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1. ABSTRACT 
 

Postmenopausal women have an elevated risk of 
developing a neurodegenerative disease. These clinical 
observation supported by basic research, suggest that 
estrogens are neuroprotective. Insulin resistance represents 
an independent factor in the etiology of age-associated 
disease and metabolic syndrome should be considered as a 
contributing factor to the higher post-menopausal 
vulnerability to neurological disorders. Elucidating the 
relationship between insulin resistance associated with 
aging in females, and the cross-talk between estradiol, 
insulin, and insulin-like growth factor (IGF-1) signaling 
pathways, will lead to a more complete understanding of the 
mechanism underlying estradiol-mediated neuroprotection. 
In past decades, estrogen replacement therapy (ERT) was 
commonly used as a palliative therapy during menopause, 
but the mid-term and long-term effects of estrogen as 
possible promoters of breast cancer and the increased risk of 
coronary illness or stroke, has limited current usage. A 
deeper understanding of the molecular mechanisms 
common to all forms of neurodegenerative diseases may 
hasten the development of protective strategies against 
chronic age-related deterioration and acute illness, 
ultimately providing a better quality of life for the elderly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

 Aging in both humans and rodents is strongly 
associated with a decline in insulin action through the 
development of insulin resistance. This contributes to 
progressive glucose intolerance and the development of type 
2 diabetes during aging. Insulin resistance in aging is related 
to a metabolic syndrome associated with increased 
incidences of depression, neurodegenerative diseases, 
cognitive dysfunction, and memory loss. Many recent 
studies have focused on the impairment of insulin 
metabolism in the brain as a new pathogenic process for 
neurodegenerative diseases. The general conclusion is that 
diabetes-related cognitive dysfunction is a consequence of 
changes within the central nervous system (CNS) induced 
by chronic hyperglycemia and impairments in cerebral 
insulin signaling. Taken together, these findings support the 
hypothesis that insulin may have a role in the preservation 
of cognitive performance against multiple pathological 
processes during aging (1-3). 
 

 Basic experimental studies and clinical 
observations have also demonstrated the importance of 
estrogens in the preservation of cognitive function and 
protection against neuronal damage (4,5). This is evidenced 
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by the increased risk of developing neurodegenerative 
disorders during menopause, a state accompanied by a 
dramatic reduction in estrogen levels. There is no general 
mechanistic explanation, however, for the neuroprotective 
action of estrogens. Furthermore, the signaling pathways 
that allow these hormones to sustain or improve brain 
function during aging are unknown. Estrogen-mediated 
neuroprotection likely depends on both a “classical” signal 
pathway involving nuclear estrogen receptors (ERs) and on 
a “non-classical” pathway mediated by non-nuclear ERs 
(4,6). In the nervous system, these ERs have been found in 
extranuclear locations (cytosol and plasma membrane) in 
brain areas known to be altered during neurodegenerative 
processes. Moreover, the interaction of estrogens with non-
nuclear ERs appears to activate distinct intracellular 
signaling pathways, such as PI3-K and Akt kinases (6-8), 
that may mediate the neuroprotective effects of these 
hormones. 

 
 In this review, we have summarized a large body 

of data demonstrating that maintenance of both estrogen and 
insulin signaling are vital for normal brain functioning and 
that loss of these signaling pathways in aging has 
deleterious effects on CNS function and may promote 
neurodegenerative disorders. 

 
3. BRAIN INSULIN/IGF-1 SINGALING  
 

 The insulin family of peptides is involved in 
coupling metabolic rate and neural activity to nutrient 
availability in multicellular organisms. Indeed, a key 
function of these hormones in cell metabolism and growth 
has been firmly established. However, their significance in 
neuronal physiology is less well characterized, although 
progress in recent years on the neuroactive properties of 
insulin and insulin-like growth factor I supports an 
important role for these hormones in brain function (9,10). 

 
 Insulin is a trophic factor known to activate a 

variety of signaling pathways, such as ERK/MAPK, PI3-
K/AKT/GSK3beta, BAD, FOXO, and TOR pathways that 
are essential for neuronal development and survival. 
Although multiple effects of insulin on single neurons and 
isolated brain structures have been demonstrated (11), very 
little is known about the role of insulin in the regulation of 
neuronal glucose uptake in vivo, or of the consequences of 
insulin signaling on human brain function.  

