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1. ABSTRACT 
  

The goal of network clustering algorithms detect 
dense clusters in a network, and provide a first step towards 
the understanding of large scale biological networks. With 
numerous recent advances in biotechnologies, large-scale 
genetic interactions are widely available, but there is a 
limited understanding of which clustering algorithms may 
be most effective. In order to address this problem, we 
conducted a systematic study to compare and evaluate six 
clustering algorithms in analyzing genetic interaction 
networks, and investigated influencing factors in choosing 
algorithms. The algorithms considered in this comparison 
include hierarchical clustering, topological overlap matrix, 
bi-clustering, Markov clustering, Bayesian discriminant 
analysis based community detection, and variational Bayes 
approach to modularity. Both experimentally identified and 
synthetically constructed networks were used in this 
comparison. The accuracy of the algorithms is measured by 
the Jaccard index in comparing predicted gene modules 
with benchmark gene sets. The results suggest that the 
choice differs according to the network topology and 
evaluation criteria. Hierarchical clustering showed to be 
best at predicting protein complexes, Bayesian discriminant 
analysis based community detection proved best under 
epistatic miniarray profile (EMAP) datasets, the variational 
Bayes approach to modularity was noticeably better than 
the other algorithms in the genome-scale networks. 

 
 
 
 
 
 
2. INTRODUCTION 
  

A genetic interaction arises when the phenotype 
expressed by a double mutation deviates from the 
combined phenotype of single mutation(1). Large-scale 
genetic interaction networks are available in model 
organisms, such as S. cerevisiae (2-7), S. pombe (8-10), and 
E. coli (11). These datasets have been effective in revealing 
cellular functions of proteins and understanding the 
organizational principles of the living cell on a systems 
level.  
 
 There are several high-throughput experimental 
techniques used to measure genetic interactions in S. 
cerevisiae. The synthetic genetic array technique (SGA) 
(12-13) generates double mutation strains by crossing a 
query strain against a library of genome-wide single 
mutation test strains. After mating is performed, special 
drugs are used to select out the double mutation strains. 
The double mutation strains are then grown in a rich media 
for a defined time period after which the sizes of the 
colonies are measured. A lethal or sickly interaction occurs 
when double mutation strain dies or is sicker (less 
abundant) than expected. Epistatic Miniarray Profiles 
(EMAP) is modified from SGA (7), which is more 
quantitative and can measure positive (healthy) interactions 
as well as negative (sickly) interactions. The interaction 
network derived can be represented as a matrix, with rows 
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Figure 1. Network view of the early secretory pathway EMAP datasets. Blue edges: negative interactions; yellow edges: positive 
interactions. 
 

 
 
Figure 2. Network view of the synthetic lethal network. Blue edges: negative interactions; yellow edges: positive interactions. 
 
and columns corresponding to query and test genes 
respectively. In EMAP datasets, query genes and test genes 
are essentially the same set of genes, resulting in a 
symmetric matrix.  
 
 Large-scale genetic interaction networks are 
informative, and they can provide answers to many 
biological questions (1, 3). However, due to the large 

amounts of data and the substantial noise present in the 
data, it is difficult to analyze and interpret such networks 
(Figure 1-2). Network clustering algorithms can overcome 
some of these difficulties by predicting modules within the 
network, potentially yielding novel biological hypotheses. 
Although there are many different network clustering 
algorithms (14-16), the question as to which algorithms are 
best at predicting modules in genetic interaction networks  
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Table 1. Parameter setups for synthetic datasets 
 N 

K 

   
A1 500 20 0.3 0.05 0.2 
A2 500 20 0.3 0.05 0.3 
A3 500 20 0.3 0.05 0.4 
A4 500 20 0.3 0.05 0.5 
B1 2000 100 0.1 0.005 0.15 
B2 2000 100 0.1 0.005 0.2 
B3 2000 100 0.1 0.005 0.25 
B4 2000 100 0.1 0.005 0.3 

 
has not been previously researched in the literature. 
Actually, hierarchical clustering is predominately used in 
the field of genetic interaction networks (2-3, 17), but its 
accuracy has not been evaluated and compared with other 
algorithms.  
 

