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1. ABSTRACT 
 

Recurrence at secondary locations, often years 
after removal of the primary tumor, accounts for most of 
the mortality associated with solid tumors. Metastasis, 
resistance to chemo- and radiotherapy, and eventual relapse 
have been attributed to a distinct tumor subpopulation 
known as cancer stem cells (CSCs). In this review, we 
consider the properties of CSCs that lead to these 
outcomes, in particular the relation between epithelial-to-
mesenchymal transition, stemness, and tumor initiation. We 
compare recent clinical and laboratory studies of breast 
cancer, glioblastoma, and melanoma that illustrate how 
most current anticancer regimens select for cells with 
mesenchymal and CSC properties and therefore sow the 
seeds of relapse. Finally, we discuss the emerging paradigm 
of combined therapy that targets both CSC and non-CSC 
tumor components.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Cancer recurrence refers to the return of cancer 
after a period of time during which it was undetectable, 
either at the same location as the primary tumor or at a 
distant one. The odds of a cancer recurring depend on many 
histopathological and clinical criteria, including the 
primary organ site (Table 1, 1-7), the grade and stage of the 
cancer, as well as patient lifestyle choices such as tobacco 
use and obesity (8). 
  
Over the past two decades, several developments have led 
to the view that the cells responsible for recurrence 
constitute a discrete subpopulation of the tumor. Originally 
termed tumor-initiating cells (TIC), they were later found 
to share many properties with normal tissue stem cells, 
such as multipotency and expression of stem cell markers 
(9, 10). Thus, they are now more frequently
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Table 1. Relapse rate of different types of cancer 
Types of Cancer Relapse Rate 
Glioblastoma 90% (1) 
Breast cancer ( luminal) 16% (2) 
Breast cancer ( triple negative) 53% (2) 
Prostate cancer 75% (3) 
Osteosarcoma 30%-50% (4) 
Bladder Cancer  40%-50% (5) 
Melanoma (head and neck, local) 
Melanoma, metastatic 

2.8%-12.5% (6) 
80% ( 7 ) 

 
referred to as cancer stem cells (CSCs) (11). We consider 
the advantages afforded to the tumor cell by the stem cell 
program below. We have selected three solid tumor types 
of epithelial, neural, or neuroendocrine origin to illustrate 
how the role of CSCs in tumorigenesis and relapse varies 
with the tissue type. 
   

There are several hypotheses concerning the 
origin of CSCs. The first is that they are derived from stem 
cells or their immediate descendants, early progenitor cells. 
This could explain heterogeneity of differentiation markers 
within tumors. A competing view is that tumor cells arising 
from more differentiated cells may reactivate the stem cell 
program, including pluripotency (12). Evidence for this 
view emerged when Mani et al. demonstrated that 
epithelial-to-mesenchymal transition (EMT) conferred 
stem-like properties on non-stem populations (12). The 
overlap between CSC and EMT profiles has now been 
demonstrated for a variety of solid tumors (13-16). A more 
nuanced picture has begun to emerge with the 
demonstration in breast and melanoma that a dynamic 
equilibrium seems to exist between CSCs and non-CSCs, 
such that either one may be converted to the other (17). On 
the other hand, glioblastomas appear to arise directly from 
neural stem cells rather by de-differentiation (18). The 
issue of CSC origin is discussed in more detail in sections 4 
and 5. 
 

The link between CSCs and metastasis is less 
clear. Since metastatic tumors recapitulate the 
heterogeneity of the primary tumor, it is reasonable to 
suppose that these tumors are founded by CSCs. However, 
metastatic tumors may also contain mutations that were 
absent from the primary tumor. For example, metastasis 
suppressors such as nonmetastatic 23 (nm23), maspin, 
kangai1 (Kai1), N-myc downstream regulated gene-1 
(NDRG1), and kisspeptin-1 (Kiss1) may be mutated or 
additional oncogenes may be activated (19-24). In addition, 
there is now solid evidence for the role of tumor-associated 
macrophages and regulatory T cells as potentiating factors 
in metastasis (25, 26). How the latter factors can be 
reconciled with the CSC hypothesis remains to be resolved. 
The link between CSCs and metastasis is covered in 
sections 3 and 4. 
 
