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1. ABSTRACT

Several pathological conditions, including
hypertension, atherosclerosis, diabetes,
ischemia/reperfusion injury and nicotine-induced
vasculopathy, are associated with vascular endothelial
dysfunction characterized by altered secretory output of
endothelial cells. Therefore there is a search for molecules
and interventions that could restore endothelial function, in
particular augmenting NO production, reducing the
generation of free radicals and vasoconstrictors and
preventing undesired inflammation. The pineal hormone
melatonin exhibits several endothelium protective
properties: it scavenges free radicals, activates antioxidant
defence enzymes, normalizes lipid and blood pressure
profile and increases NO bioavailability. Melatonin
improved vascular function in experimental hypertension,
reducing intimal infiltration and restoring NO production.
Melatonin improved the NO pathway also in animal models
for the study of diabetes and prevented NO down-
regulation and adhesive molecules up-regulation in
nicotine-induced vasculopathy. The protection against
endothelial damage, vasoconstriction, platelet aggregation
and leukocyte infiltration might contribute to the beneficial
effects against ischemia-reperfusion injury by melatonin.
Therefore, melatonin administration has endothelium-
protective potential in several pathological conditions.
Nevertheless, it still needs to be established, whether
melatonin is able to revert already established endothelial
dysfunction in these conditions.

2. INTRODUCTION

2.1. Vascular endothelium
The view on the endothelium has shifted from the

early concept of inert cellophane-like membrane through an
idea of selective but static physical barrier to the current
view of the endothelium as a dynamic, heterogeneous,
disseminated organ with secretory, synthetic, metabolic and
immunologic functions (1, 2). It is actively involved in the
control and regulation of vascular tone, fluid and solute
exchange, haemostasis, coagulation and inflammatory
responses and therefore the conditions of endothelial cells
(ECs) modulate many aspects of the vascular function (3).

Endothelium synthesizes several peptides and
biologically active molecules such as nitric oxide (NO),
endothelium-derived hyperpolarizing factors (EDHFs),
cytochrome P-450, monooxygenase, epoxyeicosatrienoic
acids, endocannabinoids (4, 5) and prostacyclin (PGI2) as
well as vasoconstrictors such as endothelin-1 (ET-1),
endothelium-derived contracting factors (EDCFs),
endoperoxides and thromboxane (6, 7). It also produces
growth factors, coagulation protein (3, 8) and mitogenic
factors (6).

Given the critical role of these mechanisms,
endothelial dysfunction is a feature of hypertension,
atherosclerosis, diabetes and other unfavourable
cardiovascular conditions (9, 10).
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2.2. Melatonin
Melatonin (N-acetyl-5-methoxy-tryptamine) was

first isolated in 1958 from the bovine pineal gland by
Lerner’s group (11). Its production is controlled by the
suprachiasmatic nucleus (SCN), the central circadian
pacemaker (12). It is synthesized in several organs,
including the pineal gland, retina, Harder’s glands, gastro-
enteric mucous membrane, megakaryocytes and platelets,
at rates and in quantities, modalities and conditions that
vary in relation to the respective organs (13). Melatonin
displays high lipid and water solubility which facilitates
passage across cell membranes (14). Melatonin is present
in several fluids, tissues and cellular compartments (saliva,
urine, cerebrospinal fluid, pre-ovulatory follicle, seminal
fluid, amniotic fluid and milk). The peak of pineal secretion
occurs at night, with maximum plasma levels around
03:00–04:00 a.m., whereas levels during the day period are
low or even undetectable (15).

In mammals, melatonin represents the biological
signal of darkness, because the duration of its release is
proportional to night length. It acts as sleep regulator (16),
inhibits dopamine release in the hypothalamus and retina
(17), it is involved in the aging process (18) and pubertal
development (19), blood pressure control (20), free-radical
scavenging (21) and regulation of the immune response
(22).

Melatonin has receptor-mediated and receptor-
independent effects. Three distinct melatonin receptor
subtypes, termed MT1, MT2, and MT3 receptors, have
been identified and shown to mediate vascular tone
interacting with melatonin (23; 24).Besides its classical
endocrine effects, melatonin has autocrine and paracrine
actions and also functions as a direct scavenger of free
radicals (25).