In this study, we seek to answer the following 
questions: (1) Are there algorithms that significantly 
outperform the dominantly applied hierarchical clustering 
algorithm? (2) Which network clustering algorithms have 
favorable qualities (and which should be avoided)? 
(3)What factors are important in selecting an optimal 
algorithm? To answer these questions, a wide array of 
network clustering algorithms is implemented over several 
different experimentally derived and synthetically 
constructed biological networks. Among the six algorithms 
investigated, some have been applied in genetic interaction 
networks, like hierarchical clustering (HC) (7), bi-
clustering (18), and Bayesian discriminant analysis based 
community detection (BDA) (19), while others have not 
been introduced before, including topological overlap 
matrix (TOM), Markov clustering (MCL), and variational 
Bayes approach to modularity (VBM). Markov clustering 
algorithm (20) is shown to be superior in predicting protein 
complexes within physical protein interaction networks. In 
gene co-expression networks, hierarchical clustering (21), 
topological overlap matrix (22), and bi-clustering (23) are 
effective algorithms in predicting co-regulated gene sets. 
The performances of these algorithms are compared and 
evaluated based on the similarity between predicted 
modules and benchmark gene sets using the Jaccard index. 
Based on the results on experimental genetic interaction 
networks, we conclude that in EMAP studies, hierarchical 
clustering works best for predicting protein complexes, and 
the performance of these algorithms are comparable to each 
other in recovering GO co-functional gene sets, with BDA 
slightly outperforms others. In genome-scale genetic 
interaction networks, VBM achieves the best accuracy. 
Plus, we studied how the accuracy of network clustering 
algorithms varies with the signal to noise ratio in the 
synthetic network. The accuracy of VBM increases rapidly 
with the increase of the signal to noise ratio. As the genetic 
interaction network are wide spread and extensively 
investigated, a more complete network can be expected, 
which indicates the potential use of VBM in the future.   
 
3. MATERIALS AND METHODS 
 
3.1. Notation 

: number of nodes in the network. 
 
M: number of edges in the network. 

 
: number of modules in the network. 

 
A: adjacency matrix of the network; 

 
: probability that a node does not belong to any of the K 

modules. 
 

: prior probability that a node belongs 
to module i. 
 

: module membership of node ;  if node  does 
not belong to any module. 
 

: probability that a “within” module edge exists 
( ). 
 

: probability that an edge exists randomly 
( ) 
 
3.2. Experimental genetic interaction networks 
 Three experimental genetic interaction networks 
in S. cerevisiae are used here, including an EMAP dataset 
studying the early secretory pathway (ESP) (7), an EMAP 
dataset studying the chromosome biology (CHR) (6), and a 
synthetic lethal genetic interaction network from the 
BioGrid database (SLN) (24). The ESP-EMAP, CHR-
EMAP, and SLN are datasets consist of 424, 743, and 2828 
genes respectively. The EMAP datasets were downloaded 
from http://interactome-cmp.ucsf.edu/ and the SLN data 
was downloaded from BioGrid (release 3.1.71). It is noted 
that the EMAP datasets consists of continuous-valued 
measurements, whereas the SLN consists of binary data. 
 
3.3. Synthetic data 
 Two sets of synthetic data are simulated. 
Scenarios A1-A4 are designed to reflect the signal to noise 
ratio in EMAP and enhanced EMAP datasets. Similarly, 
scenarios B1-B4 are designed to reflect the signal to noise 
ratio in SLN and the enhanced SLN. The parameter setups 
are listed in Supplementary Table 1. 
 

