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1.  ABSTRACT  
  

Tumors express potentially immunogenic 
antigens, yet the immune response to these antigens is 
typically profoundly suppressed.  Patients with established 
tumors behave as if they were functionally tolerant to any 
antigens associated with the tumor.  This tolerance reflects 
a process of active immune suppression elicited by the 
tumor, and represents a critical barrier to successful anti-
tumor immunotherapy.  Indoleamine 2,3-dioxygenase 
(IDO) is a natural immunoregulatory mechanism 
contributes to immune suppression and tolerance in a 
variety of settings.  In tumor-bearing hosts, animal models 
suggest that tumor-induced IDO helps create a tolerogenic 
milieu within the tumor and the associated tumor-draining 
lymph nodes.  IDO directly suppresses the proliferation and 
differentiation of effector T cells, and markedly enhances 
the suppressor activity of regulatory T cells (Tregs).  
Together, these effects contribute to the inability of the 
immune system to respond effectively to tumor antigens.  
Treatment of tumor-bearing animals with IDO-inhibitor 
drugs enhances anti-tumor immune responses, and IDO-
inhibitors are synergistic with a variety of 
chemotherapeutic drugs, anti-tumor vaccines and other 
immunotherapy.  Strategies to pharmacologically inhibit 
IDO may thus enhance immune-mediated responses 
following conventional chemotherapy, and may be 
synergistic with other forms of immunotherapy. 

 
 
2.  TUMOR-INDUCED TOLERANCE 
 
 Tumors express a variety of potentially 
immunogenic antigens (1), and there are many T cells in 
tumor-bearing hosts that are specific for tumor-associated 
antigens (2, 3).  Despite this antigenicity, once tumors 
become established they are not spontaneously rejected by 
the immune system.  Functionally, the immune system 
behaves as if it were tolerant to all antigens associated with 
an established tumor.   
 
 This state of functional tolerance applies not only 
to self antigens shared by the tumor, but also to 
authentically foreign antigens (tumor-specific neo-antigens) 
as well.  In some cases the immune system seems unaware 
of antigens on tumors (immunologic “ignorance”) (4, 5); 
but in many cases the tumor-associated antigens are clearly 
detected by the immune system, yet there is no effective 
immune response (tolerance).   In the case of 
autochthonous tumors, this state of acquired tolerance has 
been shown to be created very early during tumor 
development (6).  During development, the immune system 
may transiently retard the growth of the developing tumor 
for a time (7), but all clinically-apparent tumors have 
evolved mechanisms to escape this immune surveillance. 
 
 The molecular mechanisms by which tumors 
create functional tolerance to themselves are not yet fully 
defined, but they clearly represent an active process.  This 
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is readily seen in the case of transplantable tumors 
engineered to express a known, immunogenic foreign 
antigen: when they are implanted, these tumors rapidly 
create tolerance to the new antigen (8-10).  Of critical 
importance for understanding this process, tolerization 
appears driven by the host immune system, involving the 
active participation of host antigen-presenting cells (8), 
Tregs (11) and other endogenous suppressive mechanisms.  
The tumor releases factors that recruit the initial tolerizing 
milieu (12), but the actual mechanisms of suppression that 
function in this milieu are generated by the immune system 
itself.   
 
 This represents both a challenge and an 
opportunity for anti-tumor immunotherapy.  The challenge 
is that the immune system in a tumor-bearing host will 
actively suppress any attempt to generate a therapeutic 
immune response against the tumor.  But the opportunity is 
that the molecular mechanisms underlying this pathologic 
suppression are likely to be the same endogenous 
tolerogenic mechanisms employed by the immune system 
in other contexts.  Thus, the goal for immunotherapy is to 
identify these endogenous immunosuppressive mechanisms 
that have been “hijacked” by the tumor, and develop 
strategies to circumvent them. 
 