 
 No significant insulin synthesis has been detected 

in the CNS (12). However, the presence of insulin 
transcripts within specific neurons subtypes and 
extracellular secretion of the hormone have been 
demonstrated (13). Insulin is thought to cross the blood-
brain barrier through a receptor-based saturable transport 
system that is operational at physiological levels of serum 
insulin. This transport is decreased in obesity and 
hyperglycemia (14,15), suggesting that at least part of brain 
insulin resistance may be caused by changes in insulin 
carriers that lead to reduced insulin within the brain.  

 
 The biochemical characterization of brain insulin 

receptors (IRs) indicates that they are similar to peripheral 

IRs, but exert different functions. Insulin receptors are 
widely expressed throughout the brain. It is also known that 
neurons express insulin-independent glucose transporters, 
suggesting that insulin and its receptors may have functions 
within the brain in addition to those related to the 
facilitation of glucose influx. Insulin receptors are expressed 
at particularly high densities in areas concerned with 
olfaction, appetite, and autonomic functions, including the 
striatum, cortex, choroid plexus, and olfactory bulb (16-18), 
and are particularly enriched in dendritic fields receiving 
rich synaptic input. In the brain, rather than mere regulators 
of glucose transport and metabolism, major functions of IRs 
are related to central regulation of body homeostasis, 
modulation of synaptic plasticity and cognition, and 
possibly in aging-related neurodegeneration (19-21). 

 
 On this way, neuronal insulin receptor knockout 

mice (NIRKO) allow us to study in depth the effects of 
insulin resistance in brain. Female NIRKO mice showed an 
increase on food intake, body weight, fat pad weight and 
serum triglycerides, suggesting insulin resistance syndrome. 
Moreover, the absence of brain insulin receptor is also 
related to a significative increase in phosphorylation of the 
microtubule-associated protein, Tau. Tau 
hyperphosphorylation is considered an early manifestation 
in Alzheimer´s disease, suggesting that the lack of brain 
insulin signaling could be promoting early 
neurodegenerative diseases (For Review 22). 

 
 The mechanistic and functional consequences of 

impaired central IR signaling remain to be elucidated, but 
the ubiquity of insulin, IGF-1(Insulin-like Growth Factor), 
and their receptors raise intriguing questions regarding the 
functional activities of the central IR system under 
physiological and pathophysiological conditions. The 
expression, regulation, and activity of brain glucose 
transporters are essential for neuronal function because 
glucose is the principle energy source for the brain. Insulin-
independent glucose transporters such as GLUT-1 and 
GLUT-3 are widely expressed in the CNS, and appear to be 
responsible for most glucose uptake and utilization (23). 
However, these GLUT isoforms cannot account for all 
glucose utilization in the brain. The GLUT-4 isoform has 
also been found in low amounts in the CNS (24), where its 
translocation appears to be mediated by IRs (6), indicating a 
direct role for insulin receptor signaling in glucose 
transport. The data from our recent studies suggest that 
insulin activates signal transduction events in the brain to 
stimulate glucose transporter trafficking similar to effects in 
the periphery (6). Therefore, it is possible that these GLUTs 
may contribute to neuronal homeostasis by serving as 
metabolic sensors that signal interstitial glucose.  

 
 While the role of insulin is better known in 

relation to the control of food consumption and glucose 
metabolism, insulin-like growth factor 1 (IGF-1) is a 
pleiotropic signal involved in numerous processes required 
to maintain brain cell function. In the brain, IGF-1 was 
formerly considered a neurotrophic factor involved in brain 
growth, but other aspects of the neurobiology of IGF-1 are 
gradually emerging (9,10). It has been shown that IGF is 
abundantly expressed in many areas during development, 
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but that expression is restricted to select regions of the 
mature CNS, and at very low levels. In the adult brain, local 
IGF-1 expression is increased in response to injury, but the 
function significance is still uncertain. The known influence 
of peripheral IGF-1 on the brain necessitates a transport 
system from blood to brain, and this was actually described 
years ago (25). Intriguingly, the insulin and IGF-1 receptors 
are separate entities that activate almost identical pathways, 
but with highly distinct outcomes on their target cells. Both 
receptors occur as homodimers but can form functional 
heterodimers to form hybrid insulin/IGF-1 receptors with 
distinct functional properties and anatomical localization 
(26). Brain insulin and IGF-1 signaling could also depend 
on this hybrid receptor, but this possibility has not been 
demonstrated.  
 
