depending on the specific cell type.  Bone marrow derived
stem cells encompass a broad range of cells –
Hematopoietic Stem Cells (HSC), Mesenchymal Stem
Cells (MSC), Endothelial Progenitor Cells (EPC),
Mononuclear Cells (MNC), and Multipotent Adult
Progenitor Cells (MAPC).

HSC are multipotent cells with the ability to give
rise to all blood cells. These cells are identified in mice as
ckit+/sca1+/lin- cells and in humans as CD34+/lin- (31).
HSC have been historically used in the treatment of
hematological diseases.  In 2001, Orlic, et al, directly
injected HSC into infarcted myocardium and found a
functional benefit, as well as the differentiation of the
injected cells into de novo myocardium (32).  The fate of
HSC in the infracted heart is a matter of debate.  Some
groups concur with the original study; however, the
majority of studies suggest they do not differentiate into
cardiac myocytes, and other reports present data that HSC
fuse with cardiac myocytes (33-36).  Regardless of the
differentiation capacity of HSC, they have repeatedly
resulted in cardiac benefit that is now understood to be due
to the release of paracrine factors.  One paracrine factor
expressed by HSC that can improve cardiac function is
vascular endothelial growth factor (VEGF) (37, 38).

MSC are multipotent cells with the ability to
differentiate into mesenchymal lineages, such as bone,
cartilage, fat and can be induced to expression cardiac
proteins but there exists little evidence that they can
differentiate into functional cardiac myocytes (39, 40).
MSC are identified as adherent cells lacking hematopoietic
markers.  Owing to low immunogenicity, MSC can be used
in allogeneic therapy (41).  MSC can migrate to
endogenous signaling pathways (such as SDF-1/CXCR4)
after cardiac injury and MCP-3 (42, 43).  MSC improve
cardiac function but do not participate directly in cardiac
regeneration instead they preserve cardiac myocytes in the
infarct zone, increase angiogenesis, increase endogenous
stem cell numbers, and decrease scar size (42-44).

Multipotent adult progenitor cells (MAPC) are
the only bone marrow derived progenitor cells that have
the potential to generate all three germ layers (45).
MAPC can be implemented in an autologous or
allogeneic strategy since with either strategy they
improve cardiac function after AMI equally (46).  The
benefits of MAPC are not due to cardiac regeneration but
rather through liberation of paracrine factors that induce
vascular growth, preserve cardiac myocytes and
modulate inflammation (46-48).
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Exogenous stem cell therapy overall results in an
improvement in cardiac function through the modulation of
endogenous stem cell based cardiac repair, regardless of
whether the stem cells become functional cardiac myocytes
or not.  Generally, the number of cardiac myocytes
generated from exogenous stem cells is too low to be
associated with the observed benefit.  Thus, it appears that
the stem cells provide paracrine support through
cytoprotection, neoangiogeneis, and activation of
endogenous stem cells (49).

4. CLINICAL TRIALS WITH EXOGENOUS STEM
CELLS

The results obtained using animal models
triggered enthusiasm for a clinical application of stem cells
even though the exact mechanisms of the benefit are still to
be defined.  The rapidity with which clinical trials have
been executed highlights the true unmet clinical need that
cardiac regenerative therapies are addressing and
demonstrate the highly translatable nature of stem cell
therapy.  Most importantly these trials, with the exception
of arrhythmogenic risk associated with skeletal myoblast
engraftment, have demonstrated safety with cardiovascular
cell therapy, and en mass have demonstrated some degree
of efficacy.
The MAGIC trial, a skeletal myoblast transplantation
study, described an increased number of post-operative
arrythimias, while other trials did not report evidence of the
myoblasts being arrhythmogenic (50-52). None of the trials
showed any significant improvement in cardiac function
after skeletal myoblast transplantation, considerably
decreasing the initial enthusiasim for this cell type (50-52).
Skeletal myoblasts do hold potential to be used
concurrently with a gene therapy, although given the
complexities of harvesting and expanding skeletal
myoblasts and the fact that there are other, non-
arrhythmogenic stem cell populations now under
investigation, it seems the era of skeletal myoblast therapy
may be coming to an end (5).