3. THE ENDOTHELIUM PROTECTIVE EFFECT OF
MELATONIN

Melatonin and its metabolites have been shown
to scavenge different types of free radicals in in vitro
systems as well as in vivo, both in body fluids and in cells
(21, 26, 27, 28). Furthermore, melatonin plays an important
role in activating antioxidant defences such as superoxide
dismutase, catalase, glutathione peroxidase, glutathione
reductase and glucose-6-phosphate dehydrogenase (29, 30),
and protects cells from oxidative load and apoptosis
induced by mitochondrial DNA deletion (31).

Both effects allow melatonin to reduce the extent
of reactive oxygen species (ROS), improving the outcomes
of oxidative related pathologies such as hypertension (32),
atherosclerosis (33), cancer (34), ischemia (35) or
neurodegenerative diseases (36) and preventing aging (37,
38).

ECs, which play an important role in
vasorelaxation, in particular via NO formation, play an
important role in cardiovascular conditions including
hypertension, diabetes and atherosclerosis (39, 40). Thus,

cardioprotective interventions are more effective if they
concomitantly improve endothelial function (41, 42).

The antioxidant action of melatonin and its
possible interaction with EDHFs, may have contributed to
blood pressure lowering effect of melatonin, which was
observed even when the NO pathway was inhibited (43).

The effects of melatonin interaction with its
receptors and their action on vascular tone are complex:
few studies demonstrated that melatonin other than
vasodilatative effect in certain arteries, showed also a
vasoconstriction effect in others (44).

MT2 receptors were coupled to phosphoinositol
hydrolysis with a subsequent increase in  cytosolic calcium
(45): this, in VSMCs, leads to vasoconstriction, effect that
has been overridden by the activation of MT2 receptors in
ECs (46), resulting in cytosolic Ca2+ increase in ECs (47,
48).

Tunstall et al. (2010) demonstrated that
activation of MT2 receptors by melatonin inhibits NO-
induced increases in cyclic GMP as well as the ability of
the smooth muscle to relax in response to NO (44). The
finding that melatonin also inhibits relaxation induced by
sodium nitroprusside, which is independent of endothelial
nitric oxide synthase (eNOS) (49), suggests a site of action
for melatonin other than, or in addition to, eNOS. A likely
possibility is that melatonin acts directly on the vascular
smooth muscle cells, which express MT2 receptors and are
the primary site of action for the vasorelaxing effect of NO.
The primary mechanism by which NO relaxes vascular
smooth muscle is by increasing intracellular cyclic GMP
levels, followed by activation of protein kinase G and the
subsequent phosphorylation of several regulatory proteins
(50, 51).

In humans, melatonin production not only
diminishes with age, but it is also significantly lower in
many age-related diseases, including various cardiovascular
diseases (52, 53).

The purpose of the following paragraphs will be
to provide a summary of the studies about the beneficial
effects of melatonin against vascular ECs dysfunction
linked to cardiovascular diseases. Nevertheless, these
protective effects of melatonin are actually not completely
understood and demonstrated. The effect of melatonin on
endothelial dysfunction in experimental and clinical
hypertension. Hypertension is associated with endothelial
dysfunction.

Hypertension is a major risk factor of severe
cardiovascular complications (42, 54) and it is clearly
associated with endothelial dysfunction (39, 55-57),
augmented oxidative load and vascular inflammation (58,
59). The impaired endothelium-dependent vasodilatation in
hypertension is characterized by an imbalance between EC-
derived vasodilatant and vasoconstrictor factors (56, 57,
60). ROS may be important in the development and
maintenance of hypertension, in term of excess production
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of oxidants, decreased NO bioavailability and decreased
antioxidant capacity in the vasculature (61). Several studies
demonstrated that hypertension may be beneficially
affected by antioxidants treatment (62, 63) and that these
substances may improve vascular functions and structure,
prevent target organ damage and reduce blood pressure
both in animal model and in human hypertension (62-64).

At this regard, reductions in both vascular
oxidative stress and inflammation have been shown to
reverse endothelial dysfunction through the administration
of antioxidant, such as melatonin or pycnogenol, in an
experimental model of genetic hypertension (65, 66).