3.1. Insulin resistance and neurodegenerative disease  

The peripheral consequences of diabetes are well 
known, but the true extent of the diabetes-induced 
neurological complications are still under investigation. 
Diabetes produces a variety of neurochemical, 
neuroanatomical, and behavioral changes indicative of 
accelerated brain aging that can be reversed by insulin 
replacement, supporting a role for insulin in the 
improvement of cognitive performance during normal brain 
aging and under conditions of age-related neuropathology 
(3,27,28). Although the relationship between brain glucose, 
insulin signaling, and cognitive function has been well 
established, the mechanisms that allow glucose-induced and 
insulin-induced cognitive enhancement are still unclear.  

 
Non-insulin-dependent diabetes mellitus 

(NIDDM) is characterized by hyperinsulinemia, 
hyperglycemia, and hypo-responsiveness of the insulin 
receptor. Interestingly, some of the consequences of insulin 
resistance in NIDDM associated with hyperinsulinemia and 
hyperglycemia, including glucose intolerance, adiposity, 
atherosclerosis, and hypertension, are also risk factors for 
Alzheimer’s disease (AD). Clinical studies have revealed 
that patients suffering NIDDM have a two- to three-fold 
greater risk for developing AD (29-33). Any disturbance in 
the metabolism of insulin in the CNS may have deleterious 
consequences on normal brain functioning. For example, 
individuals suffering from AD and PD show reduced insulin 
receptor expression in the brain, but it is uncertain whether 
this is a cause or consequence of neurodegeneration (34,35). 
Overall, these data indicate that diabetes mellitus may 
accelerate the brain aging process. Furthermore, cerebral 
atrophy and diabetes may interfere with cerebral amyloid 
and Tau metabolism. Although the molecular origin has not 
been fully elucidated, alterations in insulin and glucose 
homoeostasis in the periphery may affect brain insulin and 
IR functions, promoting oligomerization of beta-amyloid 
(Abeta) and inducing Tau hyperphosphorylation, two 
hallmarks of AD (36,37).  

 
The relationship between insulin and the 

metabolism of Aβand Tau has received increased attention 
in recent years (36,38). It is now believed that increased 
Abeta production is a central pathogenic event in familial 
AD, while decreased Abeta clearance is dominant in 
sporadic AD (39). The insulin degrading enzyme (IDE) is 

the only known protease involved in Abeta degeneration. 
This enzyme likely prevents formation of brain amyloid 
deposits by cleaving the component peptides. Interestingly, 
among the main substrates of IDE are Abeta peptide, 
insulin, and amylin, which are degraded by IDE with similar 
efficiency. On the other hand, insulin has a regulatory effect 
on IDE levels in the CNS; excessively high insulin levels 
compete with Abeta for degradation, while low insulin 
levels in the brain, followed by insulin resistance, may 
reduce brain IDE levels and thereby impair Abeta clearance 
(40). It has been demonstrated that peripheral infusion of 
insulin in healthy older humans increased the Abeta 
concentration in the brain within 120 minutes, and was 
correlated with memory impairment (41). This phenomenon 
can be explained by the insulin effect on the degradation of 
Abeta transported outside the brain. High plasma insulin 
levels may interfere with the degradation of plasma Abeta, 
thereby obstructing a peripheral Abeta-clearing sink. This 
peripheral pathway contributes to Aβclearance, so 
obstruction may result in a high accumulation of Abeta in 
the brain, ultimately favoring AD development. These 
findings indicate that, together with glucose homeostasis, 
optimal insulin levels promote Abeta clearance by 
maintaining IDE expression in the brain. Consequently, 
insulin may exert protective roles against AD. In contrast, 
either pathologically low or high insulin concentrations in 
the brain may contribute to AD pathology.  
 
4. BRAIN ESTROGEN SIGNALING AND 
NEURODEGENERATION 
 

Numerous clinical studies have demonstrated that 
the incidence of neurodegenerative diseases increases after 
menopause, indicating that reductions in estrogens confer 
increased susceptibility or reduce endogenous 
neuroprotective efficacy. Indeed, AD, PD, and ischemic 
brain injury dramatically increase when ovarian functioning 
declines. These observations have encouraged the 
development of estrogen replacement therapy (ERT) in 
order to decrease the risk and/or severity of 
neurodegenerative processes. Some, but not all, clinical 
studies have reported improved memory processing and 
cognition in postmenopausal women following ERT 
(42,43), and numerous studies of ovariectomized animal 
models have confirmed more severe consequences 
following ischemia that are partially ameliorated by 
estrogen replacement (44-49). Estrogen is a well established 
neuroprotective agent in many animal models of brain 
injury, including stroke (50-54). Pretreatment with a 
physiological dose of estradiol protects the cortex against 
delayed cell death induced by middle cerebral artery 
occlusion (MCAO) by reducing both caspase activity and 
DNA fragmentation in the ischemic penumbra (55). One 
potential mechanism for estradiol-induced neuroprotection 
may be through the modulation of genes involved in the 
control of cell death and apoptosis, including anti-apoptotic 
bcl-2 family proteins (56-59).  