In order to simulate the binary networks, the 
parameter values need to be appropriately chosen. 
Previously reported genetic interaction networks guide 
selection of these parameters. First, parameters determining 
the number of nodes and interactions are described. In 
EMAP datasets, the study is focused on a general biological 
process, such as early secretory pathway (7), chromosome 
biology (6), unfolded protein response pathway (25), and 
phosphorylation network (5). The number of query genes 
ranges from four hundred to seven hundred, and the chance 
that two genes have a genetic interaction is greater than 
what is expected by random chance since the genes are co-
regulated. Thus, in scenarios A1-A4, the number of nodes 
is set to 500 and the null probability ( ) that two genes 
have an interaction is set to 0.05. The choice of  is 
consistent with what is observed in the experimental 
datasets (see Supplementary Table 2). In genome-scale 
networks like SLN, the interaction network is a 
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Table 2. Statistics for experimental genetic interaction 
networks 

 N   #modules (PC) 
ESP 424 0.15 0.04 34 
CHR 743 0.17 0.05 125 
SLN 2828 0.12 0.003 267 

 
combination of several independent studies, which makes 
the resulting network larger and sparser. In scenarios B1-
B4, the number of nodes is set to 2000. The null probability 

 is set to 0.005, which also reflects the parameters 
estimated from the SLN experimental datasets (see 
Supplementary Table 2).   

 
Next we describe how parameters determining 

the number and sizes of the modules are chosen. In EMAP 
studies, the query genes are distributed to several related 
signaling pathways or functions. While in genome-scale 
datasets, genes can be classified into distinct functional 
categories, and represent many aspects of a biological 
system. We set  to 20 for scenarios A1-A4 and set  to 
100 for scenarios B1-B4, as suggested by the experimental 
data (see Supplementary Table 2). The size of each module 
is determined by a random sampling. The probability that a 
node is in module  is randomly sampled from the uniform 
(0, 1) distribution. An additional parameter, , is 
introduced to reflect the fact that some portion of nodes 
cannot be assigned to any of the modules based on the 
available data; this parameter is arbitrarily set to 0.3 and 
0.1. The module membership  is sampled from the multi-
nominal distribution .   

 
Finally, the adjacency matrix is sampled from 

Bernoulli distributions. Interactions ( ) is generated by 
random sampling from  if , and 
otherwise from . We chose  according to 
the experimental datasets in scenario A1 and B1 (see 
Supplementary Table 2). In scenarios A2-A4 and B2-B4, 
we increased  to represent a more complete network. 
 
3.4. Benchmark functional gene sets 
 GO co-functional gene sets and protein 
complexes are used as benchmark functional gene sets to 
compare and evaluate the network clustering algorithms 
(26-27). Biological Process, Molecular Function, and 
Cellular Component ontologies are analyzed separately. 
The mapping of yeast gene products to GO-Slim terms and 
the information of protein complexes is downloaded from 
SGD (27) 
 
(http://downloads.yeastgenome.org/literature_curation, 
updated 26-Feb-2011). 
 
3.5. Network clustering algorithms 
 We compared six network clustering 
algorithms—hierarchical clustering (21), topological 
overlap matrix (22), bi-clustering (23), Markov clustering 
(20), Bayesian discriminant analysis based community 
detection, and variational Bayes approach to modularity 
(28). Hierarchical clustering is widely used in analyzing 
EMAP datasets, and it is useful for illuminating gene 
functions (17). Using each gene’s genetic interactions in 

the genome as an interaction profile, the Pearson 
correlation coefficient between two gene profiles can be 
used as a similarity measure. Based on this similarity 
measure, hierarchical clustering arranges the network into a 
dendrogram. The topological overlap matrix yields another 
similarity measure, which reflects the commonality of the 
nodes they connect to (22). 
 

 