3.1. The effects of melatonin on endothelium in
hypertension

Many experimental and clinical reports have
supported the concept that melatonin has anti-hypertensive
actions, influencing BP, regulating arterial vasodilatation
and exerting protection against oxidative vascular disorders
(47, 54, 67, 68-72).
The mechanisms of these effects on BP include the
promotion of endothelium-dependent vasorelaxation (68),
direct hypothalamic effect, decrease of catecholamine
levels and its antioxidant properties (59, 66, 73). The
melatonin-induced receptor-mediated vasoconstriction on
vascular smooth muscle cells might be counterbalanced by
augmentation of the receptor-mediated NO release from
ECs, which is further enhanced by anti-oxidant properties
of melatonin (68, 74, 75). Melatonin seems to increase NO
levels either through the stimulation of NO production
and/or the prevention of coupling to the superoxide anion
radical (68). Nevertheless, the mechanisms of these
antihypertensive effects of melatonin are actually not
completely understood.
It is known that the presence of free radicals impairs the
crucial Ca2+ signaling process in ECs (47). Pogan and
collegues (2002) revealed that the incubation of bovine
aortic endothelial cells (BAE), primary cultured vascular
ECs from Sprague Dawley rats (SDR) and from
spontaneously hypertensive rats (SHR) with melatonin
improved the mobilization of internal Ca2+ and agonist-
evoked Ca2+ entry in aortic ECs from SHR, while
reversing the inhibitory effect of free radicals on the
internal release of Ca2+ in SDR and BAE cells (47).
Increased cytosolic Ca2+ levels in ECs may result in
increased NO production via enhancement of eNOS
activity, augmented guanylate cyclase levels and decreased
intracellular Ca2+ in smooth muscle cells with subsequent
vasodilatation (47, 76, 77). In addition melatonin was able
to modulate in vitro acetylcholine-induced relaxation or
phenylephrine-induced vasoconstriction of aortic rings of
aging rats (76, 77-80) and New Zealand rabbits
respectively in an endothelium-dependent manner (76).

SHRs show EC dysfunction (81) and a more
rapid decline of melatonin production with aging than
normotensive rats (82). The treatment of SHR with
melatonin resulted in graduate decrease in BP, heart rate
and plasma renin activity (54), at least partly by EC-
dependent reduction of BP (83) and augmented NO (54,
84).

NG-nitro-l-arginine-methyl ester (L-NAME)
administration is a well established model of hypertension
(54, 85) and endothelial dysfunction (54, 60). L-NAME
hypertension was associated with reduced NOS activity,
increased oxidative stress, impaired acetylcholine-induced
relaxation and augmentation of endothelial-dependent
vasoconstrictor factors. Treatment with melatonin
completely prevents oxidative stress, reduces EC
dysfunction and moderately slows down hypertension
development (54, 60).

Experimental pinealectomy results in EC
dysfunction, vasoconstriction (68), elimination of
circulating melatonin levels induces a temporary rise in
arterial BP (68, 86, 87), unchanged cardiac output (88),
which can be prevented by melatonin administration (71,
86).

The administration of melatonin was reported to
reduce rise in BP (68, 70, 71, 89). Although the
mechanisms of its antihypertensive effects are actually
studied. Endothelial dysfunction in human patients as well
in animal model have been linked to decrease in NO
bioavailability, reflecting the impaired generation of NO
and/or the enhanced inactivation of NO by ROS (56).

3.2. The effects of melatonin on endothelial dysfunction
in atherosclerosis

Injury to endothelium could lead to increased
entry of ox-LDL into the intima from the lumen or it could
impair other important endothelial functions, such as anti-
thrombotic activity and vascular relaxation (90). In states of
melatonin deficiency, excessive ox-LDL induced by
oxidative stress increases the risk of atherosclerotic
development (91).

Melatonin may inhibit endothelium-derived
adhesion molecules formation, reduce fatty acids infiltration in
the intimal layer (92), neutralize free radicals (59, 71), and
prevent electron leakage from mitochondrial respiratory chain
(33). Moreover, melatonin has been shown to reduce plasma
levels of total cholesterol, enter the lipidic phase of the LDL
particles, preventing lipid peroxidation, and augment the
endogenous cholesterol clearance (59). Melatonin in vitro also
prevents ox-LDL-induced activation of myosin light chain
kinase (MLCK), a regulator of EC contraction (93) and
permeability (93, 94). On the other hand melatonin only
partially inhibited the oxidation of LDL in bovine aortic ECs
and did not inhibit ox-LDL toxicity toward cultured ECs (90).