3.  IDO IS AN ENDOGENOUS MECHANISM OF 
IMMUNE TOLERANCE 
 
3.1.  Natural biologic role of IDO 
 Indoleamine 2,3-dioxygenase (IDO) is an 
evolutionarily ancient enzyme that degrades the amino acid 
tryptophan.  In mammals, it is highly inducible by 
inflammatory stimuli (13).  Initially, the role of IDO was 
assumed to lie in host defense against infection (by starving 
the microbes of tryptophan), and in certain types of 
infection this may be true (14, 15).  However, IDO is also 
an endogenous mechanism of immunoregulation and 
tolerance in the immune system, and it is in this role that it 
appears to have been co-opted by tumors.  In the immune 
system, the normal role of IDO is to promote certain 
specific forms of acquired peripheral tolerance, and to 
control excessive inflammation  (reviewed in (16) and 
(17)).  In tissues, local expression of IDO controls innate 
immunity and excessive inflammation from chronic 
infection (18, 19), including direct suppression of pro-
inflammatory TH17 cytokines IL-6 and IL-17 (20).  IDO 
also can induce antigen-specific tolerance in T cells.  IDO 
is not required for constitutive tolerance to self, as shown 
by the fact that mice lacking IDO, or treated with IDO 
inhibitors, do not develop spontaneous autoimmune 
disorders.  However, in the case of acquired peripheral 
tolerance (i.e., tolerance to new antigens encountered in the 
periphery), the effects of IDO can be dramatic.  IDO is 
expressed in the placenta, and mice treated with IDO-
inhibitor drug during pregnancy spontaneously reject their 
allogeneic fetuses (21, 22).  IDO is also expressed in 
antigen-presenting cells of the gut, and IDO activity is 
required for acquired mucosal tolerance (23, 24).  In other 
models, inhibition of IDO markedly exacerbates graft-
versus-host disease (25) and autoimmune disorders (26).  In 
tissue-transplantation models, blocking IDO renders the 

host refractory to a variety of strategies to induce tolerance 
toward the new graft (27-29).  Conversely, tissue allografts 
that are engineered to overexpress IDO can spontaneously 
create tolerance to themselves, and are not rejected even 
across a fully mismatched MHC barrier (29-31).  Thus, in 
certain settings, IDO functions as a potent natural 
mechanism for creating acquired tolerance and suppressing 
T cell responses.  This natural role can become pathologic 
when abnormal IDO expression is driven by tumors.       
 
3.2.  Biochemical characteristics of IDO 
 The system historically referred to as “IDO” 
comprises two related genes, IDO1 and IDO2.  These share 
sequence homology but differ in their regulation and 
pattern of expression (32, 33).  IDO2 was only recently 
cloned (32, 34), and IDO1 is the more extensively studied 
of the two.  Genetic polymorphisms exist in both genes, 
and these polymorphisms can affect functional activity 
(35).  The regulation of IDO gene expression is complex.  
Both IDO1 and IDO2 mRNAs show multiple splice 
isoforms, and gene expression and enzyme activity are 
regulated by SOCS3, NF-κB, DAP12 and IRF8 (36-38).  
The protein is also post-translationally regulated by 
ubiquitination and protein nitration via iNOS (37, 39).   
 
 Given this complexity, it is not surprising that 
IDO regulation can differ markedly between different cell 
types.  Even in the same cell type (dendritic cells, for 
example) IDO may be regulated differently depending on 
the maturation or activation state of the cell.  In vivo, IDO 
is inducible in macrophages and dendritic cells by 
interferons and other pro-inflammatory signals, and can 
also be expressed by endothelial cells and other cell types 
under certain conditions (reviewed in ref. (16)). 
 
 IDO1 is a monomeric enzyme with a heme 
prosthetic group that catalyzes the oxidative cleavage of 
tryptophan to N-formylkynurenine.  (An analogous reaction 
is catalyzed by the housekeeping enzyme tryptophan 
oxygenase in liver, but TDO is not known to have any 
immunoregulatory role.)  For its oxidase function, IDO1 
can utilize either molecular oxygen or reactive oxygen 
species (e.g., as supplied by cytochrome P450 or other 
sources) (40).  Historically, enzymology studies of IDO 
have relied on in vitro systems that use ascorbate and 
methylene blue as reducing agents to maintain the heme 
center in the active redox state.  This catalase/methylene 
blue system is not physiologic, but the real reducing system 
(or systems) that support IDO in vivo are at present 
unknown.  As a caveat, however, it has recently been 
shown that the conditions of the in vitro assay system can 
markedly affect the kinetics and substrate specificity of the 
IDO enzyme (40).  Thus, extrapolation from in vitro 
systems to in vivo enzyme characteristics should be 
undertaken with a certain caution, since IDO expressed 
under physiologic conditions may be subject to different 
reducing systems, cofactors, splice variants and post-
translational modifications, depending on the cell type. 
 