 
It is demonstrated as an appropriate measure of 

similarity when applied to metabolic networks (29) and 
gene co-expression network (30). Genes can then be 
clustered through hierarchical clustering, with topological 
overlap matrix as the similarity matrix. Bi-clustering is an 
unsupervised machine learning technique, which is useful 
in gene expression datasets (23). When applied to genetic 
interaction networks, the two indicies correspond to query 
and test genes, which are usually the same in EMAP 
studies. Bi-clustering finds a subset of query genes and test 
genes, within which interactions are denser compared to 
background. Unlike hierarchical clustering, which clusters 
genes with globally coherent genetic interaction profiles, 
bi-clustering detects genes with both global and local 
coherent profiles. Bi-clustering is demonstrated as a 
valuable tool for mapping genes into biological pathways 
(18). Markov clustering algorithm is based on a simulation 
of stochastic flow in the network, and it has been 
successfully applied in protein-protein interaction networks 
(20). In each iteration step, the stochastic flow is re-
distributed by an expansion operation and an inflation 
operation, so that strong flows are inflated and weak flows 
are weakened. This procedure is simply implemented as the 
power of the adjacency matrix of the network, followed by 
a normalization of each row, which will converge to a 
partition of the network. The Bayesian discriminant 
analysis based community detection is an algorithm for 
analyzing EMAP data we developed previously, which 
identifies modules in a probabilistic genetic interaction 
network. It calculates the likelihood ratio of a set of genes 
by contrasting “module” model with “random set” model, 
assuming genes in biological significant modules are 
densely interacting, while interactions in random gene sets 
are sparse and random. The variational Bayes approach to 
modularity is an efficient implementation of a Bayesian 
framework, which poses the community detection problem 
as an inference of latent variables in a probabilistic model. 
It infers the number of modules, model parameter, and 
module assignment simultaneously through optimizing a 
likelihood function (28, 31). 
 
 These algorithms are applied to experimental and 
synthetic genetic interaction networks. Hierarchical 
clustering is performed by the hclust() function in the R 
program (http://www.r-project.org/). The prediction results 
of ESP-EMAP and CHR-EMAP by bi-clustering were 
downloaded from the supplementary materials of Pu et al. 
(18). The other algorithms have been implemented in-house 
according to the methodological descriptions in the 
respective published sources. Bi-clustering and BDA are 
specifically designed for EMAP data and their results are 
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Table 3. Topological properties of experimental genetic 
interaction networks 

 N1 Ave. Deg2 Ave. NCC3 
ESP* 424 16 0.417 
CHR* 743 39 0.424 
SLN 2828 8 0.304 

*: the EMAP datasets are transformed into binary network 
by thresholding at 2.5.  
1: N: number of nodes 

2: average degree,  
3: average network clustering coefficient;  

,  

 
limited to this type of data. Among the six algorithms 
investigated, HC, bi-clustering, and BDA are designed to 
work with continuous data, while the others are designed to 
work with binary data. For the algorithms requiring binary 
data, the EMAP datasets are transformed to binary network 
by thresholding the values at 2.5; this thesholding 
approximately corresponds to a 5% loss of information (7). 
The prediction results of HC and TOM vary according to 
the depth at which the dendrogram is cut. Also, the results 
of MCL are dependent on the choice of inflation parameter. 
To account for the sensitivity of these parameters, several 
thresholds and inflation parameters were considered, and 
the results with the best performance were selected for 
comparison with other algorithms. Only clusters containing 
between 3 and 50 genes were used in the comparison. 
 
3.6. Jaccard index: evaluation measure of the predicted 
modules 

We used the Jaccard index to determine how well 
the predicted modules correspond to benchmark 
(“theoretical”) gene sets (16). The Jaccard index between 
two sets  and  is defined as  
 

. 

 
For module , the Jaccard index between  

and each gene set  in the benchmark is computed, and 
the Jaccard index of  and the benchmark gene sets is 
defined as the maximum of Jaccard index between  and 
any gene set in the benchmark: 
 

. 
Thus, the average Jaccard index of the predicted modules 
and the benchmark gene sets can be computed: 
 

 
 

The accuracy of network clustering algorithms is 
evaluated by the average Jaccard index of the predicted 
modules and benchmark gene sets. In the ideal situation 
where the predicted modules perfectly match the 
benchmark gene sets, the Jaccard index is 1. The larger the 
Jaccard index, the better the predictions are. Furthermore, 
the significance of difference between different network 

clustering algorithm X and Y is tested by the Wilcoxon 
rank sum test between 

 and 
. 