A large number of trials have tested the use of
bone marrow derived cells in the treatment of acute MI.
There is yet to be a common consensus in the definition of
the cells that have been used (53).  The majority of studies
have tested autologous bone marrow derived stem cells
injected intracoronary in patients following an acute MI.
Meta analyses of the data to date suggest a benefit from
bone marrow derived stem cell therapy, including improved
cardiac function as seen by increased ejection fractions,
decreases in infarct size, and enhancement in exercise
capabilities of the patients (54-62).  One analysis
performed a systematic review of 9 clinical trials
encompassing the treatment of 725 patients one year after
therapy (63).  They found that autologous bone marrow
derived cell transplantation in patients with acute MI
significantly improves ejection fraction and that the therapy
works best in patients less than 55 years old and when cells
are delivered 6-7 days post-MI.   Trials that have
investigated a relationship between the benefits of
treatment and the initial extent of cardiac damage have

consistently shown greater benefit in patients with more
severe myonecrosis (55, 60, 61, 64).

Importantly, the efficacy of cell therapy in
patients with chronic heart failure is somewhat
heterogenous (65, 66).  In the STAR trial, intracoronary
bone marrow cells were used to treat chronic ischemic
cardiomyopathy (67). The therapy led to improved exercise
function and ejection fraction five years post treatment. In
patients affected by non-ischemic dilated cardiac
myopathy, bone marrow derived progenitor cells
significantly increased ejection fraction early on and
although elevated BNP levels were measured one year
after, no indication was given if the benefit to cardiac
function was long-term (68).

There are fewer trials testing specific populations
of cells derived from the bone marrow. Autologous MSC
injection after AMI or in ischemic cardiomyopathy was
found to be safe and improved cardiac function (69, 70).
Thus there is data that suggests that MSC can inhibit
further adverse remodeling when delivered to patients with
ischemic cardiomyopathy (70).  Importantly in the setting
of ischemic cardiomyopathy the delivery of CD34+ cells
offered no significant benefit where as whole bone marrow
did (71).  One study has demonstrated the benefit of
allogeneic adult human MSC in acute MI.  The treatment
was safe and tolerated by the patients and improved
ejection fraction 12 months after treatment (69).

5. ENDOGENOUS STEM AND PROGENITOR
CELLS

Several endogenous stem cell populations have
been identified and their relevance to cardiac regeneration
is being investigated and growing.  We proposed over a
decade ago that stem cell based repair of the myocardium
after AMI was a natural process but clinically inefficient
due to the lack of molecular signals that orchestrate the
process.  Consistent with this hypothesis there are data
demonstrating that endogenous stem cells are inefficient in
cardiac repair.  It is as yet unknown if this is due to the
down-regulation of critical molecular signals in the peri-
infarct period and in ischemic cardiomyopathy,
“dysfunction” of the endogenous stem cell population, or
both.  If we can fully identify the stem cell populations
participating in the repair process and understand their role
in CVD, these molecular signals and cell populations will
be targets of future regenerative medicine strategies.

Stem and progenitor cell compartments have
been identified in nearly all organs of the adult mammal
including the bone marrow, blood, brain, skeletal muscle,
intestines, liver, fat, dental pulp, and the heart.  These stem
cells can respond to pathological, stress conditions.
Endogenous cardiac stem and progenitor cells (CSC, CPC)
have received a significant amount of attention as have
endogenous endothelial progenitor cell (EPC). Research is
also demonstrating that there is a systemic response to
injury not limited to the progenitor cells localized in the
diseased organ (Figure 1).  Identifying the molecular
pathways that regulate this response and the progenitor
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Figure 1. Systemic Endogenous Stem Cell Response to Cardiac Injury.    Normally, cardiac stem cells (red), endothelial
progenitor cells (blue), and bone marrow cells (green) are dormant.  Signals released from a cardiac injury can induce a response
from the endogenous stem cell populations throughout the body.  The cardiac stem cells are activated to proliferate and likely
differentiate into more committed cardiac cell fates.  Endothelial progenitor cells increase their circulating numbers and
participate in vasculogenesis.  Bone marrow stem cells migrate to the site of injury and can take on a cardiac fate, either as a
cardiac stem cell or a differentiated cardiac myocyte.  All of the stem cell populations have paracrine effects to aid the
myocardium in its recovery.  Aging and disease can affect the ability of these cells to respond to the injury.

cells that generate the cell populations of interest are all
critical goals of on-going research (72-74).

5.1.  Cardiac stem and progenitor cells
Historically, the heart has been considered a post-

mitotic organ, with no significant proliferation or
regeneration.  Primary tumors in the heart are very rare
(.001-0.28% of all primary tumors), supporting the idea of
limited cell cycling (75).  However, this orthodoxy has
recently been challenged and reports have suggested the
heart to have regenerative capacity.