3.3.  Mechanism of action of IDO 
 Cells that express IDO create two effects in the 
milieu around them: depletion of the essential amino acid 
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tryptophan, and production of a series of kynurenine-
pathway metabolites.  Both of these effects have 
immunoregulatory properties.  Several kynurenine 
metabolites have been shown to have immunomodulatory 
effects (41), in particular 3-hydroxyanthranylic acid (42).  
In certain models, local production of these kynurenine 
metabolites by IDO is required to control excessive 
inflammation in tissues (18).  The molecular mechanism of 
action of kynurenines has not been fully elucidated, but 
may involve inhibition of PDK1→NFkB signaling (43) 
and/or signaling through the aryl-hydrocarbon receptor 
(44).     
 
 In addition, IDO reduces the local concentration 
of tryptophan.  Tryptophan is an essential amino acid, and 
low levels have the dual effect of inhibiting the mTOR 
kinase pathway (an effect analogous to rapamycin), and 
activating the amino-acid sensitive GCN2 kinase pathway 
(45).  mTOR kinase is a known regulator of immune 
responses (46).  The GCN2 pathway responds to cellular 
deficiency of one or more amino acids (47), and cells of the 
immune system appear highly sensitive to regulation by 
GCN2 (48, 49).  GCN2 activation by IDO affects gene 
expression in both the cell that expresses IDO (50), and in 
adjacent T cells to which the IDO+ cell presents antigen 
(45, 51, 52).  The effects of local amino-acid depletion on 
mTOR and GCN2 are not confined only to tryptophan; 
immunoregulatory enzymes such as arginase can produce 
analogous affects in other contexts (53).  Thus, it has been 
proposed that amino-acid based regulation may represent a 
generalized mechanism of control in the immune system 
(54).  
 
3.4.  IDO and Tregs 
 As described above, kynurenine production and 
tryptophan depletion can directly inhibit the activation, 
proliferation and survival of effector T cells.  In addition, 
IDO can create potent indirect suppression by activating the 
regulatory T cell (Treg) system.  Naive CD4+ T cells 
exposed to IDO during activation are biased to become 
Foxp3+ inducible Tregs (55-58).  IDO can also directly 
activate mature, pre-existing Tregs for markedly enhanced 
suppressor function (51).  In addition, IDO stabilizes the 
suppressive phenotype of Tregs under inflammatory 
conditions, and prevents inflammation-induced 
reprogramming of Tregs into T-helper-like cells (52, 59, 
60). IDO-activated Tregs are found in tumor-draining 
lymph nodes in mice, where they may contribute to tumor-
induced immunosuppression and tolerance (51). 
 
3.5.  IDO expression by human cell types 
 Most mechanistic studies of IDO have been 
performed in mouse models, but IDO can also be expressed 
by a variety of human cell types.  Cultured human 
monocyte-derived (myeloid) dendritic cells can express 
high levels of IDO under certain conditions, although (like 
mouse dendritic cells) the lineage, maturation state and 
activating stimulus determines whether IDO is expressed or 
not.  In the case of cultured human dendritic cells, a variety 
of stimuli and conditions have been reported to lead to IDO 
expression (36, 58, 61-68).  Under other conditions, IDO 
may be expressed at the protein level but without 

enzymatic activity (62, 69); while under other conditions 
dendritic cells may not express IDO at all (70).  Human 
macrophages and plasmacytoid dendritic cells can also 
express IDO (56-58, 71-73).  Functionally, IDO expression 
by dendritic cells or macrophages can inhibit proliferation 
of human T cells in vitro (62, 63, 65, 71-73), and can 
promote the differentiation of Foxp3+ regulatory T cells 
from human CD4+ T cells (56-58, 74).   
 
4. IDO AFTER HEMATOPOIETIC STEM CELL  
TRANSPLANTATION 

 
 In mouse models of acute graft-versus-host 
disease, IDO plays a protective role against lethal 
inflammation and end-organ damage.  One key target 
appears to be the gastrointestinal tract, since mice lacking 
IDO suffer severe gut damage in graft-versus-host disease 
(25, 75).  This is reasonable, since IDO is naturally 
expressed in gut, and has been implicated in mucosal 
tolerance (24) and control of inflammation during colitis 
(26).  In other models, histone deacetylase inhibitor drugs 
are immunosuppressive and can ameliorate experimental 
graft-versus-host disease; it has recently been shown that 
this effect requires induction of host IDO (76).  In humans, 
monocytes from patients following hematopoietic stem cell 
transplantation showed elevated levels of IDO, and 
increased IDO-mediated suppression of T cells in vitro 
(77).  The degree to which IDO participates in controlling 
graft-versus-host disease in humans (and perhaps also 
contributing to post-transplant immunosuppression (78)) 
remains to be elucidated; however, based on the results in 
mouse models, IDO seems likely to play a significant role.  
 