 
4. RESULTS 
 
4.1. Comparisons with the experimental data 

A major difficulty in comparing and evaluating 
network clustering algorithms is the lack of established 
criteria.  Here, we propose to assess a network clustering 
algorithm with the biological significance of the modules it 
predicted, which we refer to here as prediction accuracy. 
Accuracy is measured by the Jaccard index between 
predicted modules and benchmark gene sets. In order to 
systematically compare the network clustering algorithms, 
three genetic interaction networks are investigated here. 
ESP-EMAP and CHR-EMAP are EMAP datasets, which 
focuses on a particular method of measuring genetic 
interactions in yeast. SLN is a synthetic lethal genetic 
interaction network from BioGrid, which is a literature-
curated interaction database. The two kinds of networks 
differ in three aspects: 1) networks from EMAP studies 
contain fewer genes than literature-curated networks; 2) the 
proportion of genetic interactions in EMAP studies is 
larger, since it targets at a potentially co-functional set of 
proteins; 3) the EMAP experiments yield a continuous 
measure of interaction whereas the SLN data is binary. 
Because of the structural differences in the EMAP and SLN 
datasets (see Supplementary Table 3), we proceed in 
providing different preferences for the network clustering 
algorithms for these two types of datasets.  

 
We applied the network clustering algorithms to 

these networks, and the accuracy of each algorithm is 
evaluated by comparing the predicted modules to 
benchmark gene sets with the Jaccard index. Additionally, 
the size of the predicted modules and the number of 
benchmark gene sets that can be recovered are also 
investigated. Comparisons are provided across the different 
algorithms, networks, and benchmark gene sets.  

 
In EMAP datasets, the algorithms are 

comparable to each other in predicting GO functional 
gene sets, though HC and BDA are slightly more 
accurate (Figure 3AB). The results are consistent in 
ESP-EMAP and CHR-EMAP. Moreover, in ESP-EMAP 
more GO functional gene sets are recovered by BDA 
compared to HC (Supplementary Table 5). VBM did not 
predict any module of appropriate size (consisting of 3 
to 50 genes) in both datasets. When we use GO protein 
complexes as the benchmark gene set, HC achieves a 
noticeably higher Jaccard index than the other 
algorithms. Particularly, in CHR-EMAP, the Jaccard 
index of HC is significantly higher than others (Figure 
4, supplementary Table 4). This is because subunits of a 
protein complex form a functional unit with highly 
similar genetic interaction profiles (17), which is 
captured by hierarchical clustering directly. However, a 
stringent cutoff needs to be applied for HC to achieve a 
high Jaccard index. In that case, fewer modules 
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Table 4.  Significance of difference between different network clustering algorithms 
Algorithm&/p-value* BP MF CC PC 
ESP-EMAP BDA/0.3588 BDA/0.06681 BDA/0.06664 HC/0.1003 
CHR-EMAP BDA/0.1319 HC/0.7809 BDA/0/0174 HC/0.02821 
SLN VBM/4.94E-05 VB/0.00073 VBM/0.01431 HC/0.809 

&: the algorithm which achieves the highest average Jaccard index in the corresponding dataset and benchmark set is given .*: 
the p-values are calculated by the Wilcoxon rank sum test between Jaccard index of two algorithms, the algorithm shown and the 
one with the second highest average Jaccard index. 
 
 Table 5. Summary statistics of predicted modules in ESP-EMAP 

PC* Jaccard Index #module Ave. size #enriched  benchmark set@ 
HC$ 0.3389 6 4 5 

TOM$ 0.1318 30 4 5 
Bi-Clustering 0.1602 391 6 9 

MCL$ 0.0746 29 5 1 
BDA 0.1184 8 18 6 

BP Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.1231 6 4 3 

TOM 0.1136 11 4 6 
Bi-Clust 0.1229 391 6 9 

MCL 0.0853 24 4 0 
BDA 0.1288 8 18 7 

MF Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0714 33 6 2 

TOM 0.0635 52 5 1 
Bi-Clust 0.0592 391 6 1 

MCL 0.0689 23 6 0 
BDA 0.0846 8 18 1 

CC Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0711 16 6 2 

TOM 0.0626 52 5 0 
Bi-Clust 0.598 391 6 4 

MCL 0.0655 34 5 0 
BDA 0.0935 8 18 4 

*: the benchmark dataset. $: the clustering result of HC, TOM, and MCL is dependent on cutoffs or parameters. We tried 
different cutoffs or parameters, the one with the highest Jaccard index in corresponding dataset and benchmark set is 
presented.@: hyper-geometric test applied to test the enrichment of gene sets. Significance level: FDR<=0.05. 
 
are predicted, and the average size of predicted modules are 
small (around 5), leaving a large proportion of genes as 
singletons (see Supplementary Table 5-6).  
 