Atherosclerosis might be experimentally induced by
cholesterol feeding (95), which is associated with endothelial
dysfunction (81, 93). Pita et al. (2002) showed that long-
term melatonin administration modified the fatty acid
composition of rat plasma and ameliorated the fatty
infiltration in intima induced by cholesterol feeding (92).
Wakatsuki et al. (2001) showed that melatonin protected
against the ox-LDL-induced inhibition of NO production in
the human umbilical artery. These findings support the
hypothesis that melatonin acts as a scavenger in these cells
and could potentially protect against LDL oxidation (59,
96).
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3.3. The effects of melatonin on endothelial injury in
diabetes

Vascular complications represent a major cause
of morbidity and mortality in diabetic patients (97).
Although the specific mechanisms are not completely
elucidated, endothelial dysfunction is closely linked to the
development of retinopathy, nephropathy, and
atherosclerosis in both type 1 (T1D) and type 2 (T2D)
diabetes (98). Diabetes-associated endothelial dysfunction
is characterized by changes in proliferation, barrier
function, adhesion of circulating cells, sensitivity to
apoptosis, and altered angiogenic and synthetic properties
of ECs (99-101) with impaired endothelium-dependent
vasodilatation in various vascular beds of different models
of diabetes (102-103) with ROS being involved in the
impairment of endothelium-dependent relaxation (78, 104).

Increased plasma glucose levels in diabetes
contribute to ECs apoptosis and endothelial dysfunction
(105). Insulin resistance causes endothelial dysfunction
partly by augmented oxidative load and reduced NO
availability (106-108) due to attenuated stimulation of
phosphoinositide-3 (PI-3) kinase and subsequent eNOS
phosphorylation (109). The endothelial function in diabetic
condition is also modified by the augmented oxidative
stress, which is linked to diabetes (110, 111). It is
implicated in endothelial dysfunction since inhibition of
hyperglycemia-induced ROS production prevents the
formation of advanced glycation end-products (AGE)
(112). The ROS may modify endothelial function by
peroxidation of membrane lipids, activation of NF-κB, or
by decreasing the NO availability (113). Thus, the
restoration of the antioxidant status in diabetic patients
should reduce the development of target organ damage. In
fact, some antioxidants were shown to reverse EC
dysfunction due to oxidative stress (114, 115). The
antioxidant action might be responsible for the beneficial
effect of melatonin, that normalized NO levels and lipid
peroxides in a broad spectrum of diabetic models (104,
116-118).

In insulin resistant mice on high fet diet, 8-week
treatment with melatonin oral restored the vascular
responsiveness to insulin along with aortic insulin-mediated
signaling, such as insulin-induced Akt phosphorylation
(119) which leads to eNOS phosphorylation (120) and thus
correction of impaired endothelium-dependent
vasodilatation in insulin-resistant states (119).
In alloxan-induced diabetes, melatonin reduced the
formation of free radicals and β-cell damage in a dose-
dependent fashion (121).

In streptozotocin-induced diabetic rats, melatonin
started 3 days prior to diabetes induction and continued for
another 8 weeks, reduced hyperglycemia and lipid
peroxidation (104). On the other hand, melatonin had no
effect on diabetic blood glucose levels, when started only
after the diabetes induction, while it reduced glucose levels
when started few days before streptozotocin injection
(115). However, it was still able to attenuate the rise in
lipid peroxide levels (122) and to increase antioxidant
enzymes (115). It is however still unclear to which extent

the vasoactive properties of melatonin (123, 124) might
participate in the amelioration of endothelial dysfunction in
diabetic rats that display reduced vasodilative responses
(78, 125).

In a pancreatectomy model of diabetes, melatonin
similarly improved endothelium-dependent vasorelaxations
(78, 79). The relaxations were most likely mediated by NO,
since they were blunted by NO-synthase inhibition or
endothelium removal (78, 79).

3.4. The effects of melatonin on endothelium in
ischemia/reperfusion injury

Acute coronary occlusion is the leading cause of
morbidity and mortality in the Western world. According to
the World Health Organisation, it will be the major cause
of death in the world by the year 2020 (126). Melatonin
was recently reported to prevent ischemia/reperfusion (I/R)
damage in splanchnicand middle cerebral artery occlusion-
induced stroke, in traumatic brain injury and in spinal cord
injury in rats and mice (127-130).

Cardiomyopathic (CM) Syrian hamsters, a model
of dilated congestive cardiomyopathy (131), are
characterized by altered coronary microvasculature in
which free radicals and NO could cause an increased
number of terminal arterioles and a reduced density of
capillaries (132). In this model, melatonin reduced
leukocyte adhesion, vascular permeability, enhanced
capillary perfusion and restored normal arteriolar
responsiveness to L-NMMA (a NO-synthase inihibitor),
norepinephrine (NE) and angiotensin II (ANG II) (133).
Melatonin might reduce vasoconstriction during the
ischemic phase via the effects on ROS production and on
NO level. It was observed that the vasoconstriction of
terminal arterioles was reduced while the length of perfused
capillaries was increased. The authors suggested that
melatonin can preserve the capillary perfusion through its
ability to modulate lipid peroxidative products of ECs
leading to deterioration of capillary membrane and function
(133).