It has long been known that newts and zebrafish
have robust cardiac regeneration.  Cryoinjury or amputation
of a zebrafish heart results in proliferation of cardiac
myocytes, replacing the lost tissue (76-79).  A similar
phenomenon has been recently described in neonatal mice.
Regeneration of partial surgical resection of one-day-old
mice hearts mimics that seen in zebrafish (80). However,
the regenerative capacity of the cardiac myocytes is lost by
seven days after birth. It appears that there is a meager
capacity in adults to regenerate myocardium by resident
stem cells (81, 82).  Finally, a very elegant study that
carbon dated cardiac myocytes suggests that there is a 0.45-
1% annual renewal of cells in the adult human heart
throughout a normal life span (83).

C-kit, the tyrosine kinase receptor for stem cell
factor, has been used to define one of the CSC populations
and is probably the most studied (84).  This population is
more specifically defined as c-kit+/CD45-/lineage- (84). C-

kit+ CSC have also been described to express the surface
markers sca-1 and mdr1 (85, 86).  Human c-kit+ CSC have
been characterized to express endothelial lineage markers,
suggesting their multipotentiality (87).  When isolated,
these cells are clonogenic and have the ability to
differentiate into endothelial cells, smooth muscle cells,
and cardiac myocytes both in vitro and in vivo (84, 88).  C-
kit+ CSC are located throughout the heart, including the
atrium, ventricles, and in the epicardium (89-91).

Fransioli, et al developed a c-kit-GFP transgenic
mouse to monitor the ckit+ CSC population in vivo under
normal and injury situations (92).  The authors found that the
number of c-kit+ cells in the heart is relatively high at birth
compared to the adult heart and rapidly decreases within one to
two weeks after birth. In the setting of AMI, c-kit-GFP+ CSC
increase in number and as early as 1-2 weeks post-MI, localize
in vessels and express cardiac transcription factors (92).  In
humans, AMI results in the elevation of c-kit+ CSC, with the
majority located in the infarct border zone (86). Chronic
pathologies of the heart result in up to a 14 fold increase in c-
kit+ CSC compared to normal hearts but not to levels as seen
in AMI (29 fold) (85, 86, 93). Females have more c-kit+ CSC
than males, which may partially explain the female gender’s
advantage in CVD (91, 94).  In aging adults, there is some
inconsistency on the c-kit+ CSC population.  Mishra, et al
report that the number of c-kit+ CSC decreases with age
whereas Kajstura, et al described an increase (94, 95). Both
studies demonstrated an increase in cell senescence in the c-
kit+ population (about 50%), suggesting there is a decrease
in functionally competent CSC with age (94-96).
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Stem cell antigen-1 (sca-1), a member of the Ly-
6 family, has also been used as a marker for endogenous
CPC.  These cells have been described as either ckit+ or
ckit- (97, 98). In vitro, sca-1 CPC express cardiac
transcription factors but not structural genes and are
clonogenic (97, 99).   This population has the potential to
differentiate into cardiac myocytes in vitro when treated
with 5-azacytidine or oxytocin (97, 99). Either direct
injection or intravenous infusion of sca-1 CPC after AMI
results in incorporation of the cells into the myocardium
and vessels with evidence of decreased scar and increased
vasculogenesis (97, 99).

Islet -1 (Isl-1), a LIM-homeodomain transcription
factor, has also been described to mark the resident CPC
population.  These cells are believed to be remnants of
embryonic cardiac development (100).  Isl-1+ CPC localize
to the outflow tract, the atria, and the right ventricular
regions of the heart corresponding to the secondary heart
field (100, 101).   Lineage tracing of Isl-1+ cells
demonstrates that this population does contribute to the
myocardium during normal development (102).  Co-culture
of Isl-1+ CPC with neonatal myocytes converts the stem
cells to a mature cardiac phenotype (102).  There is
evidence of Isl-1 cells in humans as well (91, 103).

Side population cells are characterized by their
ability to efflux Hoechst 33342 dye by the ATP-binding
cassette transporter, ABCG2, and resident populations have
been found in the heart and other organs (104, 105).
Cardiac side population cells also generally express sca-1
but do not express CD45, CD44, CD34, or ckit, making
them phenotypically different from bone marrow derived
side population cells (106). Cardiac side population cells
express cardiac transcription factors but not structural
genes (106).  Co-culture of cardiac side population cells
with neonatal cardiac myocytes or treatment with oxytocin
or trichostatin A, induces the progenitor cells to
differentiate into beating cardiac myocytes (104, 106, 107).
Cardiac side population cells can home to infarcted
myocardium when injected intravenously and differentiate
into cardiac myocytes, endothelial cells, and smooth
muscle cells in vivo (107).  A dynamic endogenous
response to injury has been characterized in the setting of
acute MI; the percentage of side population cells decreases
one-day post MI and the population is fully reconstituted 7
days post-MI (108).

