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1. ABSTRACT 
 

Mathematical models addressing important 
aspects of hematological malignancies have recently 
facilitated an improved understanding of the involved 
complex biological processes and the prediction of 
potential targets for therapeutic approaches. These models 
investigate a wide spectrum of topics ranging from 
metabolic processes, gene regulatory networks and signal 
transduction up to the behavior of cell populations. 
However, despite this range of biological processes, the 
modeling strategies share many common features. 
Biological knowledge is translated into abstract 
descriptions representing complex networks and the 
parameters of these mathematical models are derived from 
literature data or estimated from experimental 
measurements. The established mathematical models are 
used to interrogate key properties of the investigated 
system by model simulations. These predictions are 
validated based on previously published or novel 
experiments. Additionally, new drug targets are predicted 
or novel insights into biological processes are provided. 
Here, we summarize the strategies employed to establish 
four mathematical models that address different processes 
in leukemia and lymphoma cells. Furthermore, we show 
how these systems biology approaches could contribute to 
elucidate the pathobiology of hematological malignancies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Mathematical oncology analyzes large datasets 
generated from imaging, proteomics and genomics studies 
and uses this information for the establishment of 
mathematical models. The investigation of biological 
processes by means of a mathematical model is the scope 
of the growing interdisciplinary field of systems biology. 
Systems biology combines quantitative data generation 
with mathematical modeling to discover common design 
principles that control emergent properties in complex 
networks (1). 

 
The hematopoietic system is well-suited for 

mathematical modeling and experimental validation, since 
hematopoietic cells are readily extractable and can be 
quantitatively examined even in vitro (2). Furthermore, it 
has emerged that the molecular differences between both 
healthy and cancer cells as well as between different 
hematological malignancies are extremely complex. 
Mutations at various pathways and layers, feedback 
regulation and non-linear kinetics complicate the causal 
understanding and prediction of therapeutic targets. 
Additionally, the interaction of cancer cells with the 
immune system augments the complexity even further. 
Therefore, cancer was recognized as a „systems biology 
disease” (3).  
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Figure 1. Drug metabolism model. Modeling strategy for a mathematical model predicting the effect of antifolate inhibition on 
folate metabolism (5). Literature information is depicted in yellow, models in purple, simulations in blue and validations in green. 
HFPN: hybrid functional petri net. 

 
Here, we discuss different modeling approaches 

addressing specific questions in leukemia and lymphoma 
cells. We demonstrate that the modeling approaches 
employed common strategies to establish, parameterize and 
validate the models, although different mathematical and 
experimental methods were applied. Additionally, we 
discuss current bottlenecks in these techniques and 
perspectives for the future. 

 
3. MODELING STRATEGIES APPLIED TO 
HEMATOLOGICAL MALIGNANCIES 
 
3.1. Drug metabolism model 

Antifolate drugs such as the antifolate 
methotrexate are widely used in the treatment of acute 
lymphoblastic leukemia and non-Hodgkin’s lymphoma (4). 
Their mechanism of action is based on the inhibition of 
folate-dependent pathways that are involved in the 
biosynthesis of purines and pyrimidines. Therefore, the 
treatment with antifolates results in disruption of DNA 
synthesis and causes death of proliferating cells. To 
investigate the folate pathway under normal and antifolate 
inhibitory conditions, Assaraf et al. (5) have established a 
mathematical model based on hybrid functional petri nets 
(HFPN). HFPN (6) is a modeling approach that uses 
ordinary differential equations to represent transitions 
(events) that occur between places (conditions) of a Petri 
net graph. The modeling strategy of Assaraf et al. is 
schematically summarized in Figur e1. Biological 
knowledge of the folate metabolism was translated into 
ordinary differential equations based on Michaelis-Menten 
kinetics to establish a HFPN mathematical model. 
Additionally, the antifolate drugs were included as 
inhibitors of the respective reactions in the model. To 
calibrate the mathematical model, kinetic constants 
measured previously in the murine L1210 leukemia cell 
line (7) were incorporated. These parameters were used to 
simulate the steady-state concentrations of metabolic 
compounds whose concentrations were not known. Model 
validation was performed by comparing simulated 
concentrations of selected folates with experimentally 
determined concentrations at steady-state conditions. 

