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1. ABSTRACT 
 

The (pro)renin receptor is a single-spanning 
membrane protein that binds both renin and its inactive 
precursor prorenin.  The receptor binding enhances the 
catalytic activity of renin and induces non-proteolytic 
activation of prorenin as well as triggers intracellular 
signaling with either renin or prorenin as a ligand.  Three-
dimensional structural information of (pro)renin receptor is 
important to understand the receptor binding.  This 
information is not available due to the lack of its three-
dimensional structure.  In this review, we summarize the 
binding properties of (pro)renin receptor, provide the 
results of structure prediction and point out the issues to be 
tackled towards three-dimensional structural analysis of 
this receptor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The renin-angiotensin system plays an 
important role in the regulation of blood pressure and 
electrolyte balance (1).  A key enzyme of this system, renin 
(EC 3.4.23.15), specifically cleaves its macromolecular 
substrate, angiotensinogen, to release the N-terminal 
decapeptide, angiotensin I.  This enzymatic reaction is the 
first step to produce the potent vasoconstricting 
octapeptide, angiotensin II.  Prorenin is the inactive 
precursor of renin (2, 3).  It has a prosegment of 43 amino 
acid residues attached to the N-terminus of mature renin 
consisting of 340 amino acid residues.  The prosegment 
masks the active site of renin, thereby preventing the access 
of angiotensinogen.  Prorenin does not self-activate.  The 
blood circulating level of prorenin is 10 times higher than 
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that of renin, but the physiological role of prorenin remains 
unclear.  In 2002, (pro)renin receptor [(P)RR] was 
identified as a new molecule of the renin-angiotensin 
system (4).  Since its discovery, many investigators have 
undertaken molecular, cellular and physiological studies to 
clarify how this receptor participates in the system (5-9). 

 
(P)RR is a 350-amino acid single-spanning 

membrane protein that binds both renin and prorenin (4).  
The receptor binding increases the catalytic activity of 
renin and induces non-proteolytic activation of prorenin, 
which leads to angiotensin-dependent pathway (2, 4).  Such 
binding also results in angiotensin-independent intracellular 
signaling pathway that involves mitogen activated protein 
kinase activation (4, 7).  The receptor binding to either 
renin or prorenin is the initial step to trigger these two 
pathways and probably requires a specific protein-protein 
interaction between (P)RR and renin/prorenin.  In this 
review, we summarize the binding properties of (P)RR, 
provide the results of structure prediction and point out the 
issues to be tackled towards three-dimensional structural 
analysis of this receptor. 
 
3. AMINO ACID SEQUENCE 
 

The amino acid sequences of (P)RR are highly 
homologous between vertebrates such as human, rat, 
mouse, chicken and fish (10) (Figure 1).  The homologous 
sequence is also found in an invertebrate fruit fly (Figure 
1), nematode (GenBank: CAB07401) and Arabidopsis 
(GenBank: AAD11797).  (P)RR has four domains (4, 10) 
(Figure 1): a signal peptide (residues 1-16; human (P)RR 
numbering), an extracellular domain (residues 17-304), a 
transmembrane domain (residues 305-324) and a 
cytoplasmic domain (residues 325-350).  (P)RR has no 
potential N-linked glycosylation site and no Cys residue.  
The invariant residues shown in Figure 1 would be 
important in the structure and function of (P)RR, since 
evolutionally-conserved residues often cluster in a defined 
region to form a functional site on protein surface (14, 15).  
Putative protein processing site RxxR is conserved among 
the homologous sequences (10) (Figure 1).  Near this 
processing site, there is the start residue of M8-9 fragment 
(10, 16) that is associated with vacuolar H+-ATPase.  A C-
terminal region containing the transmembrane and 
cytoplasmic domains is highly conserved among vertebrate 
and invertebrate (10) (Figure 1).  The C-terminal region is 
suggested to have a common function as a subunit of the 
ATPase (7, 10), which is supported by the recent finding on 
(P)RR-knockout mice (9).  The cytoplasmic domain has 
candidate phosphorylation sites (4) (Figure 1), which is 
possibly involved in the intracellular signaling pathway. 
 
4. RECEPTOR BINDING 
 

(P)RR was found to bind to renin and prorenin 
(4).  Such binding has been confirmed by using (P)RR 
expressed on the cell membrane of COS-7 cells (17) and 
vascular smooth muscle cells (18) as well as using 
recombinant (P)RR immobilized on a plastic well (19) and 
on a sensor chip for surface plasmon resonance analysis 
(20).  Prorenin binds to (P)RR with a higher affinity than 

renin (19), which suggests that the prosegment facilitates 
the binding.  Therefore, (P)RR should bind not only to the 
prosegment of prorenin, but also to the mature renin 
moiety. 