Cardiospheres are multipotent cardiac stem cells
isolated from heart biopsies.  Cardiospheres have been
isolated from mice, rats, pigs, and humans (109, 110).
Cardiospheres are a heterogenous population, expressing
both ckit and sca-1 (110).  In humans, the number of ckit+
cardiospheres decreases with age (95).  Cardiospheres are
clonogenic and have the ability to differentiate into cardiac
myocytes, endothelial cells, and smooth muscle cells (109-
111).  Treatment of acute MI with cardiospheres results in a
functional benefit, an increase in the amount of viable
myocardium, increased vascular density, with the injected
cells differentiating into cardiac myocytes and vasculature
(110-112).  Chimenti, et al suggested that 20-50% of the
benefit from cardiosphere engraftment is from the

generation of new cardiac myocytes with the majority of
the effect being due to liberation of paracrine factors
leading to decreased apoptosis, vasculogenesis and
recruitment of endogenous stem cells (112).  The potency
of cardiosphere-derived cells has also been tested and
found to result in a similar functional benefit as the
cardiospheres themselves, however these cells are unable to
attenuate adverse remodeling (113). Concerns exist about
contamination of the cardiospheres accounting for the
“differentiation” properties observed (114).  Davis, et al
responded to this concern, performing experiments using
transgenic mice expressing GFP only in cardiac myocytes
(109). The authors identified that 6% of the outgrowth of
cardiospheres was ckit+/GFP- (stem cells not derived from
a mature cardiac myocyte).  However, they failed to
demonstrate whether there were ckit+/GFP+ cells in the
culture.

Cardiac stem cells defined as c-kit+ cells in the
myocardium have been shown to induce myocardial repair
when delivered in ischemic cardiomyopathy (115).
Ultimately cardiac stem cells are bone marrow derived;
however, it is likely they undergo some sort of maturation
through their residence in the myocardial niches (116).  We
have previously demonstrated that cardiac stem cells are
recruited to the infarct border zone in response to
mesenchymal stem cell engraftment and that this effect can
be enhanced by the local over expression of SDF-1 (117).
Cardiac stem cells when engrafted in the infarct border
zone do depolarize leading to propagation of the action
potential into the infarct zone and may in part explain the
anti-arrhythmic effect of mesenchymal stem cells (117,
118).  Recently the potential of cardiac stem cells were
demonstrated in the SCIPIO trial in which patients with
ischemic cardiomyopathy with and without significant
symptoms of chronic heart failure received autologous
cardiac stem cells that were harvested and expanded 4
weeks earlier during coronary artery bypass surgery (119).
These findings arguably serve as an important proof of
concept study demonstrating the potential for myocardial
repair through the induction of endogenous stem cell
activation.

5.2.  Endothelial progenitor cells
Endothelial progenitor cells (EPC) were first

described in 1997 (120).  Asahara, et al identified CD34+
cells in human blood capable of differentiating into
endothelial cells.  EPC originate from a primitive cell in the
bone marrow, the hemangioblast (121-123).  The latter are
multipotent cells with the ability to generate hematopoietic
and endothelial lineages. There is also evidence that EPC
can be derived from monocytic origins as well (124).

Under normal conditions, the level of circulating
EPC is very low (120).  However in response to AMI, EPC
are mobilized from the bone marrow into the blood within
hours and their numbers remain elevated for at least a
week; levels return to baseline two months post AMI (125,
126).  EPC are reduced in heart failure (127). These
differences suggest that there is a need to investigate the
factors involved in the induction of EPC mobilization
following AMI and the effects of co-morbidities on EPC
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mobilization and function in CHF. EPC function decreases
with age, though controversy exists on their baseline levels
(128, 129).  EPC from older patients proliferate less and
have decreased migratory capacity and colony forming
ability (128-130).  Schuebel, et al measured lower EPC
baseline in the elderly and scarce mobility to coronary
artery bypass grafting, compared to younger patients (131).
Thus, EPC offer a model system for evaluating the effects
of aging and co-morbidities on endogenous stem cell based
repair.