 
Most actions of estrogen are induced through its 

interaction with intracellular estrogen receptors (ERs) that 
act as transcription factors. These classical or “genomic” 
mechanisms typically occur over the course of an hour, 
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whereas “nongenomic” mechanisms occur in minutes 
through extranuclear estrogen receptors or other non-ER 
plasma membrane-associated estrogen-binding proteins that 
activate different second messengers and kinase pathways. 
Two mammalian ERs have been characterized to date, 
ERalpha and ERbeta, that are widely, but not uniformly, 
distributed in different areas of the CNS involved in 
cognitive function, including the hypothalamus, 
hippocampus, cerebral cortex, midbrain, brainstem, and 
forebrain. Estrogen receptor expression and distribution 
appear to be modified during development and aging. In 
particular, ERalpha has been implicated in neuroprotection 
in different cell and animal models (8,60-62). Estradiol 
treatment in wild type and ERbeta-null ovariectomized mice 
prevented brain injury, whereas this protection was 
abolished in ERalpha-null animals (63). Also, in 
ovariectomized rats treated with estradiol, an increase in 
angiogenic factor angiopoietin-1 was detected in the brain 
that was abolished in alpha-ERKO mice (64). However, 
other beneficial effects of estrogen on the brain appear to be 
independent of ERs. In a study of stroke induction by 
reversible MCAO, protection against tissue damage was 
observed in ERalpha-null females following estradiol 
exposure (65).  

 
Data from a wide range of cell types have 

demonstrated the existence of numerous intracellular 
mechanisms that could underlie estrogen-inducible 
promotion of neuronal survival and cognitive function (66-
68). As mentioned above, estrogen activates a plethora of 
signaling cascades in neurons, including mitogen-activated 
protein kinase (MAPK), phosphoinositol 3-kinase (PI3K), 
protein kinase C (PKC), and Ca2+ influx, and downstream 
effectors like the immediate early gene c-Fos (67,69-75). 
Each of these signaling pathways has been associated with 
estrogen regulation of neuronal function and survival. 
Collectively, the complex signaling cascades activated by 
17beta-estradiol in healthy neurons enhance the 
biochemical, genomic, and morphological mechanisms for 
preservation of cognitive functions, and may proactively 
induce mechanisms of protection against neurodegenerative 
insults. 

 
In the last years, a new point of view of the 

neuroprotective role of the estrogens has been related to 
aromatase. This enzyme is able to convert testosterone and 
other C19 steroids to estradiol and it is found in various 
tissues, including the brain. It has been proposed that 
estrogen aromatization of androgens plays a pivotal role in 
the control of genomic and non-genomic actions of 
estrogens. In addition to the physiological regulation of its 
activity in association with modifications in synaptic 
function and brain plasticity, the expression and activity of 
aromatase is also altered after brain injury. In this sense, the 
induction of aromatase expression in astrocytes after brain 
damage is accompanied by a significant increase in 
aromatase brain activity and increased levels of estradiol 
within the brain (for Review 76, 77). 

 
On the other hand, clinical studies such as The 

Women’s Health Initiative Memory Study (WHIMS), found 
that conjugated equine estrogens (CEE) with or without 

medroxyprogesterone acetate (MPA) somewhat increased 
the risk of dementia and cognitive decline in 
postmenopausal women (78). This study is now a widely 
cited example of the harm that can be caused by certain 
regimens of hormone replacement, especially when begun 
ten or more years after menopause. In this sense, it has been 
proposed “the critical window hypothesis”. This hypothesis 
states that estrogen supplementation initiated early in 
menopause may have beneficial effects on brain function; 
however, estrogen therapy that is initiated several years 
post-menopause may be ineffective or even detrimental. 
This provides insight into a therapeutic window of 
opportunity and suggests that the beneficial effects of 
estradiol treatment diminish once this window of efficacy 
has closed. Although the reason for this therapeutical 
window remains partially unknown, the hormonal status can 
strongly influence cognitive status, and properly-timed 
hormone therapy seems to be critical to maintaining healthy 
cognitive function (79). 
 