 
Recently, Nabi et al. (21) provided a new 

insight into the receptor binding to renin and prorenin.  
This study investigated whether an exogenous peptide 
fragment related to prorenin can inhibit the binding of renin 
and prorenin to the extracellular domain of (P)RR.  The 
peptides examined include the decoy peptide and the 
“hinge” peptide.  The decoy peptide (R10PIFLKRMPSI19P) 
contains the “handle” region (I11PFLKR15P) that 
corresponds to amino acids 11-15 of the prorenin 
prosegment.  The “handle” region is shown to play a 
crucial role for non-proteolytic activation of prorenin by 
protein-protein interaction (22).  Based on this finding (22), 
the decoy peptide was designated to inhibit prorenin 
binding to (P)RR (23) and its efficacy has been confirmed 
in vivo studies (23-27).  The “hinge” peptide 
(S149QGVLKEDVF158) corresponds to a flexible region that 
connects two domains of renin and is located near the 
bottom part of the active site (21).  This region is common 
to both renin and prorenin.  Using surface plasmon 
resonance and equilibrium state analyses, Nabi et al. (21) 
showed that the decoy peptide and the “hinge” peptide have 
a higher binding affinity to (P)RR than reference peptides 
used to compare low bindings.  The dissociation constant 
Kd values of (P)RR for the decoy peptide, the hinge peptide, 
and a reference peptide (residues 248-257 of prorenin) were 
estimated 3.5, 17, and 4 x 104 nM, respectively (21).  
Moreover, the “hinge” peptide competitively inhibits the 
receptor binding to renin and prorenin (21).  This finding 
indicates that renin and prorenin can interact with (P)RR 
through a common site involving the “hinge” region.  The 
decoy peptide inhibits the receptor binding not only to 
prorenin, but also to renin (21).  This is possibly because 
the decoy peptide competes for the “handle” region-binding 
site of (P)RR, thereby inducing a conformational change 
that hinders the receptor binding to the renin moiety.  
Collectively, prorenin binds to the receptor through at least 
two binding sites including the “hinge” and “handle” 
regions (21).  Since the “hinge” region is located distant 
from the “handle” region, there could be an extensive 
contact between prorenin and (P)RR. 

 
Another recent paper (28) reported an intriguing 

result of the receptor binding.  The Kd values of (P)RR for 
renin alone and renin in complex with a direct renin 
inhibitor aliskiren were estimated 4 nM (21) and 5 x 104 
nM (28), respectively.  This result indicates that renin-
aliskiren complex has a much lower affinity to (P)RR than 
renin alone.  As described above, renin binds to (P)RR 
through at least the “hinge” region site.  Binding with 
aliskiren into the active site of renin may lead a local 
conformational change of the “hinge” region site, which 
interferes with the receptor binding (28). 

 
(P)RR has been reported to possibly form a 

dimer (4, 29).  The functional site formed by two 
extracellular domains of (P)RR possibly contributes to 
make the extensive contact that recognizes the “hinge” and 
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Figure 1.  Sequence comparison of (P)RR homologs.  The sequence homologs were obtained using BLAST search (11) and the 
sequences were aligned using CLUSTAL W (12).  The figure was generated with ESPript (13).  Species names and the GenBank 
sequence entry numbers are as follows: human, AAM47531; rat, BAD67178; mouse, AAH14706; chicken, BAE92902; 
zebrafish, AAH59542; fly, AAF54350.  “ID%” represents percentage identity to human (P)RR.  Invariant and conserved residues 
between these sequences are highlighted with a black background and a boxed area, respectively.  The signal peptide and 
transmembrane domain are boxed and labeled.  The putative protein processing site, the start residue of M8-9 fragment and 
candidate phosphorylation sites are indicated below the sequences.  Predicted secondary structure elements and intrinsically-
disordered regions of human (P)RR are shown above the sequence as rectangles (alpha-helices), arrows (beta-strands) and 
asterisks (intrinsically-disordered region). 
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Figure 2.  Expression and solubility test of (P)RR.  The following four forms of human (P)RR were expressed in E. coli at 25°C 
(A) and 37°C (B) upon induction with isopropyl-beta-D-thiogalactopyranoside: full-length protein (FL); extracellular domain 
(ECD); GST-fused full-length protein (GST-FL); GST-fused extracellular domain (GST-ECD).  These four proteins are 
designated to have no signal peptide.  The expression plasmids, pET-11a (Novagen) and pGEX-4T-2 (GE Healthcare), were used 
to express (P)RR alone and GST-fused (P)RR, respectively.  The E. coli cells were lysed by sonication in different kinds of 
buffer (pH 5, 7 and 9) in the presence (+) or absence (−) of 0.2 M NaCl.  The cell lysate (L), supernatant (S) and pellet (P) as well 
as molecular weight markers (M) were subjected to SDS-polyacrylamide gel electrophoresis, followed by Coomassie brilliant 
blue staining.  Each arrow indicates the position of the protein with enhanced solubility. 