In the genome-scale synthetic lethal network, 
VBM is significantly better than the other algorithms in 
predicting GO functional gene sets (Figure 3C). The other 
three algorithms are comparable to each other, but 
measurably less accurate than the VBM. All these 
algorithms are comparable in predicting protein complexes 
in SLN (Figure 4). A comparison of the results in EMAP 
datasets and SLN highlights that differences of the Jaccard 
index between different datasets is greater than the 
differences among the different algorithms in the same 
network.  

 
Based on these observations, we concluded that 

the results in ESP and CHR are similar. BDA and HC are 
the best choice for predicting co-functional modules, and 
HC is best for predicting protein complex memberships. As 
for SLN, the VBM is best regardless of the biological 
focus. Generally, it is more difficult to identify modules in 
SLN because the network is less complete compared to the 
EMAP datasets. The best Jaccard index obtained in the 
SLN data is much smaller than any of the Jaccard indices 
calculated in the EMAP datasets. Our results also 
demonstrate that the accuracy of network clustering 
algorithms is affected by network topologies, as reported 
previously (16).  

4.2. Comparisons with the synthetic data 
In addition to the experimental datasets, we 

applied the algorithms to simulated binary networks. 
There are two advantages to this approach. First, in 
real datasets, a true module is frequently regarded as 
false positive because of limited biological 
knowledge. As a result, the false positive rate is 
usually over-estimated, and the true positive rate is 
under-estimated. On the other hand, in simulated 
datasets, we always know what the true modules are, 
thus the algorithms can be more accurately evaluated. 
Second, in the synthetic data parameters can be 
manipulated to study how the parameter values affect 
the results.  
 

After an inspection of the experimental genetic 
interaction networks, eight sets of parameters are 
employed. The different parameter setups represent 
different types of genetic interaction networks. Scenarios 
A1-A4 mimics the EMAP datasets with the percentage of 
within module interactions varying from 20% to 50%. In 
synthetic network A1, similar Jaccard index levels were 
observed as those in the experimental datasets and the 
performance of the algorithms are comparable to each 
other. VBM, as in the experimental data, failed to predict 
any module of size between 3 and 50. When we improve 
the signal-to-noise ratio, naturally the performance of all 
the algorithms demonstrated improvement (Figure 5A). 
The most striking change was with VBM. In the A4 
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Figure 3. Comparison of the Jaccard index between predicted modules and the GO functional gene sets on the early secretory 
pathway EMAP (A), chromosome biology EMAP (B), and the genome-scale synthetic lethal network (C). The algorithms 
compared are hierarchical clustering (HC), topological overlap matrix (TOM), Bi-clustering (Bi-CL), Markov clustering (MCL), 
Bayesian discriminant analysis based community detection (BDA), and variational Bayes approach to modularity (VBM). The 
biological process (BP), molecular function (MF), and cellular component (CC) ontologies are compared separately. The larger 
the Jaccard index, the better the result. The * indicates the algorithm with the highest Jaccard index and the algorithm with the 
second highest Jaccard index are statistically significant (p<0.05). 

 
scenario, it achieved a Jaccard index around 0.8, whereas the 
second best algorithm, Markov clustering, only yielded a 
Jaccard index of 0.58. In scenarios B1-B4, the number of 
nodes is much larger, but the network is sparser. VBM 
consistently outperformed the others in average Jaccard index 
(Figure 5B). The simulation studies show the hierarchical 
clustering based methods (HC and TOM) are robust across the 
different networks. However, their prediction accuracy can be 

considerable inferior to the other methods. On the other hand, 
the VBM is very sensitive to the signal-to-noise ratio, but when 
it works, it can considerably outperform the other methods.  