5.3.  Bone marrow cells
Lately, the contribution of other systemic cells in

the cardiac regeneration process has been evaluated.
Recent studies have helped to define a role of bone marrow
cells in response to injury.  We recently demonstrated that
heterochronic bone marrow transplants of young bone
marrow (8 weeks) into old mice (>40 weeks) could
attenuate the effects of trans-aortic constriction (132).  The
benefit of the young marrow was associated with decreased
fibrosis and apoptosis, increased engraftment of bone
marrow cells into the heart, and activation of resident
cardiac progenitor cells.  There were no changes in vascular
density in this model although young marrow has been
demonstrated to improve angiogenesis in old mice with
cardiac allografts (133).  Our analysis further showed that
the number one predictor of myocyte hypertrophy to
pressure overload was bone marrow age, not body age
(132).

Similar benefit has been described in
heterochronic parabiotic mice (134).  When injury was
induced in the skeletal muscle of old mice, only the mice
parabiosed with young mice had restored activation of their
satellite cells.  Fazel, et al, demonstrated the importance of
the bone marrow in a model of myocardial infarction (135).
Mice carrying a mutation on the c-kit receptor had worse
dysfunction after MI than their wild type counterparts.
However, when normal bone marrow was transplanted into
the mice carrying the c-kit mutation, the response was
similar to that observed in wild-type mice.

There is evidence from clinical populations of
bone marrow cells becoming CSC.  The first reports were
from gender-mismatched transplants. In males transplanted
with female hearts, 7-10% of the cardiac myocytes,
endothelial cells, and smooth muscle cells were found to be
Y chromosome positive (90). Additionally, 12-16% of the
CSC were Y+ chromosome. In females transplanted with
male bone marrow, Y+ chromosome cells can be found as
cardiac myocytes, and also skeletal muscle and hepatocytes
(136).  A third study examining both types of gender
mismatched transplants confirmed the results by identifying
1% of cardiac myocytes as being bone marrow derived,
regardless of the transplant type (137). In animal models of
cardiac injury with labeled bone marrow cells (GFP, LacZ),
a portion of the bone marrow cells can be identified as
CSC, endothelial cells, or cardiac myocytes (108, 138-140).
There is some debate on bone marrow cells taking on a
cardiosphere phenotype (140, 141). These reports suggest
that the bone marrow has some capacity to maintain and/or
regenerate the CSC pool.

6. PATHWAYS OF STEM CELL BASED REPAIR

The benefit of exogenous stem cell
transplantation has been described to be primarily paracrine
factor mediated.  Endogenous stem cells are activated and
induced to respond to cardiac injury. The exact underlying
mechanisms involved either in exogenous or endogenous
stem cell based repair are unknown.

One of the first molecular signals that was
identified and now carried through early clinical trials is
stromal cell-derived factor (SDF)-1alpha (CXCL12).  SDF-
1 is a chemo-attractant for CXCR4 expressing stem cells. It
has been demonstrated that cardiac SDF-1 and CXCR4
levels are elevated after AMI (42, 72, 142). SDF-1 levels
are also increased in cardiac pressure overload (143).
Increased SDF-1 expression in the heart recruits CXCR4+
stem and progenitor cells to the ischemic tissue (144). It
has been reported that increased SDF-1 levels can enhance
the homing of stem cells such as HSC, EPC, and ESC (145-
147). The importance of stem cell homing for stem cell
recruitment to myocardial tissue was highlighted by the
recently published LATETIME trial which failed to
demonstrate any benefit from bone marrow derived stem
cells delivered via intracoronary infusion 2-3 weeks after
acute myocardial infarction, a time point we previously
demonstrated was devoid of SDF-1 expression (72, 148).