3.  PROPERTIES OF CANCER STEM CELLS THAT 
PROMOTE CANCER RELAPSE 
 

The cancer stem cell hypothesis posits that only a 
small subpopulation of tumor cells is responsible for the 
formation and maintenance of the bulk of the tumor. This 
hypothesis emerged in 1994 when  Lapidot and colleagues 

showed evidence that only a small percentage of acute 
myeloid leukemia cells had the capability to initiate 
leukemia in mice (27). These cells were shown to express 
similar cell surface markers (CD34+/CD38-) to normal 
hematopoietic stem cells (27). Following this, cancer stem 
cells were identified not only in hematological cancers but 
also in a wide range of solid tumors including breast, brain, 
skin, head and neck, prostate, and glioblastoma. Several 
properties of stem cells that contribute to cancer recurrence 
are outlined below and elaborated upon in section 4. 

 
3.1. Tumorigenicity 

Tumorigenicity describes the ability of cells to 
generate a tumor when injected into an 
immunocompromised experimental animal. As mentioned 
above, only a small percentage of cells, that is, cancer stem 
cells, in a tumor are tumorigenic and capable of 
maintaining the bulk tumor or giving rise to a new one in a 
distant location (28). 

 
In vitro, tumorigenicity can be determined by a 

tumorsphere formation assay. Stem-like cells are anoikis-
resistant and able to form spheres in methylcellulose, while 
non-tumorigenic cells cannot (29). 
 

Multiple studies show that cancer stem cells 
isolated from cancer cell lines are resistant to various kinds 
of chemotherapy and radiation (Figure 1; reviewed in ref. 
30). Several mechanisms may account for this. 
 

One is the lower proliferation rate of cancer stem 
cells. Most conventional therapies target rapidly 
proliferating tumor cells, while more slowly dividing stem-
like cells escape (13). 
  

Another is the presence of multi-drug resistance 
ATP-binding cassette transporters, principally ABCG2 but 
also MRP1 (multidrug-resistance-associated protein 1) and 
ABCB5 in some cancers that can efflux drugs across the 
plasma membrane (31, 32). Inhibitors of these transporters 
increase the sensitivity of cancer stem cells to anti-cancer 
drugs (33). The ability to exclude compounds such as 
Hoechst dye has been used as a basis for identifying and 
isolating both normal and cancer stem cells by flow 
cytometry (34). These cells have been termed the “side 
population.” The existence of side populations with CSC 
properties has been demonstrated in cancers of the breast, 
lung, brain, skin, and many others (35).  
 

Not all CSCs express these proteins however. 
Working with glioma, breast, and prostate cell lines, Dean 
Tang’s group isolated side populations and found that they 
were indeed more tumorigenic than the rest of the 
population (36). These cells expressed ABCG2. However, 
they also found an ABCG2-negative population that was 
also tumorigenic but grew more slowly. ABCG2+ cells 
could give rise to ABCG2- cells and vice versa. The 
authors concluded that ABCG2 identifies fast cycling 
progenitor cells, while more primitive slow-cycling cells 
lack ABCG2. Nor is expression of such transporters limited 
to CSCs. Normal kidney expresses high levels of ABC 
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Figure 1. A simple model of CSCs and tumor recurrence. Conventional therapies eliminate non-CSCs but not CSCs, thus 
allowing or even promoting tumor recurrence. Therapies that target CSCs should eliminate the tumor by attrition or allow it to be 
eliminated by chemo- or radiotherapy. This model does not take into account recent findings that non-CSCs may give rise to 
CSCs. 

 
transporters, and renal carcinomas maintain this expression 
in all tumor cells (31). 
  

In addition, activation of mesenchymal 
transcription factors and signaling via Hedgehog (Hh), 
Notch, Her2, Wnt and other pathways contribute to 
therapy-resistance (37, 38). This topic is covered in section 
5.2. The role of Hh in CSCs was shown by Varmat et al. 
(39). That found that Hh was preferentially active in normal 
stem cells and CSCs of the colon and that colon carcinomas 
acquired a Hh signature coincident with metastasis. They 
further demonstrated that Hh induced EMT in colon cancer 
cells and was required for their growth, recurrence, and 
metastasis. Thus, Hh in colon is tightly linked to stem cell 
properties. Similar conclusions have been reached for 
breast cancer (40). 
  