 
In addition to the Jaccard index, we also compared 

the number of benchmark sets that can be predicted by each 
algorithm (Supplementary Table 8). In synthetic EMAP 
dataset A2-A4, VBM not only recovered the most number of 
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Figure 4. Comparison of the Jaccard index between predicted modules and the GO protein complexes on the early secretory 
pathway EMAP, chromosome biology EMAP, and the genome-scale synthetic lethal network. The algorithms compared are 
hierarchical clustering (HC), topological overlap matrix (TOM), Bi-clustering (Bi-CL), Markov clustering (MCL), Bayesian 
discriminant analysis based community detection (BDA), and variational Bayes approach to modularity (VBM). The biological 
process (BP), molecular function (MF), and cellular component (CC) ontologies are compared separately. The larger the Jaccard 
index is, the better the result is. The * indicates the algorithm with the highest Jaccard index and the algorithm with the second 
highest Jaccard index are statistically significant (p<0.05). 
 

 
 
Figure 5. Comparison of the Jaccard index on the synthetic datasets A1-A4 (left) and B1-B4 (right). The algorithms compared 
are hierarchical clustering (HC, yellow), topological overlap matrix (TOM, blue), Markov clustering (MCL, green), and 
variational Bayes approach to modularity (VBM, red). 
 
modules, but also achieved the best accuracy at the largest 
average module size. In genome-scale datasets, VBM can 
achieve a Jaccard index of 0.9 and recover 60% of true 
modules when 30% of interactions can be observed (B4). We 
also tested the computation time and memory consumption of 

these algorithms on synthetic datasets (see Supplementary 
Table 9). Overall, for most algorithms it needs less than 50M and 3 
minutes for A1-A4, and less than 300M and 15 minutes for B1-
B4. VBM took around 80 minutes on datasets B1-B4, however, 
this time can be cut down by decreasing iteration steps.  
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Table 6. Summary statistics of predicted modules in CHR-EMAP 
PC Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.4864 21 4 28 

TOM 0.2734 24 4 20 
Bi-Clust 0.3698 268 9 52 

MCL 0.1482 39 7 4 
BDA 0.125 24 18 21 

BP Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0839 62 6 18 

TOM 0.0729 83 5 6 
Bi-Clust 0.0818 268 9 17 

MCL 0.0809 26 4 0 
BDA 0.0875 24 18 4 

MF Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0609 62 6 0 

TOM 0.0496 83 5 1 
Bi-Clust 0.0484 268 9 1 

MCL 0.0575 26 4 0 
BDA 0.06 24 18 0 

CC Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0519 11 4 3 

TOM 0.0506 7 3 2 
Bi-Clust 0.0519 268 9 6 

MCL 0.0523 33 4 0 
BDA 0.0781 24 18 5 

 
Table 7. Summary statistics of predicted modules in SLN 

PC Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.1644 187 6 42 

TOM 0.1483 354 5 59 
MCL 0.1424 335 6 44 
VBM 0.1535 22 16 24 

BP Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0269 258 7 6 

TOM 0.0305 280 7 1 
MCL 0.0287 298 7 1 

VB 0.0627 22 16 2 
MF Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0233 258 7 0 

TOM 0.0262 280 7 0 
MCL 0.025 298 7 1 

VB 0.04 22 16 0 
CC Jaccard Index #module Ave. size #enriched benchmark set 
HC 0.0191 258 7 0 

TOM 0.0208 280 7 0 
MCL 0.0212 298 7 4 

VB 0.0349 22 16 1 
 
5.  DISCUSSION 
 
 Large-scale genetic interaction network data are 
becoming increasingly available bringing insight into the cellular 
organization of the cell. To interpret the network and make 
biological inference, network clustering algorithms are needed to 
identify modules from hundreds or thousands of interactions. 
Various network clustering algorithms have been developed and 
applied to biological and social networks. In this study, we 
compared and evaluated different network clustering algorithms 
applied to genetic interaction networks so as to provide a guide in 
selecting an accurate and effective algorithm. No single algorithm 
universally outperformed the rest. In clustering EMAP datasets, 
both hierarchical clustering and Bayesian discriminant 
analysis based community detection are recommended. 
For genome-scale networks as SLN, the varational 
Bayes   approach   to  modularity  works  consistently  
well for identifying protein complexes and GO co-
functional gene sets. 
 