The effects of SDF-1 are not limited to stem cell
homing.  Our data suggest that SDF-1 can mediate cardiac
tissue repair directly through the inhibition of cardiac
myocytes apoptosis (42). Other groups have shown a
similar cardioprotective effect of SDF-1 (149, 150).
Another important mechanism is an SDF-1 dependent
increase in the recruitment of endogenous cardiac stem
cells (117, 151). Once the CXCR4 positive stem cells reach
the area of injury, they inhibit cardiac myocyte apoptosis,
increase vascular density and improve cardiac remodeling
(72, 84, 117, 152).  SDF-1 is down-regulated within days
after AMI. Multiple studies have demonstrated that
sustaining or re-establishing SDF-1 expression leads to
improved cardiac function (7, 42, 72, 117).  This has been
investigated by transplantation of MSC (expressing SDF-1
naturally), transplantation of MSC engineered to
overexpress SDF-1, or direct injection of SDF-1 DNA (7,
42, 72, 74, 151).  In these studies in models of AMI and
ischemic cardiomyopathy, CXCR4 positive cells, including
CSC, were recruited to the site of SDF-1 expression, vessel
density was increased, and cardiac function improved. The
safety and utility of re-establishing SDF-1 expressing in
patients with NYHA Class III heart failure has recently
been completed.  The biology of the SDF-1:CXCR4 axis is
an example of the innovation and therapeutic potential that
can be gained by defining the molecular mechanisms
associated with endogenous stem cell repair of injured
tissue (73, 153).

Granulocyte colony stimulating factor (G-CSF) is a
hematopoietic cytokine.  It acts by binding to the G-CSF
receptors (GCSFR).  GCSFR are found on cells of
hematopoietic lineage, EPC, and cardiac myocytes (154,
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155).  G-CSF levels in the blood are elevated after AMI
(156). Increased levels of G-CSF can mobilize bone
marrow cells; therefore, G-CSF treatment has been studied
as a therapeutic strategy to stimulate heart regeneration but
largely has failed in clinical trials (154, 157, 158). AMD-
3100 is a small molecule antagonist for the CXCR4
receptor that leads to stem cell mobilization (159).  As G-
CSF did, the administration of AMD-3100 has been shown
to improve cardiac function in pre-clinical models (159).
Whether it will have benefit in clinical trials remains to be
determined.

A number of other proteins have been
implicated in the recruitment of endogenous stem cells.
High-mobility group protein B1 (HMGB1) is a cytokine
released by necrotic cells (160).  HMGB1 induces CSC
migration and proliferation resulting in elevated levels of
endogenous ckit+ CSC and newly formed cardiac
myocytes (161-163).  Monocyte chemotactic protein-3
(MCP3) is a chemokine that is elevated in the heart after
an infarct or in cardiac pressure overload (43, 132).
Overexpression of MCP-3 one-month post-MI, after the
endogenous level has returned to baseline, efficiently
recruits the migration of intravenously injected MSC
(43).  However, the role of MCP-3 as a homing factor for
endogenous stem cells still remains to be determined.
Thymosin beta 4 is an actin regulating peptide (164).
Recently, it has been used in the treatment of MI and
shows benefits in cardiac myocyte survival and function
(165, 166).  It has been proposed that thymosin beta 4
reminds the heart of its embryonic programming by
stimulating the CSC and inducing cardiac migration
(165, 167, 168).

Beyond factors that induce homing of
endogenous stem cell populations to injured tissue, there is
increasing evidence of molecular signals that regulate or
inhibit endogenous stem cell differentiation. For example
disabled-2 is a TGFbeta receptor adaptor protein that is
rapidly up-regulated in cardiac myocytes following AMI
(169).  We have recently demonstrated that via miR-145
this up-regulation of disabled-2 results in down-regulation
of cardiac programming in MSC (169).  Whether inhibiting
this naturally occurring signaling will result in improved
stem cell based cardiac repair is the topic of on-going
studies.  If so, small molecule targeting of disabled-2 could
become an intriguing pharmacological target for future
therapeutics.

7. CONCLUSION

The advent of stem cell based tissue repair offers
the potential for repairing and/or replacing lost end-organ
function.  The field has progressed rapidly with the
translation of exogenous cell therapy for the prevention and
treatment of cardiac dysfunction.  As reviewed above and
elsewhere multiple cell types and strategies have
demonstrated safety and efficacy for cardiac regenerative
medicine. Preclinical mechanism oriented studies from
multiple groups on the effects of exogenous cell therapy
have now clearly validated our early hypothesis that stem
cell based tissue repair is a natural process.  These data

demonstrate an intricate, complicated and systemic stem
cell based process that is activated in response to acute
tissue injury, but is inefficient at preventing loss of end-
organ function. Furthermore, the advancement of SDF-1
mediated gene transfer to clinical populations demonstrates
that defining these pathways can lead to safe therapeutic
strategies that leverage this endogenous repair process for
therapeutic gain. Ultimately true tissue generation will
likely require the combination of exogenous cell therapy
from one or many of the populations reviewed above along
with biologics that will manipulate the natural stem cell
based repair process as well as induce specific states of
differentiation or activation of the exogenous population
itself.
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