Richard Clarke and coworkers demonstrated the 
importance of Notch signaling in breast ductal carcinoma in 
situ (41). Notch is upregulated in CD44+/CD24- cells and 
in often in DCIS. Tumor tissue that was positive for Notch 
1 intracellular domain gave rise to increased 
mammospheres, and gamma secretase inhibitor suppressed 
mammosphere formation. High Notch 1 expression 
predicted early recurrence. For an excellent review on 
Notch signaling in CSCs, see Rizzo et al. (42). 
 

The role of Her2 in CSCs of breast has been 
demonstrated by several laboratories. Korkaya et al. found 
that expression of the stem cell marker ALDH 
(acetaldehyde dehydrogenase) in breast tumors correlates 
with Her2 and that the ALDH-positive population can be 
reduced by treatment with the Her2 inhibitor lapatinib (43). 
Ectopic expression of Her2 increased the CSC population 
along with invasion and metastasis.  
 

The role of Wnt in breast cancer and CSCs has 
been reviewed by others (44, 45). One of the most 
compelling studies showed that a single breast stem cell 

from an MMTV-Wnt mouse can give rise to a complete 
mammary gland, demonstrating its promotion of stem cell 
properties (46). Wnt signaling promotes EMT by 
upregulating expression of mesenchymal transcription 
factors Snail, Slug, and Twist, which repress E-cadherin 
and a host of other epithelial proteins (47-49). Moreover, 
when compared with the primary tumor, early lung 
metastases overexpress components of the Wnt pathway, 
and their downregulation inhibits metastasis of orthotopic 
xenografts (50). Rosen’s group has demonstrated that Wnt 
is required for radiation-resistance of mammary epithelial 
progenitor cells from mice with activated Wnt signaling in 
breast cancer cells (51).    
 
3.3. Self-renewal ability 

Stem cells are perpetuated in the undifferentiated 
state by asymmetric replication, during which one of the 
daughter cells of the CSC remains undifferentiated while 
the other becomes more specialized (52). This process 
ensures the stability and multipotency of the stem cell 
population. However, stem cells can also divide 
symmetrically under stress to rapidly increase their number. 
This process is regulated by p53, as p53 mutation confers 
symmetric division on normal stem cells (53). CSCs 
circumvent this mechanism by mutating or otherwise 
downregulating p53. This ability may come into play after 
chemoradiation therapy, allowing rapid re-population. 
 
3.4.  Migratory ability 

In normal development and regeneration, the 
ability of stem cells to migrate, invade and colonize distant 
spaces is essential. Proponents of CSC theory posit that 
CSCs retain or coopt this ability, exploiting it to the same 
end (37). These metastatic colonies are largely responsible 
for tumor recurrence (12). The evidence that CSCs are 
more migratory and invasive than nonCSCs stems from the 
observation that CSC and EMT gene expression profiles 
substantially overlap, and that cells that have undergone 
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EMT are functionally identical to CSCs (54).  This topic is 
discussed in section 4.1. 
 
4.  EVIDENCE FOR CANCER STEM CELLS IN 
CANCER RELAPSE 
 
4.1. Breast cancer 

Breast CSCs were first described in 2003 by 
Clarke and co-workers (10). They found that flow-sorted 
CD44high/CD24low cells from disrupted tumors were 
highly tumorigenic in immunocompromised mice and gave 
rise to the same diversity of cell types found in the original 
tumor, whereas CD44low/ CD24high cells lacked these 
properties. Subsequent work showed that these cells were 
anoikis-resistant and so could be cultured without 
anchorage, giving rise to spherical colonies on nonadherent 
surfaces or when suspended in methylcellulose (55, 56). 
The ability to propagate these cells in vitro allowed their 
transcriptional signature to be identified. 
 

At the same time, the advent of cDNA 
microarray and other transcriptional profiling technologies 
allowed comparison between histopathological 
characteristics and the molecular profiles of tumors. This 
led to the discovery within breast cancer that there are 
distinct molecular subtypes that are highly predictive of the 
course of the disease (57). These were initially divided, 
based on their similarities to cells in normal breast, into 
luminal A, luminal B, Her2+, and basal (58). While the 
first three classes respond to various targeted therapies, 
basal or triple-negative breast cancer has an especially 
bleak prognosis (57) due to metastasis and relapse. In 
general, basal breast cancers and cell lines have low 
expression of markers of differentiated breast such as E-
cadherin and other junctional proteins (59). Recently, an 
additional subtype was parsed from within the basal group 
that is even more mesenchymal-like, termed claudin-low 
(60). Claudin-low cell lines are enriched in CSCs and are 
associated with therapy-resistance (61, 62). 
 