4.1. MAP-Kinase pathway and neurodegeneration 

The rapid effects of estrogen have been linked to 
the activation of the MAPK signal transduction pathway 
(80). This activation may be important in many 
physiological effects of estrogen that cannot be explained 
by classic ER-mediated transcription. Activation of MAPK 
by estrogen receptors has been implicated in estrogen 
mediated neuroprotection (81) and cell cycle regulation 
(82). In vitro studies demonstrated that estrogen elicited a 
rapid and sustained activation of both ERK1 and ERK2 in 
neurons, an effect which requires activation of MEK (83), 
the signaling protein immediately upstream of ERK. 
Moreover, estrogen is capable of increasing B-Raf kinase 
activity (83). Activation of ERK is much more prolonged in 
the CNS (83) than in non-neural cells (80). It has been 
proposed that the prolonged activation of ERK may 
distinguish the pro-differentiation effects of growth factors 
such as nerve growth factor (NGF) from the proliferative 
effect of epidermal growth factor (EGF) and other growth 
factors that trigger a much more transient activation of ERK 
(84).Moreover, estradiol elicits neuroprotection against Aβ-
induced toxicity in neuronal cells. This protection is also 
related to the activation of Raf-1/MEK/ERK1/2 pathway, 
via an ER. (85) 

 
 Although most studies examining estradiol (E2)-

initiated rapid signaling utilized cell lines or tissue explant 
preparations, there is accumulating evidence that low doses 
rapidly (within 30 min) increase MAPK phosphorylation in 
vivo. Bryant et al. (86), in an elegant study demonstrated 
that the intraperitoneal administration of 15 µg/kg of 17-β 
estradiol, but not the inactive isomer 17-alfa estradiol, 
rapidly elevated phospho-ERK2 levels in the rat brain in a 
region specific manner. The rostral nucleus accumbens, 
diagonal band of Broca, paraventricular nucleus (PVN), 
arcuate nucleus, and the anteromedial visual cortex 
exhibited statistically significant ERK phosphorylation in 
response to E2. 

 
On the other hand, the molecular machinery for 

activation of the MAP kinase cascade appears to be 
preorganized at the cell surface of quiescent cells, and it is 
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tempting to speculate that association of the estrogen 
receptor with multimeric caveolar-like complexes of 
signaling kinases could function as a plasma membrane 
estrogen receptor transduction complex that mediates the 
rapid effects of estrogen (87-90). However, the 
physiological relevance of caveolin proteins in membrane 
ERs signaling in the nervous system is still unknown. 
 
4.2. PI3-kinase and estrogen signaling 

Interaction of E2 with a plasma membrane-
associated ER is capable of activating PI3K, which in turn 
activates Ca2+ independent PKC that phosphorylates L-type 
Ca2+ channels and promotes Ca2+ influx. The resulting rise 
in intracellular Ca2+ activates Ca2+ dependent PKCs that 
then phosphorylate Src kinase. In parallel, PI3K also 
activates the Akt kinase, which can phosphorylate and 
inactivate the pro-apoptotic protein BAD (91). In addition, 
E2 increases mitochondrial sequestration of Ca2+, protecting 
neurons against dysregulation of Ca2+ homeostasis and 
promoting normal mitochondrial activity. In addition, E2 
may preserve mitochondrial respiration in part through its 
ability to increase either cytochrome c oxidase levels or 
enzymatic activity (92, 93). 
 

In our previous work, we demonstrated the 
expression of two ERalpha isoforms in cortex and 
diencephalon (6), named ERalpha67 and ERalpha46, that 
had been previously described in other studies (94-98). 
ERalpha67 was observed to interact with insulin receptor 
substrate-1 (IRS-1), although this interaction was reduced in 
aged animals, as well as in ovariectomized rats in the 
presence or absence of estradiol, suggesting that the 
hormone did not take part in ERalpha67-IRS-1 interactions. 
We have also studied the relationship between ERalpha67, 
ERalpha46, and the PI3K regulatory subunit (p85alpha), 
detecting an estrogen independent ERalpha67-p85alpha 
interaction only in untreated rats that was reduced with 
aging, whereas ERalpha46-p85alpha interaction was 
maintained during aging in the presence of estradiol (6). 
Therefore, together with Cardona-Gomez et al. (99) and 
Znamensky et al. (100), these results show that the 
activation of PI3K signaling pathways by estradiol appears 
to play an important role in estrogen-mediated  
neuroprotection, mainly through the control of ERalpha46-
p85alpha interactions. ERalpha46 may act as an activation 
function-1 (AF-1) competitive inhibitor of ERalpha67, due, 
in part, to its ability to out-compete ERalpha67 for ER 
binding (95). 
 