Subsequently, the model was employed to calculate the 
dose-dependent effects of different antifolates on the 
biosynthesis rates of purines and pyrimidines. These 
simulations, revealing distinct potencies of the inhibitors, 
could then again be cross-validated to literature data. In 
conclusion, the model allowed in silico evaluation of the 
inhibitory profiles of antifolates as an inexpensive and user-
friendly alternative to cumbersome and slow dose-response 
experiments.  
 
3.2. Population model 

Chronic myelogenous leukemia (CML) 
represents a clonal disorder that is characterized by the 
Philadelphia chromosome, resulting in expression of the 
constitutively active protein tyrosine kinase BCR–ABL (8). 
The kinase inhibitor imatinib mesylate is currently the 
standard therapy for CML (9). To elucidate the dynamics of 
CML cancer cells including the response of the immune 
system, a mathematical model was developed by Moore 
and Li (10). Their modeling strategy is shown in Figure 2. 
Based on immunobiological knowledge, the mathematical 
model was established as a system of ordinary differential 
equations (ODE). The reactions describe the dynamics of 
naive T cells, effector T cells and cancer cells in the blood. 
Naive T cells are activated to differentiate into effector T 
cells, while cancer cells can be killed by the effector T 
cells. Furthermore, rates for recruitment, growth and death 
of the respective cell types were included. Model 
parameters such as the average number of cell death were 
taken from the literature. Other parameters were estimated 
from literature data such as half-life and population rate 
values. The resulting model was simplified using rescaling 
techniques to reduce the numbers of parameters. To 
determine critical parameters for the progression of the 
disease, simulations with varying parameters were 
performed. Latin hypercube sampling (11) was employed 
to randomly sample the parameter space in a well-
distributed manner. By plotting the randomly chosen 
parameter values against the maximum number of cancer 
cells, it was demonstrated that only two parameters 
significantly determine the maximum number of cancer 
cells and thus the disease: the growth rate and the death rate 
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Figure 2. Population model. Modeling strategy for a mathematical model describing the dynamics of naive T cells, effector T 
cells and chronic myelogenous leukemia (CML) cells in the blood (10). Literature information is depicted in yellow, models in 
purple, computations in cyan, simulations in blue and validations in green. ODE: ordinary differential equation. 

 
of CML cells. Of course, these are also the parameters that 
are affected by treatments against CML, as chemotherapy 
increases the death rate of cancer cells, while imatinib 
reduces the growth rate of these cells. Thus, the critical 
parameters predicted by the model are validated by 
literature data on CML treatment. Concluding, the model 
confirmed that treatment should focus on the cancer cells, 
rather than boosting the immune system. 

 
3.3. Network model 

T-cell large granular lymphocyte (T-LGL) 
leukemia is characterized by a clonal expansion of 
cytotoxic T lymphocytes (CTL) (12). Specifically, these 
cells have escaped activation-induced cells death (AICD) 
that normally limits the amount of antigen-primed T cells 
in the body. To understand long-term survival of competent 
CTL in T-LGL, Zhang et al. (13) established a Boolean 
network model of survival signaling. This modeling 
approach is summarized in Figure 3. To this aim, an 
extensive literature search was performed to construct a T-
LGL survival signaling network. This network was 
simplified as much as possible while ensuring to maintain 
all causal relationships. To be able to perform simulations, 
this model had to be translated into a Boolean mathematical 
model. In a Boolean model, each node is described by two 
states (ON/OFF), while the regulation is represented by 
logic operators (OR/AND/NOT) (14). The resulting 
mathematical model allowed to perform simulations with 
different ligand inputs (IL-15, PDGF and antigen 
stimulation). The simulations revealed that constant 
stimulation with PDGF is required for long-term survival of 
leukemic T-LGL. This was validated experimentally by 
treating T-LGL leukemia peripheral blood mononuclear 
cells (PBMC) with a PDGF receptor inhibitor, specifically 
eliciting apoptosis. Furthermore, the model was used to 
predict deregulator proteins that determine the escape of 
CTL from AICD. This corresponds to the proteins in which 
a change of activity or amount will trigger apoptosis in T-