Beside the generation of ROS, the I/R injury is
associated with exaggerated inflammatory response (134).
Activated polymorphonuclear leukocytes (PMNs)
aggregate and adhere to endothelium, resulting in capillary
plugging, impaired blood flow and development of EC
edema (135). It was suggested that melatonin can inhibit
neutrophil infiltration during postischemic reperfusion (97).
Such inhibitory effect on PMNs infiltration was observed in
several studies on I/R (136). Recently, melatonin reduced
morphological injury and PMNs infiltration in splanchnic
artery occlusion shock along with abolished P-selectin
expression and intercellular adhesion molecule (ICAM-1)
up-regulation on ECs (129).

3.5. The effects of melatonin on endothelial dysfunction
in nicotine-induced vasculopathy

Nicotine exposure is one of the most important
risk factors for cardiovascular disease and premature death
in developed world (137). The acute effects are observed
immediately after smoking and are caused mainly by the
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direct toxicity of nicotine, while the chronic changes are
correlated with a series of alterations of the vascular wall
(138). Nicotine produces structural and functional alterations in
the vascular endothelium, inducing intimal thickening (139),
cell swelling, cytoplasmic vacuolisation and irregularity of the
vessel luminal surface (140), membrane disturbances (137)
and functional dysfunction, affecting endothelium-dependent
arterial dilation (141). Structural damage, a direct toxic effect,
a decreased production or bioavailability of endothelial NO,
have been proposed as mechanisms of smoking-induced
vascular damage (142). 28-day nicotine administration was
associated with altered aortic cytoarchitecture, endothelial
injury increased ET-1 levels and reduced eNOS expression
(143). The elevated ET-1 levels might have also contributed to
enhanced ROS formation (144). Melatonin was demonstrated
to prevent tissue injury and structural and functional alterations
in the vasculature induced by cigarette smoking (145). It has
been suggested that melatonin reduced ET-1 expression and
thus prevented the downregulation of eNOS and the up-
regulation of adhesive molecules on ECs (146). ET-1 and NO
are functionally closely interdependent, with a strong
inhibitory effect of ET-1 on NO-mediated dilation (147). The
main role of melatonin is to reduce ET-1 expression, which in
turn, leads to a decrease in production or bioavailability of
endothelial NO (142; 143). Melatonin minimizes the damage
induced by nicotine, re-establishes the physiological balance
between vasodilatation (increasing eNOS) and
vasoconstriction (decreasing ET-1 and antioxidant enzymes
that control vasoconstriction), promoting vascular
remodelling.

Moreover, ICAM-1 and vascular cell adhesion
molecule-1 (VCAM-1) molecules, that precede monocyte
adhesion to the endothelium (148) were  up-regulated in the
nicotine-treated animals (149). It has been suggested that
nicotine activates extracellular signal regulated kinase
(ERK)1,2 through its phosphorylation. This enzyme, in
turn, activates NF-kB, that translocates into the nucleus
where it stimulates ICAM-1/VCAM-1 transcription. These
latter promote cell surface expression of the adhesion
molecules. Melatonin can be able to minimize the negative
effects of nicotine blocking the activation of ERK and the
other signalling pathways in which this enzyme is involved
(149).

The use of melatonin against nicotine-induced
vascular injury represents a novel field for the therapeutic
implication of this molecule.

4. CONCLUSIONS

Endothelial dysfunction is associated with a
broad spectrum of cardiovascular and metabolic
pathologies such as hypertension, atherosclerosis or
diabetes. The hallmarks of these conditions include
increased formation of ROS, reduced production of NO and
exaggerated inflammatory response. Therefore, the pineal
hormone melatonin, with its antioxidant and
antinflammatory properties is being expected to act
cardioprotective in this setting. Indeed, several animal
studies and small clinical trials have indicated that the
administration of melatonin might at least partly prevent

end-organ damage in hypertension, diabetes, ischemia-
reperfusion injury or nicotine-induced injury along with
preservation of the endothelial function. However, it still
needs to be established, whether treatment with melatonin
is able to revert already established organ alterations and
endothelial dysfunction in these conditions.
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