5. CROSS-TALK BETWEEN ESTROGEN AND 
INTRACELLULAR INSULIN/IGF-1 SIGNALING  
 

Insulin resistance in the elderly is associated with 
increased rates of atherosclerotic vascular disease, due in 
part to metabolic disorders, such as hyperinsulinemia, 
dyslipidemia, and hypertension, leading to metabolic 
syndrome. In this sense, some neurodegenerative diseases 
may also be considered, in some cases, the result of 
metabolic syndrome (43,101). This fact suggests that insulin 
and estrogen signaling mechanisms may be interacting to 
modulate neuronal responses to injury. Insulin-like growth 
factor-1 appears to play an important role in 

neuroprotection; it can reverse age-related effects (102) and 
attenuate the age-related decrease in cerebral glucose 
utilization (103). Moreover, gonadal hormones have been 
shown to regulate the expression of IGF-1 receptor mRNA 
and IGF-1-binding protein mRNA in adult female rat brains 
(104). Several studies have shown that low doses of E2 
increase IGF-1 binding in the brain by significantly 
increasing IGF-1 receptors (IGF-1R) expression (105). In 
addition, the interaction between estrogen and IGF-1 
systems appears to be reciprocal, since the 
intracerebroventricular administration of IFG-1 also 
increased the association between ER and IGF-1R. The link 
between this two signal pathways suggest complementary or 
mutually dependent functions in the prevention of age-
related neuronal dysfunction (106,107). 

 
One of the main signaling pathways known to 

participate in both estradiol- and insulin-mediated 
intracellular signaling is the PI3K-Akt pathway, suggesting 
it as a possible point of convergence. This pathway may 
participate in estradiol-mediated neuroprotection, as 
exposure to a PI3K inhibitor reversed the neuroprotective 
effect (108). It is reasonable to propose that estrogen given 
acutely after an ischemic insult might mediate 
neuroprotectionthrough  PI3K/Akt signaling (51). Indeed, 
PI3K acts by phosphorylation and activation of the serine-
threonine kinase Akt, and it is well known that Akt 
promotes cell survival by suppressing genes implicated in 
apoptotic cell death. In each case, Akt phosphorylates and 
thereby inactivates its target. Targets of Akt known to play a 
role in neuronal apoptosis following brain ischemia include 
pro-apoptotic proteins of the Bcl-2 family, pro-caspase-9 
(the precursor of the initiator of the caspase death cascade 
caspase 9), members of the Forkhead family of transcription 
factors, which promote transcription of pro-death genes, and 
glycogen synthase kinase 3beta (GSK3β) 
(106,107,109,110). The ability of neurotrophins such as 
BDNF to promote neuronal survival requires functional 
PI3K/Akt signaling (111). Therefore, one possible 
mechanism for acute estrogen protection involves a 
synergistic activation of both the ERK/MAPK and 
PI3K/Akt pathway by estrogens. The activation of the 
ERK/MAPK signaling pathway could up-regulate BDNF, 
which in turn would stimulate the PI3K/Akt pathway 
through the activation of its target receptor trkB. Moreover, 
because trkB receptors can promote neuron survival through 
the activation of both the MAPK and PI3K/Akt pathways 
(112-114), such a mechanism could create a powerful 
positive feedback loop to suppress proapoptotic protein 
transcription by sustained activation of Akt. 