LGL. As already nine deregulators were reported 
previously to be involved in inducing apoptosis in these 
cells, these deregulators were tested in silico by setting 
these nodes to the opposite state (e.g. ON to OFF) followed 
by analyzing the effect on apoptosis. As the model was in 
line with the literature data, this simulation was repeated 
with all nodes, resulting in a list of seven potential new 
deregulators, including SPHK1 and NF-kappaB. The 
relevance of the two latter proteins to apoptosis was then 
validated experimentally using PBMC from TGL-T 
leukemia patients and healthy donors. Thus, Boolean 
network modeling revealed novel deregulators determining 
the survival of CTL cells. 

 
3.4. Dynamic pathway model 

Classical Hodgkin’s lymphoma (cHL) is a 
lymphoid malignancy characterized by the presence of 
malignant cells, which often account for not more than 1% 
of the tumor tissue, and by infiltrating cells of the immune 
system that constitute the rest of the cell mass. The 
malignant cells can be mononucleated (Hodgkin cells) and 
multinucleated (Reed-Sternberg cells) and in general are 
derived from mature, antigen-primed B cells (15). Primary 
mediastinal B-cell lymphoma (PMBL) is a locally highly 
aggressive non-Hodgkin lymphoma. Immunohistological 
studies provided evidence of a B-cell origin of PMBL (16). 
As both PMBL and cHL frequently share a constitutive 
activation of the JAK/STAT signaling pathway, Raia et al. 
(17) developed dynamic pathway models to predict 
common therapeutic targets. We depicted the modeling 
strategy of Raia et al. in Figure 4. The experiments were 
performed in two cancer cell lines representative of cHL 
and PMBL. The stoichiometry (i.e. the expression level) of 
signaling components has a large impact on signal 
transduction and is often altered in tumor cells. Therefore, 
the concentrations of signaling molecules were measured in 
the cell lines as well as in primary cells from healthy 
donors and major differences were detected. The 
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Figure 3. Network model. Modeling strategy for a mathematical model to predict signaling components determining the survival 
of cytotoxic T lymphocytes (CTL) in T cell large granular lymphocyte (T-LGL) leukemia (13). Literature information is depicted 
in yellow, models in purple, computations in cyan, simulations in blue, experiments in pink and validations in green. 
 
 
 
 
 
 

 
 
Figure 4. Dynamic pathway model. Modeling strategy for a mathematical model to predict therapeutic targets determining IL-
13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma (17). Literature information is depicted in yellow, 
models in purple, computations in cyan, simulations in blue, experiments in pink and validations in green. ODE: ordinary 
differential equation. 
 
stoichiometry was implemented into the mathematical 
models as initial concentrations of model variables. 
Established biological knowledge and novel experiments 
identifying the signaling components that are activated by 
IL-13 resulted in a ODE-based candidate model. Extensive 
time-course data with different doses of the ligand IL-13 
were acquired by quantitative immunoblotting and used for 
parameter estimation. In case the candidate model could 
not describe the data, alternative model structures were 
tested until a dynamic pathway model for both 
malignancies was established that could explain all data 

sets. The resulting calibrated mathematical models were 
employed to perform a structural identifiability analysis. A 
parameter is structurally identifiable if it can be uniquely 
determined based on the model structure and the feasible 
measurements. As this was the case for all relevant 
parameters, the model could then be used to make 
quantitative predictions with a high confidence. A 
sensitivity analysis predicted the parameters that have the 
largest influence on a selected target gene, corresponding to 
potential drug targets. One of the predicted targets for both 
the cHL and PMBL model represented the phosphorylation 
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of STAT5, which was experimentally validated in the 
corresponding cell lines. In conclusion, dynamic pathway 
models were calibrated based on experimental data and 
employed to predict potential drug targets. 