Diehn et al. found that, similar to normal stem 
cells, some breast tumor CSCs have lower levels of reactive 
oxygen species (ROS) compared to other cells from the 
same tumor (63). As ROS is a mediator of tumor cell 
killing in response to therapeutic ionizing radiation (IR), 
the CSCs sustained less DNA damage and mortality in 
response to radiation. Similarly, Philips et al. found that 
mammospheres cultured from MCF7 and MDA-MB-231 
cells survived IR better than cells grown as attached 
monolayers (64). Woodward et al. also found that MCF7 
CSCs were radioresistant; in addition, they showed that 
progenitor cells from mouse mammary tumors had this same 
property (51). The stem cell niche in breast is thought to be 
located in the basal epithelial layer, and it has long been known 
that IR produces basal tumors with poor prognosis (65). To 
determine whether the basal layer responds differently to IR 
from luminal cells, Coates et al. xenografted normal human 
breast tissue into mice, treated with IR, and measured kinetics 
and intensity of DNA damage response by IHC. They found 
that basal cells induce p53, p21, and repair machinery much 
faster than do luminal cells (65).  
 

A matter of controversy is whether CSCs derive 
from normal tissue stem/progenitor cells or from cancer cells 
that have reactivated the stem cell program. A recent body of 
work sheds light on this issue, showing that forcing a transition 
from an epithelial to a mesenchymal program, EMT, bestows 
the properties of CSCs (54). 
 

Transition between epithelial and mesenchymal 
states is a normal feature of epithelial behavior during 
development and wound-healing (66). Mesenchymal cells 
share many of the properties of CSCs, such as migratory 
behavior, resistance to DNA-damaging agents, and ability 
to form colonies when suspended in nonadherent media or 
implanted into immunocompatible mice (54, 67). The 
mesenchymal phenotype is maintained by a network of 
transcription factors such as Snail, Twist, and others that 
repress epithelial proteins such as E-cadherin and activate 
mesenchymal functions (68, 69). EMT induces cytoskeletal 
changes, expression of vimentin and fibronectin, and loss 
of apico-basal polarity, allowing the cell to divorce from its 
neighbors and move independently (Figure 2; 70). 
  

Clinical studies have shown that Snail is 
spontaneously upregulated in recurrent tumors in vivo and 
that recurrence is accompanied by EMT (71, 72). Ectopic 
expression of Snail and Twist in cell lines triggers EMT 
and resistance to chemotherapy (73, 74). Accordingly, a 
high level of Snail expression predicts a high rate of relapse 
and low survival of breast cancer patients (75, 76).  
 

Weinberg’s group found that ectopic expression 
of EMT transcription factors in transformed epithelial cells 
conferred not only expression of mesenchymal markers but 
also enriched for stem cell markers and behaviors such as 
mammosphere formation and tumorigenicity (54). The 
congruency between these two phenotypes was further 
underlined by the demonstration that sorting immortalized 
HMEC (human mammary epithelial cells) or tumor cells 
for stem cell markers also enriches for mesenchymal 
markers. Other workers showed that breast cancer cell lines 
with a mesenchymal profile were also greatly enriched for 
CSC markers and behaviors (61). Thus, a mutation that 
triggered EMT in a tumor would also confer CSC 
properties. 
 

The same group then used similar techniques to 
generate large numbers of stem-like cells, explore their 
drug-sensitivity, and test the hypothesis that current 
therapies select for CSCs (75). They used knockdown of E-
cadherin to drive EMT both in immortalized (HMLE) and 
Ras-transformed (HMLER) cell lines. This resulted in a 
tenfold increase in the CD44high/CD24low population and 
a 100-fold increase in both mammosphere- and tumor-
forming ability. Treating these cells with two of the drugs 
most frequently used to de-bulk tumors, paclitaxel and 
doxorubicin, yielded increases in IC50 of twentyfold and 
fivefold, respectively. To simulate a tumor undergoing 
chemotherapy, the knockdown cells were mixed with 
twentyfold excess of control cells and treated with 
paclitaxel. This resulted in fourfold increase in knockdown 
cells over a four day period.  
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Figure 2. EMT generates cells with stem cell traits. Epithelial cells lose their cell-cell junctions and acquire mesenchymal 
morphology and behavior. Cytoskeletal changes and metalloprotease secretion facilitate breach of the basement membrane, 
escape into the circulation, and extravasation at distant sites. Once there, reversion to an epithelial program facilitates colony 
formation.   