5.  IDO AND TUMORS 
 
5.1.  IDO and tolerance to tumors 
 Studies suggest that resting T cells initially 
become aware of tumor antigens primarily through cross-
presentation on host antigen-presenting cells (8, 79, 80).  
The tumor actively modifies the local milieu (i.e., the tumor 
microenvironment and draining lymph nodes) so that 
antigen presentation that occurs in this milieu become 
anergizing and and tolerogenic (12, 16, 81). Analysis of 
lymph nodes draining sites of established tumors often 
show abnormal over-expression of IDO.  This can be seen 
in sentinel lymph nodes of human cancers (62, 82-84), and 
in experimental tumors in mice (85-87).  IDO has also been 
demonstrated in host stromal cells that are actively 
recruited by growing mouse tumors, and which appear 
important for tolerance induction (12) (although the 
mechanistic contribution of IDO these cells is not yet 
known). 
 
 In mice, IDO-expressing dendritic cells isolated 
from tumor-draining lymph nodes actively suppress T cell 
proliferation and create antigen-specific anergy in vitro and 
in vivo (45, 85).  These IDO+ dendritic cells also activate 
Foxp3+ Tregs in vitro to become markedly more 
suppressive (51).  The phenotype of IDO+ cells in mouse 
tumor-draining lymph nodes is consistent with 
plasmacytoid dendritic cells, but with additional co-
expression of the B cell-lineage marker CD19 (85, 88).  
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Similar CD19+ plasmacytoid dendritic cells expressing IDO 
are found in other, non-tumor models of inflammation and 
tolerance (89, 90).  One important point to note is that, in 
these mouse models, the tumor cells themselves often do 
not express IDO.  The relevant site of IDO expression is 
thus the host immune cells, and these are often cryptically 
located in the tumor-draining lymph nodes or in the 
surrounding stroma at the margins of the tumor (12, 85, 
87).  This has relevant implications for human studies, 
because simply biopsying the tumor itself would not have 
revealed the presence and biological importance of IDO. 
 
5.2.  IDO expression in patients with malignancy 
 In humans, the IDO+ cells found in tumor-
draining lymph nodes are less well characterized, but they 
often display a “plasmacytoid” morphology (82).  Studies 
of melanoma sentinel lymph nodes showed co-expression 
of the plasmacytoid-dendritic cell marker BDCA2 on IDO+ 
cells  (91), and a study of ovarian cancer suggested that the 
IDO+ cells co-express CD123 (92).  These markers would 
be consistent with plasmacytoid dendritic cells, although 
other cell types such as macrophages and endothelial cells 
in tumors may also express IDO in tumors (72, 93). 
 
 IDO has been demonstrated by 
immunohistochemistry in a wide spectrum of human 
cancers (94).  IDO has been studied in patients with 
malignant melanoma (85, 95, 96); pancreatic cancer (97, 
98); colorectal cancer (99, 100); prostate cancer (93); 
ovarian cancer (92); acute myelogenous leukemia (74, 101, 
102); endometrial cancer (103, 104); and ovarian cancer 
(105).  In several malignancies, the presence of IDO was an 
independent predictor of a worse clinical outcome 
(sometimes dramatically worse) (85, 99, 101, 102, 104, 
105).   In many of these studies, IDO was expressed by 
the tumor cells themselves (although in most cases the 
tumor-draining lymph nodes were not studied).   
 
6.  CHEMO-IMMUNOTHERAPY WITH IDO-
INHIBITOR DRUGS 
 
6.1.  Immunologic effects of chemotherapy 
 An important recent advance in cancer 
immunotherapy has been the realization that standard 
chemotherapy drugs can in some cases be combined with 
anti-tumor immunotherapy to produce synergistic effects 
(106).  Mechanistically, chemotherapy induces a 
combination of antigen release from dying tumor cells, 
depletion of suppressor cells, and an immune-activating 
period of lymphopenia; which together can generate a 
beneficial (though transient) anti-tumor immune response 
(107).  Indeed, the effects of even standard chemotherapy 
may be more dependent on this transient immune activation 
than previously appreciated (108, 109).  Unfortunately, the 
immune response is limited (the tumor invariably re-
establishes tolerance); nevertheless, conventional 
chemotherapy may create a useful window of opportunity 
in which active immunotherapy can be added to enhance 
and sustain the immune activation.  Clinically, this synergy 
between chemotherapy and immunotherapy could have 
profound implications, because patients would no longer 
need to fail all conventional therapy before becoming 

candidates for immunotherapy. 
 