 
The abundant coexpression of estrogen receptors 

with IGF-1 receptors in the brain and immnunoprecipitation 
studies (61) suggest that interactions between intracellular 
signaling pathways engaged by IGF-1R and estrogen 
receptors are possible (115,116). For example, the PI3K/Akt 
pathway is also triggered by IGF-1R, which is also known 
to be activated by ERalpha (117). Thus, in adult 
ovariectomized rats, systemic estradiol administration 
produced a transient increase in tyrosine phosphorylation of 
the brain IGF-1R, as well as transient interaction of IGF-1R 
with ERalpha and p85alpha (61). The cooperative effects of 
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IGF-1 and estradiol related to neuroprotection have also 
been assessed in ovariectomized rats exposed to systemic 
administration of kainic acid to induce degeneration of 
hippocampal hilar neurons (118), an experimental model of 
excitotoxic cell death. Both the systemic administration of 
estradiol and the intracerebroventricular infusion of IGF-1 
appeared to prevent hilar neuronal loss induced. 
Furthermore, the protective effects of estrogen were blocked 
by intracerebroventricular infusion of the IGF-1R antagonist 
JB-1. In addition, neuroprotection by IGF-1 was blocked by 
the ER antagonist ICI 182-780 (118). Inhibition of ERs also 
blocked the neuroprotective effects of IGF-1 in the rat 
hippocampus. Finally, IGF-1R activation is essential for 
several actions of estradiol in the brain, including hormonal 
regulation of cell survival. 

 
In the brain, there is abundant coexpression of 

nuclear estrogen receptors and IGF-1 receptor in the same 
cells. Both factors cooperated in neuroprotection in an 
animal model of brain injury and in an experimental model 
of Parkinson disease (119). Insulin-like growth factor 1 
activated ERKs, leading to the phosphorylation of estrogen 
receptors, and estrogen receptors can physically interact 
with IGF-1 receptors and with the downstream proteins 
IRS-1 and PI3K, enhancing IGF-1 signaling in the brain 
(119). The neuroprotective actions of estradiol may be 
mediated, at least in part, through the IGF-1 receptor 
signaling cascade and the anti-apoptotic kinase Akt. In 
addition, estradiol induces a transient activation of 
GSK3beta in the adult female rat brain, followed by a more 
sustained inhibition. In fact, GSK3beta can act downstream 
of Akt and could be a point of interaction between estrogen 
and IGF-1 signaling. However, under pathological 
conditions, GSK3beta may be responsible for the 
hyperphosphorylation of Tau in Alzheimer’s disease (120) 
and its inhibition is associated with the activation of 
survival pathways in neurons (121). Interestingly, estradiol 
regulates the activity of GSK3beta and decreases the 
phosphorylation of Tau in the rat hippocampus in vivo (99). 
Furthermore, estradiol increases the association of Tau with 
phosphorylated GSK3beta, and the association of PI3K-p85 
with beta-catenin, another substrate of GSK3 (94). 
Therefore, the interaction of ERalpha with brain IGF-1 
receptor signaling pathways may explain the 
interdependence of estradiol and IGF-1 in the regulation of 
different neural events. The ERK and Akt signaling 
cascades may mediate the interaction of IGF-1 and estradiol 
in the regulation of neuronal differentiation, synaptic 
function, synaptic remodeling, neuroprotection, and sexual 
behavior. The synergistic interaction of IGF-1 and estradiol 
in the phosphorylation of Akt may be critical for 
neuroprotection. The Akt kinase regulates several 
transcription factors that may be involved in the control of 
neuronal survival, such as cAMP-response-element-binding 
protein (CREB), nuclear factor kappa (NF-kappaB) and 
several members of the Forkhead family (61,122-124). In 
addition, activation of Akt results in the phosphorylation of 
the Bcl-2 family member Bad, and this may suppress Bad-
induced cell death (91,125). Furthermore, Akt activation 
enhances Bcl-2 promoter activity and both IGF-1 and 
estrogen induce Bcl-2 expression in neurons. Interestingly, 
IGF-1 receptor activation is necessary for the induction of 

Bcl-2 by estradiol in the adult brain. Downstream of Akt, 
IGF-1 and estradiol may also interact on the regulation of 
microtubule dynamics, neuritic growth, synaptogenesis, 
synaptic plasticity, and neuronal survival by acting on 
GSK3beta and its substrates beta catenin and Tau (99). 
Overall, these findings suggest that ERalpha/IGF-1R 
interactions are functionally relevant to novel 
neuroprotective signaling pathways, and that clearly warrant 
further investigation. 
 