 
They then exploited these capabilities to screen 

drug libraries for CSC-specific cytocidal agents (75). Of 
16,000 drugs tested, only salinomycin, etoposide, 
abamectin, and nigericin were differentially toxic to HMLE 
bearing the knockdown compared to control. Of these four, 
only salinomycin was differentially toxic to CSC-enriched 
HMLER. Except for etoposide, all affect transmembrane 
ion currents.  
 

The Struhl group arrived at some similar 
conclusions using the mammary epithelial cell line 
MCF10A, which they had rendered conditionally 
transformable by tamoxifen-regulated Src (76). Based on 
similar expression profiles between cancer cells and cells 
from diabetics, they tested the AMPK inhibitor and 
diabetes drug metformin on this cell line and on 
autochthonous breast cancer cell lines. Metformin 
suppressed MCF10A transformation by Src and inhibited 
mammosphere formation by cancer cell lines. In 
combination with doxorubicin, it reduced tumor growth in 
mouse xenografts much more effectively than either drug 
alone. 
  

The concept that standard chemotherapy selects 
for a pernicious subpopulation that drives recurrence has 
now been tested clinically. Li et al. analyzed core biopsies 
from breast cancer patients before and after chemotherapy 
and found a several-fold increase in CSC markers and 
mammosphere-forming ability after neoadjuvant therapy 

(77).  In follow-up studies, they compared the gene 
expression signature of the post-chemotherapy 
(doxorubicin or letrozole) population to those of the various 
breast cancer subtypes (78). The surviving cells most 
resembled claudin-low tumors, a subtype enriched in CSC 
and mesenchymal characteristics (60, 62). 
  

But is there more than a teleological link between 
CSCs and metastasis? The 2011 meeting of the American 
Association for Cancer Research (Orlando, April 2-6) 
included a forum to debate whether metastasis requires 
EMT and, by implication, CSCs. Evidence was presented 
from the field of breast cancer that, while the bulk of a 
tumor may express epithelial markers, the invasive front 
often expresses mesenchymal and stem cell markers. This 
phenomenon has also been observed in prostate cancer 
(15). Others have found that metastatic breast cell lines are 
enriched in stem cell markers (79).  In clinical samples of 
human pancreatic cancer, Hermann and co-workers 
demonstrated a population of tumorigenic cells that were 
positive for stem cell marker CD133 and resistant to 
chemotherapy (80).  A subset of CD133+ cells that 
expressed an additional marker, CXCR4, was found at the 
advancing front of tumors, and depletion of these cells from 
the population abolished metastasis without affecting 
tumorigenicity. The authors concluded that a subpopulation 
of CSCs is solely responsible for metastasis in pancreatic 
cancer. It would be interesting to profile this population for 
expression of previously established metastasis promoters 
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and loss of metastasis suppressors. While the weight of 
evidence now favors a leading role for EMT and CSCs in 
metastasis of several solid tumor types, this may not be 
universally true (81).  Further studies are needed to settle 
this question.  
 
4.2. Glioblastoma 

Glioblastoma Multiforme (GBM) has one of the 
highest recurrence rates and lowest survival times of any 
solid tumor. It is difficult to treat because of its location, 
aggressiveness, and ability to infiltrate distant areas of the 
brain. The blood-brain barrier limits chemotherapy to 
lipophilic agents or drugs that can be introduced 
intrathecally or directly into the surgical cavity. However, 
even with refinements in surgical technique, targeting of 
radiotherapy, and novel alkylating agents such as 
temozolomide, median survival is only 14-15 months (82). 
The interval between tumor excision and recurrence is 
usually short, suggesting that some tumorigenic cells within 
the tumor are treatment-resistant. 
 