In addition to the comparison and evaluation 
study in experimental genetic interaction networks, we also  

 
applied the algorithms to synthetic data. These studies shed 
light on what we can achieve with fixed network 
topologies, and what we should do to improve the 
understanding of genetic interaction networks. Comparison 
of network clustering algorithms between different 
synthetic networks suggests that the accuracy of module 
identification is highly dependent on the completeness of 
the network. Thus, great effort should be made to increase 
the overall coverage of the genetic interaction networks, 
which can be achieved by both experimental and 
computational strategies. 

   
Experimentally, almost every pair of genes in S. 

cerervisiae has been tested for their genetic interaction (2). 
In spite of this advancement, we believe large amounts of 
false negatives exist in current networks for two reasons. 
First, some pathways are not active in normal laboratory 
conditions. As a result, cells usually do not behave 
differently after perturbations on these pathways, and the 
corresponding interactions cannot be identified in normal 
conditions. To remove these false negatives, it is helpful to 
re-test the genetic interaction network under stress or with 
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Table 8. Summary statistics of predicted modules in synthetic networks 
 A1 A2 A3 A4 B1 

HC 102/(5)/2* 93/(5)/11 55/(9)/11 37/(9)/15 346/(5)/42 
TOM 80/(6)/3 64/(8)/11 46/(11)/11 24/(11)/14 263/(8)/59 
MCL 4/(4)/0 7/(6)/4 11/(13)/8 9/(18)/9 229/(7)/58 
VBM  14/(23)/12 15/(25)/12 19/(19)/17 24/(31)/23 

*The numbers shown are (1) number of modules predicted; (2) average size of modules; (3) number of benchmark sets recovered 
(FDR <=0.05).  

Table 9. Computation time and memory consumption for synthetic datasets 
Time(S)/Memory(M)* HC TOM MCL VB 
A1 2/33 15/30 10/41 143/34 
A2 2/33 15/30 10/41 143/34 
A3 2/33 15/30 9/41 143/34 
A4 2/33 15/30 9/38 143/34 
B1 132/280 740/206 922/295 4709/191 
B2 132/280 741/206 923/295 4728/191 
B3 132/280 741/206 931/295 4738/191 
B4 132/280 741/206 1005/295 4735/191 
Time complexity     

*: time complexity of BDA, ; bi-clustering, ; n, number of nodes; K, number of modules; M, 
number of edges. 
 
drug treatment. A recent work on the DNA damage 
pathway (32) highlights the additional insights gained by 
comparing the network in normal conditions and under 
DNA-damage agent treatment. Second, current studies 
choose growth rate as the phenotype to measure genetic 
interactions. While growth rate is easy to measure in a 
quantitative and high-throughput fashion, it may not 
respond sensitively to a particular biological process of 
interest. Both experimental studies (25) and theoretical 
studies (33) proved that introducing more phenotypes 
indeed increases the coverage of genetic interaction 
networks. Therefore it is helpful to measure more 
phenotypes when experimentally applicable. Separate from 
the experimental methods, the coverage of genetic 
interaction networks can be improved through 
computational approaches. Recently, several studies tried to 
predict genetic interactions based on diverse biological 
data, including physical protein interaction network, gene 
co-expression data, and functional annotation data (34-
36).There is also imputation method to deal with the 
missing data in EMAP studies (37). Although these 
methods are effective in predicting genetic interactions, it 
remains unclear to what extent the predicted networks can 
improve the accuracy of module identification. 

 
In conclusion, in order to choose the best 

algorithm, the network topology and biological questions of 
interest should be considered. In EMAP datasets, 
hierarchical clustering and Bayesian discriminant 
analysis based community detection is recommended to 
predict protein complexes and identify co-functional 
gene sets. In genome-scale datasets, the problem 
becomes more difficult. Our suggestion is that the 
variational Bayes approach to modularity should be 
implemented. 
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