6.2.  1MT plus chemotherapy in mouse models   
 Preclinical studies in mouse tumor models have 
demonstrated that the IDO inhibitor 1-methyl-tryptophan 
displays synergy when combined with a variety of 
chemotherapeutic  drugs (22, 110).  Active agents included 
cyclophosphamide, doxorubicin, paclitaxel, cisplatin and 
gemcitabine.  The synergy between 1MT and 
chemotherapy was immune-mediated, since the effect 
required an intact immune system.  Importantly, this 
synergy was also demonstrated a model of autochthonous 
breast tumors, in which each tumor arises through its own 
unique series of mutations following the initial oncogenic 
transformation (111).  Even though each tumor thus had to 
develop its own strategy to evade the immune system, all of 
the tumors responded to the combination of 1MT plus 
chemotherapy (22).  Thus, the fact that 1MT was 
synergistic with multiple classes of chemotherapy, in 
multiple different tumor types and genetic mutations, 
suggests that IDO plays a fundamental and broadly-
applicable biologic role in helping suppress the host anti-
tumor immune response following chemotherapy. 
 
7.  IDO-INHIBITOR DRUGS COMBINED WITH 
VACCINES AND IMMUNOTHERAPY 
 
 Hosts with established tumors respond poorly to 
therapeutic anti-tumor vaccines (112).  In the mouse B16 
melanoma model, response to therapeutic vaccination could 
be significantly enhanced by administration of D-1MT at 
the time of immunization (52, 60).  In part, this appeared to 
result from the fact that blocking IDO allowed some of the 
host Tregs to be converted (“re-programmed”) into a 
polyfunctional TH17-like helper phenotype, resulting in 
enhanced vaccine-induced CD8+ T cell responses (60).   
 
 In other studies, administration of D-1MT 
enhanced the anti-tumor effects of immunotherapy with IL-
12 in a 4T1 breast-cancer model (86).  Of note, in this latter 
study the high levels of immunosuppressive IDO were 
actually created as an unwanted byproduct of the therapy 
itself (via IFNγ secreted in response to IL-12).  This brings 
up the important point that IDO is frequently induced as a 
physiologic counter-regulatory mechanism in response to a 
variety of intense inflammatory stimuli.  Thus, for example, 
IDO is induced by acute graft-versus-host disease (25), 
excessive lung inflammation (18), high-dose systemic CpG 
(90) or mycobacterial infection (20, 113).  In physiologic 
settings this counter-regulatory IDO is beneficial, since it 
prevents mice from dying of uncontrolled inflammation 
(18, 25).  However, in the case of cancer immunotherapy, 
collateral IDO induction – whether by adjuvants, immune 
stimulants or activated T cells – would be highly 
undesirable.  Unfortunately, tumor-bearing hosts may be 
particularly prone to unwanted IDO induction in response 
to inflammation, especially in the tumor microenvironment 
and tumor-draining lymph nodes (where IDO is already 
increased).  This could explain why a variety of different 
mouse models of vaccination and immunotherapy, with 
diverse mechanisms of action, all benefit from combination 
with an IDO-inhibitor drug.  The common factor may be 
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that any successful anti-tumor inflammatory response, 
regardless of how it is generated, is liable to trigger 
unwanted collateral induction of IDO. 
 
8.  PRECLINICAL AND CLINICAL STUDIES OF 
IDO-INHIBITOR DRUGS 
 
8.1.  1-methyl-tryptophan: D and L isomers 
 The first pharmacologic inhibitor of IDO to be 
described in vivo was 1-methyl-tryptophan (1MT) (21).  A 
number of additional inhibitors of IDO have been reported 
in the literature (see refs. (22, 114, 115) and further 
reviewed in ref. (116)).  The most extensively studied 
inhibitor is 1MT, and this is the first compound to reach 
clinical trials.  1MT exists as D and L stereoisomers, each 
with somewhat different properties.  L-1MT is far more 
potent at inhibiting purified IDO in cell-free systems (with 
the caveat mentioned above that stereoselectivity of the 
enzyme may be influenced by the choice of in vitro assay 
conditions (40)).  L-1MT is also superior at inhibiting IDO 
expressed in tumor cell lines (110).  However, using assays 
based on primary human or mouse dendritic cells, D-1MT 
appears somewhat better at reversing inhibition of T cell 
proliferation by IDO (110).  In vivo, murine studies directly 
comparing D-1MT vs. L-1MT showed the D isomer to be 
superior in combination chemo-immunotherapy (86, 110).  
 