The existence of CSCs in GBM was first shown 
by Singh and coworkers, who demonstrated that the only 
the CD133-positive subpopulation from sorted tumor cells 
could form tumorspheres in vitro and tumors in 
immunocompromised mice (83). The tumors developed 
from as few as 100 xenografted cells and faithfully 
reproduced the range of cell types and surface antigens 
present in the original surgical specimens. CSCs could also 
be isolated by culturing GBM explants as tumorspheres 
(82). These cells were positive for CD133 and another stem 
cell marker nestin, and they quickly formed tumors in mice. 
They also displayed remarkable resistance to a wide range 
of chemotherapeutics when compared with tumor cells 
from several other organ sites (82). Increased survival was 
apparently not due to increased drug efflux, as doxorubicin 
efflux was no more efficient in these cells than in 
chemosensitive tumor cells. Even more direct evidence for 
a role of CD133+ cells came from a study by Pallini and 
coworkers who found that in recurrent glioblastoma, the 
percentage of CD133+ cells was increased by 4.6-fold 
compared to primary tumor (84). Interestingly however, the 
presence of more CD133+ cells indicated a greater chance 
of survival. The authors found that 20-60% of these cells 
were normal neural stem cells derived from adjacent tissue. 
 

The cause of radio-resistance of GBM CSCs was 
addressed by a succeeding study (85). The authors found 
that the proportion of CD133+ cells in tumors increased 
following radiation. CSCs activated DNA damage response 
and repair pathways faster than CD133- cells and repaired 
DNA more effectively. Excitingly, this advantage could be 
reversed by inhibitors of Chk1 and Chk2, protein kinases 
that signal DNA damage by phosphorylating p53 and other 
responders.  
 
4.3. Melanoma 

Melanoma is a malignant tumor of melanocytes, 
a nonepithelial cell type derived from the neural crest. Prior 
to metastasis, it is easily treated by local cell ablative 
techniques. In stark contrast, metastatic melanoma rivals 
GBM in bleakness of prognosis. While melanoma accounts 

for only a small percentage of skin cancers, it causes 75% 
of deaths associated with skin cancer (86). Median survival 
is about 6 months and 5 year survival is 5-15% (87). The 
most active agent against metastatic melanoma, 
dacarbazine, has a response rate of only 15-25% time to 
progression of five to six months (87). Recurrent disease is 
even less responsive. 
 

Because the profile of this disease includes early 
metastasis, resistance to chemoradiation, and rapid 
recurrence, the presence of CSCs was predicted. Whether 
this model applies to melanoma is a matter of controversy 
however. 
  

As in other systems, sorting for classical stem 
cell markers such as ABCG2, nestin, and CD133 enriched 
for capacity to form tumorspheres in vitro and tumors in 
mice (88). Enriched expression of these markers has been 
detected in circulating melanoma cells by Fusi (89). 
Another member of the ABC transporter family, ABCB5, 
which confers resistance to anthracyclines, was suggested 
to be a better marker for melanoma CSCs (32). 
 

However, other findings are inconsistent with the 
CSC model, and most scientists in this field now prefer the 
term melanoma-initiating cells (MIC). Melanomas have an 
inherent penchant for metastasis due to the expression of 
mesenchymal transcription factors in melanocytes (90). 
Thus, melanocytes transformed by Ras and SV40 T antigen 
metastasize much more readily than similarly transformed 
fibroblasts or breast epithelial cells. The capacity of 
isolated melanoma cells to initiate tumors in mice is also 
much higher. Quintana found that about 25% of unselected 
melanoma cells from 12 patients could form tumors in 
immunocompromised NOD/SCID mice bearing a deletion 
of the IL2 receptor (91). Furthermore, injection of 
unselected single cells produced tumors 27% of the time, in 
contrast to breast cancer in which 100 or more cells may be 
required even after cell sorting for CSC markers. The 
tumorigenic cells could be serially transplanted repeatedly 
without loss of tumorigenicity irrespective of whether they 
expressed any of the candidate CSC markers (92). Indeed, 
cells appeared to readily switch marker expression, 
suggesting a dynamic interconversion between cell types. 
 

A study by Held and coworkers suggests that 
cells may be tumorigenic without having other CSC 
properties (93). After sorting for CD34 and p75, they 
injected single mouse melanoma cells into mice and 
measured tumor formation. All CD34+/p75- cells formed 
tumors, as did most CD34-/p75- cells. However, the latter 
were only capable of self-renewal, while the former could 
also regenerate tumor heterogeneity. The CD34-/p75+ cells 
were infrequently tumorigenic and more sensitive to 
chemotherapy than either class of tumorigenic cell. 
  