6. PERSPECTIVES IN NEURODEGENERATIVE 
DISEASES AND ESTROGEN TREATMENT 
 

The aging process affects all tissues and organs, 
including the brain. Hormones are involved in the aging 
process since the level of many changes with age. Several 
hormones, such as growth hormone, IGF-1, 
dehydroepiandrosterone, and sex hormones decrease with 
aging in mammals (126). In humans, these changes are 
associated in time with the elevated incidence or 
progression of neurodegenerative disorders, increased 
depressive disorders, and other psychological disturbances 
(127, 128). The decrease in the levels of neuroprotective 
hormones in the aged may result in a reduced endogenous 
protective capacity against both environmental and genetic 
factors that promote neurodegeneration. In particular, IGF-1 
and estradiol appear to be particularly important in the 
process of neuroprotection and co-activation of downstream 
signaling can reverse the age-related effects (103). It has 
been established that the estradiol and IGF-1 systems 
interact to prevent age-induce neural dysfunction (106, 107) 
through a complex interaction between their intracellular 
signaling pathways, particularly PI3K/Akt.  

 
Currently, ERT is accepted only in cases of 

climacteric symptoms that alter the quality of life, and is 
usually set at the lowest effective dose for the shortest time 
possible. In contrast, the use of estrogen therapies for 
palliate menopausal symptoms have been limited since 
prolonged hormone treatments appear to increase the risk of 
breast cancer, coronary illness, epilepsy, stroke, or 
pulmonary embolism. Moreover, the use of estrogen therapy 
for neuroprotection in older postmenopausal women is 
controversial because it can precipitate neurovascular and 
cardiovascular accidents (129, 130). Thus, IGF1 therapy is a 
potential alternative. Animal studies showed that chronic 
IGF-1 infusion in the brain restores the diminished spatial 
learning capacity of aged rats that were stressed during 
prenatal life. In addition, IGF-1 also up-regulates 
neurogenesis in the hippocampus of these animals and 
reduces their HPA axis dysfunction. Interestingly, IGF-1 
increased estradiol levels in the plasma of aged rats that 
were subjected to prenatal stress (131). Moreover, in a 
recent study in middle-aged female rats subjected to global 
ischemia, Traub et al. demonstrated that significantly more 
neurons survived in animals treated with either estradiol or 
IGF1, but that simultaneous treatment produced no additive 
effect (132).  

 
Moreover, clinical studies also support 

neuroprotective effects of IGF-1. Higher levels of 
endogenous IGF-1 after ischemic stroke in humans are 
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associated with improved functional outcome (133). In fact, 
among hospitalized patients, IGF1 levels are decreased in 
stroke victims and inversely correlated with mortality at 
3 and 6 months (134). This suggests that exogenous 
supplementation of IGF-1 is a biologically plausible 
avenue for clinical trials. Human data indicate that IGF-1 
is safe and well tolerated. There is some precedent for 
large scale human trials with IGF-1 therapy for cognitive 
deficits even though some early results were inconsistent 
(135, 136). This discord may be related to the systemic 
route of administration; intranasal delivery of IGF-1 may 
better deliver active drug to the central nervous system 
and recently, it has been showed that intranasal IGF-1 
delivery may be more practical than systemic 
administration for protection against brain injury in 
humans. (137) 

 
However, at present, the intricate relationship 

between IGF-1 and estrogen signaling in brain is not 
fully understood. Therefore, in order to design safe 
neuroprotective hormonal therapies we first need to 
determine how aging affects the signaling of estradiol and 
IGF-1 in the brain. 

 
7. SUMMARY 
 

A large number of clinical and experimental 
studies have demonstrated that estradiol and insulin 
contribute to the functional preservation of the brain 
during aging. Although we have only begun to identify 
potential molecular mechanism of this neuroprotective 
role, further investigation on the relationship between 
insulin resistance associated with aging in females, and 
the cross-talk between estradiol and insulin mechanisms, 
including activation of IRS-1/PI3-k/Akt and IGF-1-IR 
signaling pathways, may lead to a more complete 
understanding of the precise mechanisms underlying 
beneficial effects in the nervous system.  

 
It is generally accepted that aging evokes 

profound changes in insulin signaling in the periphery 
that are important for initiating or exacerbating 
neurodegenerative diseases. However, it is still unclear 
whether aging per se causes progressive brain 
deterioration or whether progressive impairment of 
glucose homeostasis may ultimately induce the brain 
aging process.  

 
Reported data indicates that the estrogen 

decline occurring in menopause accounts for the increased 
risk of progressive dysfunction in the central nervous 
system. Therefore, a better understanding of the molecular 
mechanisms underlying brain deterioration related to both 
hypoestrogenic and hyperinsulinemic processes may 
contribute to new approaches for effective replacement 
therapies that may enhance quality of life in the elderly. 
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