 The molecular basis for the difference in 
biological properties of D-1MT  and L-1MT is not yet fully 
elucidated.  It has been suggested that the IDO1 and IDO2 
enzymes might be differentially sensitive to D-1MT vs. L-
1MT (32), although this has not yet been tested in vivo.  
Perhaps more importantly, as mentioned above the 
cofactors and reducing system that interact with IDO 
appear to exert a significant influence on the stereo-
selectivity of the enzyme (40). Hence, the relative potency 
of the D and L isomers of 1MT may differ between 
different cell types depending on which cofactors, redox 
systems, and other intracellular conditions predominate in 
that cell.  IDO is also clearly subject to regulation by 
allosteric effects (40, 117), as well as to transcriptional and 
post-translational regulation, so some of the inhibitory 
effects of 1MT may occur in a non-competitive fashion.  
(For all of these reasons, it may therefore be more accurate 
to refer to “inhibitors of the IDO pathway”, rather than 
assuming that all inhibitors are competitive.)  Finally, it is 
relevant to consider the possibility of off-target effects, 
since the L isomer of 1MT is accepted by IDO as a 
substrate and metabolized (albeit more slowly than 
authentic tryptophan) into methylated downstream products 
(117, 118).  All of these possibilities will need to be 
clarified by additional investigation. 
 
 That said, both D and L isomers of 1MT have 
been shown to inhibit functional IDO enzymatic activity 
(kynurenine production) in vitro, when assays are based on 
physiologically-relevant IDO-expressing cells.  The D 
isomer of 1MT, which is the isomer in clinical trials, has 
good biological activity in mouse studies, and inhibits 
functional IDO activity in human cells in multiple models 
(56, 62, 68, 72, 73, 110, 119).  In all of these models, IDO 
was physiologically expressed by dendritic cells or 

macrophages.  It is possible that the forms of IDO 
aberrantly expressed by tumor cells may behave differently 
(92).  However, the preponderance of mouse preclinical 
studies suggest that the relevant IDO-expressing cells are 
usually those of the host immune system.  Thus, while the 
topic remains the subject of some debate (120), the on-
going clinical trials of D-1MT should soon help clarify the 
issue of biologic activity. 
 
8.2.  Phase I clinical trials of D-1MT 
 The first IDO-inhibitor drug to reach the clinic, 
D-1MT, is now in Phase I trials.  Preclinical 
pharmacology/toxicology studies showed D-1MT to have 
good oral bioavailability and a long half-life (compatible 
with once- or twice-daily administration), with no dose-
limiting toxicity in mice, rats or dogs (121).  A first-in-
humans clinical  trial of D-1MT is ongoing, and only 
interim results have been reported (122).  No efficacy data 
are yet available, but D-1MT appeared well tolerated.  Two 
patients who had previously received immunotherapy with 
other agents developed Grade 2 hypophysitis while 
receiving 1MT.  This may represent a recall toxicity, 
because subsequent patients without prior immunotherapy 
have not shown hypophysitis.  The study is ongoing. 
 
9.  SUMMARY AND PERSPECTIVE 
 
 In patients with established tumors, the immune 
system actively suppresses anti-tumor immune responses 
(tumor-induced tolerance).  In order for anti-tumor vaccines 
and immunomodulators to be optimally effective, strategies 
must be developed to overcome this tumor-induced 
suppression.  IDO is positioned at the intersection of three 
key immunosuppressive pathways: inhibition of effector T 
cells, activation of Tregs, and suppression of inflammation.  
Abnormal levels of IDO are induced in host cells by the 
presence of tumor, and IDO can also be expressed by the 
tumor itself.  In addition, IDO can be collaterally induced 
as a counter-regulatory pathway by a variety of pro-
inflammatory stimuli, which may act to antagonize the 
efficacy of vaccine adjuvants and other immunotherapy 
approaches.  Thus, pharmacologic inhibition of IDO may 
be synergistic with existing strategies of active 
immunotherapy, particularly if administered in the window 
of opportunity following conventional chemotherapy. 
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