Herlyn’s group has explored the role of the H3K4 
demethylase JARID1B in melanoma propagation (94). 
They found a small pool of cells positive for JARID1B that 
divided very slowly, only once or so per month, while 
progeny of these cells divided rapidly. The ability of a 
slowly dividing cell type to give rise to a rapidly dividing
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Table 2. Partial list of CSC markers for different types of 
cancer 

Cancer type Cancer Stem Cell Markers 
CNS CD133+ 
Head and Neck CD44+ 
Breast  CD44high/CD24low, CXCR1 
Melanoma ABCB5+, CD34, JARID1B 
Bone Marrow CD34+, c-kit+, Gr1(int) 
Lung CD133+ 
Liver  CD133+, CD13+ 
Pancreas CD44+, CD24+, ESA+ 
Colon CD133+ 

 
one is consistent with a multipotent CSC phenotype. 
Moreover, knockdown of JARID1B led to eventual loss of 
tumor-propagating ability.  However, inconsistent with a 
classic hierarchical model, JARID1B expression can be 
lost, and negative cells can become positive. The authors 
concluded that the responsibility for maintaining tumor 
heterogeneity and propagation rotates among the 
population in a dynamic process. These characteristics help 
to explain why metastatic melanoma is so difficult to 
eradicate.  
 
5.  THERAPIES TARGETING CANCER STEM 
CELLS 
 

With evidence mounting for a causative role of 
CSCs in recurrence of at least some cancers, there is great 
interest in discovery of drugs to target this critical 
subpopulation, either to kill them or coerce their 
differentiation. A classical empirical library screening 
approach, described in section 4.1, has already yielded 
several candidate drugs for breast CSCs (75). A second 
approach, based on similarities between breast cancer and 
diabetes expression profiles, yielded the candidate drug 
metformin (76). Here we describe other anti-CSC strategies 
based on burgeoning knowledge of CSCs revealed by 
laboratory studies. 
 
5.1. Stem cell markers as a target for therapy 

Since the 1990s, isolation and characterization of 
CSCs has relied upon the ability to sort them out of mixed 
populations using cell surface proteins that have come to be 
called stem cell markers (Table 2). These markers vary 
with the tissue type (95). 
  

Some of these markers play a vital role in the 
function of those stem cells and so are logical targets for 
therapy. They can be receptors for cell-cell for cell-matrix 
communication, or they can contribute to drug resistance, 
such as ABCB5 in melanoma (29).  In breast, the classical 
stem cell marker CD44 serves as a receptor for the 
extracellular matrix component hyaluronic acid (96). It also 
complexes with Met and Her family growth factor 
receptors and enhances their signaling, thus downregulating 
growth-arrest and apoptotic pathways (96). CD44 opposes 
the tumor-suppressive activities of p53, and it is in turn 
repressed by p53 (97). Ligation of CD44 receptor activates 
Nanog and other stem cell functions (98). These are logical 
targets for inhibitors. 
 

CD133/prominin-1 is a surface molecule present 
on CSCs from several tissue types (Table 2). CD133 is 

under study as a therapeutic target in metastatic melanoma, 
and hepatocellular and gastric cancers (99, 100). Another 
candidate target in liver is CD13 (85). Combining a CD13 
inhibitor with 5-FU was synergistic in reducing growth of 
mouse xenografts (101).  
 

While these approaches show promise, in other 
cases CSC markers may not be critical for cell survival or 
may lack specificity. In the case of dynamic turnover of 
marker expression as in melanoma, it may be necessary to 
target multiple markers or combine this approach with 
cytocidal or differentiation therapies. 
 
5.2. Therapies targeting CSC signaling pathways 

Several signal-transduction pathways with 
previously well established roles in development and tumor 
progression have turned out to be critical for the generation 
and differentiation of CSCs, as well as their drug-resistance 
(102). Among these are the Notch, Hedgehog, Wnt, Her2, 
and IL-6 and -8 signaling pathways. 
 

Although both Notch1 and Notch4 have been 
implicated in breast cancer, isolated CSCs are enriched for 
Notch4 and deficient in Notch1 (103). Pharmacological and 
genetic inhibition of Notch4 inhibited mammosphere 
formation in vitro and tumor formation in xenografts. Notch 
signaling depends on proteolytic cleavage by gamma secretase, 
and and inhibitors of this enzyme are in clinical trials (104). 
However, their lack of specificity for individual family 
members is problematic. 
 