 
4. PERSPECTIVE 
 

The mathematical models we discussed have 
used very different modeling approaches to answer 
various biomedical questions in leukemia and 
lymphoma cells. Despite these differences, surprisingly 
many similarities became apparent. The researchers all 
followed the cycle of hypothesis-driven research in 
systems biology as suggested by Kitano (18). This cycle 
begins with the review of biological knowledge and the 
selection of contradictory issues, followed by modeling and 
simulations, model predictions, experimental design and 
finally new experiments resulting in novel biological insights. 
Evidently, these approaches also have faced similar challenges. 
For example, one of the major bottlenecks is the lack of 
adequate data to calibrate and parameterize the mathematical 
models. While in some cases literature data on parameter 
values has been available and could be used for model 
calibration, more often parameters had to be estimated from 
experimental data. Furthermore, biological parameters such as 
rate constants of enzymes, stoichiometry of signaling 
components and the volume of cellular compartments can vary 
significantly between different cells. It is therefore essential to 
focus a particular model on a standardized cell system and 
experimental protocol (19). Additionally, if parameters are 
estimated from experimental data, these parameter can often 
not be determined uniquely, leading to non-identifiabilities that 
can affect model predictions (20). While recently powerful 
algorithms and modeling frameworks for parameter estimation 
have been developed (21), model establishment and selection 
is still a manual process requiring both profound knowledge of 
biological processes and comprehension of mathematical 
terms. Only in one of the publications discussed (17), 
alternative model structures were considered. Typically, 
mathematical models are established based on all available 
information, trusting that model validation will verify both the 
model structure and parameterization. While the 
experimental data for model calibration is difficult to 
obtain, acquiring data for model validation is 
surprisingly straightforward. The reason for this lies in the 
fact that once a mathematical model is established, it is 
relatively simple to simulate in the computer any 
experiment a researcher can think of. Similarly, if an 
experiment has been performed previously, it can be 
simulated using the model to validate the predicted results. 

 
The different modeling strategies discussed here 

are characterized by distinct strengths and weaknesses. 
While mathematical models describing cell metabolism 
have proven to be successful in many cases, the complex 
regulation of enzymatic activities still poses a problem. For 
example, many glycolytic enzymes are subject to both 
allosteric and transcriptional regulation. Such detailed 
knowledge of the kinetic parameters is not necessary in 
Boolean network modeling. However, the results of this 
approach have to be considered with more caution, as 
Boolean modeling can only be performed by major 

simplifications of the actual biological processes. Dynamic 
pathway modeling on the other hand aims at describing the 
network’s dynamics as accurately as possible. The need for 
accurate quantitative data as well as prior knowledge of the 
network topology represents the major bottlenecks of this 
approach. As cells never act in isolation, only a population 
model is able to adequately explain the course of a human 
disease. Evidently, population models require parameters 
describing cell type-specific responses and the cell-to-cell 
variability that are difficult to obtain. Therefore, modeling 
approaches have to be carefully balanced depending on 
the specific biomedical question and the kind and 
quality of data that can be obtained. 

 
Concluding, while being still in its infancy, 

mathematical modeling of hematological malignancies 
has proven to be useful in tackling diverse biomedical 
questions. Current problems in hematology include 
stratifying patients in advance to optimize treatments as 
well as improving treatment regimes to prevent 
emergence of mutations, as seen for example in 20% of 
myeloma patients treated with imatinib (22). One way to 
overcome mutations rendering tumor cells resistant is 
the application of combinatorial treatments. Here, 
mathematical models of relevant pathways could 
contribute by identifying synergizing drug targets. Such 
combinatorial therapies could simultaneously prevent 
the emergence of drug-resistant tumor cells and improve 
drug safety by reducing side-effects. For patient 
stratification, mathematical modeling offers the chance 
to identify the mutations that are causative of the 
disease, rather than bystander mutations. Screens for 
these mutations would therefore enable oncologists to 
tailor treatments to the individual patient.  

 
In the future, it will be important to not only 

model pathways and cells in isolation, but to establish 
multi-scale models linking various networks, time-scales 
and populations. This approach has been successfully 
applied to the human heart (23) and is currently in 
development for the human liver (24). A multi-scale model 
of human blood cancer encompassing cancer 
metabolomics, deregulated signaling networks and the 
interaction with the immune system would definitely offer 
new perspectives for both basic cancer research and 
translational medicine. 
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