 
“handle” regions.  A conformational change may occur in 
(P)RR upon binding with the “handle” region.  Even after 
the receptor-binding, renin and prorenin retain the similar 
affinity (the Michaelis constant) to angiotensinogen (28), 
which indicates that the receptor binding does not affect the 
access of angiotensinogen.  To gain a deeper insight into 
the molecular mechanism of receptor binding, three-
dimensional structure of (P)RR alone and in complex with 
the relevant binding partner is essential. 

5. STRUCTURE PREDICTION 
 

To date, there is no three-dimensional structural 
information available for (P)RR.  This is because three-
dimensional structure of (P)RR has not been determined.  
Instead, secondary structure and disordered region of 
(P)RR can be predicted from its amino acid sequence alone 
by using recent bioinformatics programs.  The PSIPRED 
program is a secondary structure prediction method (30), 
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which utilizes a neural network to predict secondary 
structure using multiple sequence alignments produced by 
PSI-BLAST search (11).  The DISOPRED program can 
predict intrinsically (natively)-disordered region of protein 
based on a probability estimate of the amino acid residue 
being disordered (31).  These programs are available 
through the web servers (32).  The amino acid sequence of 
(P)RR was submitted to the servers.  The PSIPRED 
analysis gives values of 39% of alpha-helix and 14% of 
beta-strand for (P)RR (Figure 1).  The transmembrane 
domain is predicted to adopt an alpha-helix.  The 
DISOPRED analysis suggests that there is a long 
disordered region (residues 269-292) in (P)RR (Figure 1).  
This region contains the putative processing site RxxR and 
the first residue of M8-9 fragment of vacuolar H+-ATPase.  
To obtain the detailed structural information of (P)RR, the 
three-dimensional structure should be determined by the 
experiments on the bench work. 
 
6. TOWARDS THREE-DIMENSIONAL 
STRUCTURAL ANALYSIS 
 

The three-dimensional structure of protein is 
mainly determined by the two experimental methods: X-ray 
crystallography and nucleic magnetic resonance 
spectroscopy (33).  Both methods produce the information 
on the relative positions of the atoms of the molecule.  The 
choice of method depends on several factors, such as the 
molecular weight, solubility and ease of crystallization of the 
protein of interest (33).  Structure determination methods by 
nucleic magnetic resonance spectroscopy are limited to a 
protein with molecular weight less than 40 k (34), whereas X-
ray crystallography will be applied to larger proteins and 
protein complexes (33, 34).  Since the apparent molecular 
weight of dimeric (P)RR is about 75 k, X-ray crystallography 
is the method of choice for the three-dimensional structure 
analysis of (P)RR. 

 
The prerequisite for determining a protein 

structure by X-ray crystallography is to prepare protein crystals 
suitable for X-ray analysis.  When attempting to obtain such 
crystals by screening, we need to produce a close-to-milligram 
quantity of pure protein.  Because of efficient and cost-
effective means for expressing recombinant proteins, E. coli is 
a suitable host for the first attempt to produce any recombinant 
protein (35).  But the recombinant proteins sometimes have 
unfavorable properties that hinder attempts to determine the 
three-dimensional structure.  Such properties include low 
expression level, low solubility and difficulty of purification.  
Various types of tag protein have been elaborated to overcome 
some of these problems (36, 37) and glutathione S-transferase 
(GST) is one of the tag proteins.  Lowering the growth 
temperature to express recombinant proteins often makes the 
expressed proteins more soluble, presumably because slower 
rates of protein production can allow the proteins to fold 
properly (35).  Optimization of cell lysis buffer to extract 
recombinant proteins is important to enhance protein 
solubility and stability (35). 

 
As a first step to prepare (P)RR protein in a 

large amount, we expressed it in E. coli in a small-scale 
experiment, examining the effects of length of protein, 

GST-tag, growth temperature and cell lysis buffer on 
protein expression and solubility.  The tag-free (P)RR 
proteins (FL and ECD) were almost insoluble in all the 
conditions examined (upper two panels in Figures 2A and 
2B).  On the other hand, the GST-tagged (P)RR proteins 
(GST-FL and GST-ECD) became soluble when they were 
extracted with the cell lysis buffer at pH 9 in the absence of 
NaCl (see arrows in Figures 2A and 2B).  Moreover, the 
GST-tagged proteins were more soluble when expressed at 
lower temperature (25°C).  These results show that 
expression as a GST-tagged protein at 25°C is very 
effective to obtain soluble (P)RR preparations. 
 
7. CONCLUSION 
 

Binding of (P)RR to either renin or prorenin is 
the initial step to trigger the angiotensin-dependent and 
angiotensin-independent pathways.  The three-dimensional 
structural information of (P)RR is valuable to understand 
the molecular mechanism of receptor binding.  The large-
scale production of (P)RR in E. coli is the key towards the 
three-dimensional structural analysis of this receptor. 
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