Wnt signaling is also critical for stem cell regulation 
and survival and is implicated in residual disease after 
radiotherapy (105, 51). Two polyphenols derived from food 
products, curcumin and piperine, have been reported to inhibit 
Wnt signaling (106,107). Both had previously been found 
effective as preventative agents against a broad range of 
cancers (108-110).  In combination, piperine greatly increases 
the bioavailability and efficacy of curcumin, possibly due to 
synergistic inhibition of ABC transporters (110-112). Max 
Wicha’s group reported that the drugs suppressed Wnt 
signaling as well as mammosphere formation by breast cancer 
cell lines and reduced the percentage of ALDH+ cells. As 
expected, they were more effective in combination (106). The 
same group reported that a nutriceutical derived from broccoli, 
sulforaphane, could decrease the ALDH+ cell population of 
breast cancer cell lines by 65%-80% by blocking Wnt 
signaling (113). 
 

Hedgehog is another embryonic signaling 
pathway that figures in stem cell biology, EMT, and tumor 
progression (114, 115). Ulasov and coworkers found that 
that both Hedgehog and Notch are upregulated upon 
treatment of GBM with temozolomide. Moreover, 
inhibition of Notch and Hedgehog pathways enhanced 
sensitivity of CD133+ glioma stem cells to temozolomide 
therapy (39). The Hedgehog inhibitor cyclopamine was 
first identified as a natural teratogen (116). This drug and 
several derivatives are now in clinical trials (117,118). 
  

The receptors for cytokines IL-8 and IL-6 have 
been targeted on CSCs from breast and other cancers. 
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CXCR1 is the receptor for IL-8, which regulates the self-
renewal of breast CSCs (119). Blockade of this receptor 
using either a CXCR1-specific blocking antibody or 
repertaxin, a small-molecule CXCR1 inhibitor, specifically 
depleted the CSC population in breast cancer cell lines 
SUM159 and HCC1954. Repertaxin was also effective in 
reducing growth of xenografts (119). In light of the newly 
uncovered role of IL-6 in maintaining the breast CSC pool, 
its receptor is also a promising target (120). Inhibitors of 
IL-6 are already under trial for multiple myeloma (121). 
 

In addition to embryonic and inflammatory 
signaling pathways, growth factor signaling is also a relevant 
target. In breast cancer, Her2-overexpressing tumors 
historically have had a dim prognosis typified by 
chemoresistance and early recurrence. Several reports indicate 
that Her2+ tumors have amplified pools of CSCs, as assessed 
by mammosphere and tumor-initiation assays and sorting for 
ALDH+ cells (53, 43). Her2 signaling induces PI3K-AKT 
signaling, leading to downregulation of p53 and induction of 
Nanog. This permits an increase in symmetric divisions and 
thus self-renewal of CSCs (53). These effects can be reversed 
by restoration of p53 (53) or inhibition of Her2 by trastuzumab 
or lapatinib (122). Resistance to trastuzumab or early relapse is 
associated with secondary mutations that ramp up AKT 
signaling (43, 122).  
 
6.  CONCLUSIONS 
 

For breast and some other cancers, the weight of 
evidence now favors the view that CSCs originate from non-
CSCs that re-activate stem cell programming, while 
glioblastomas seem to follow different rules. Here, we have 
presented the argument that, whatever their origin and whether 
stable or transient, the entity known as cancer stem cell or 
tumor-initiating cell is a major factor in therapy-resistance and 
cancer recurrence. The ability to isolate and characterize these 
cells has led on the one hand to new drugs that target CSCs 
and on the other, to the realization that some drugs already in 
hand owe their efficacy to their effect on CSCs. 
Unsurprisingly, the therapies most successful in preventing 
relapse are those that combine debulking agents with anti-
CSCs, e.g., paclitaxel with trastuzumab. The weight of the 
evidence is now such that one may question the value of any 
new clinical trial that does not include an anti-CSC agent. We 
may expect that within a few years, all cancer therapy 
protocols will incorporate an appropriate anti-CSC approach. 
 

It has long been recognized that cancer is caused by 
the loss of ability to maintain tissue differentiation. It is worth 
noting that several of the anti-CSC drugs discovered thus far, 
including metformin and salinomycin, restore differentiation 
rather than killing masses of cells. Continued investigation of 
epithelial differentiation processes may reveal additional low-
toxicity tools for coercing CSCs back into the fold.  
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