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1. ABSTRACT 
 

Glaucoma is the second leading cause of 
blindness worldwide and is still a mysterium. Despite some 
risk factors are known, like individually elevated 
intraocular pressure, myopia, age, genetic factors, as well 
as vascular risk factors and smoking, the exact mechanism 
developing a glaucomatous optic neuropathy are still 
unknown. In the pathogenesis of glaucoma oxidative stress 
seems to play an important role. The mitochondria have an 
abnormal DNS and the antioxidative capacity is reduced. In 
addition, in the anterior segment, e.g. trabecular meshwork 
as well as in the posterior pole glaucoma patients show an 
increased oxidative stress. Therefore oxidative stress 
should be considered in  therapeutic approaches to 
glaucoma patients. 

 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Primary open-angle glaucoma (POAG) is 
described by the European Glaucoma Society as an optic 
neuropathy with characteristic visual field loss and 
papillary abnormalities, whose origin is regarded as a 
multifactorial phenomenon. In addition to individually 
elevated intra-ocular pressure and excessive diurnal 
pressure fluctuations, genetic factors, increasing age, 
myopia, vascular risk factors, and smoking are other risk 
factors for the development of a glaucomatous optic 
neuropathy. However, the precise pathogenetic 
mechanisms which lead to this socio-economically 
important condition are still largely unknown, although 
some insight into the complex biochemical processes 
involved has been gained in the past 20 years. For this 
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reason, the main focus has been on the cellular mechanisms 
triggered by artificially increasing intra-ocular pressure, to 
enable the effects of elevated intra-ocular pressure on the 
structures of the eye to be investigated more precisely in an 
experimental manner. This has made it possible to show 
that the structures of both the anterior and posterior 
chambers of the eye react to elevated intra-ocular pressures, 
resulting in major biochemical changes. One of the most 
important intermediate stages occurring between the 
elevation of intra-ocular pressure and the resulting 
biochemical changes in the eye is oxidative stress. This is 
generally understood to mean an imbalance between the 
formation of free radicals / reactive oxygen species and/or a 
reduction in the protective systems that buffer the free radicals 
(1). The cells are thereby flooded with free radicals, and direct 
and indirect cellular damage occurs, which may lead to organ 
transformation with a corresponding loss of function. Due to 
increasing knowledge of the functions of the cell, especially of 
the mitochondrion, the definition of oxidative stress has 
recently changed, in that it is understood to be mainly a 
disturbance of mitochondrial redox signal transmission and 
redox control (2). Due to these biochemical processes, 
structural changes also occur on the cell surface, which may 
lead to immunological reactions, such as auto-immune 
reactions for example. In addition, oxidative stress causes 
transformation processes in the retinal ganglion cells and nerve 
fibres, which result in accelerated apoptosis of the cells. 

 
To summarise, it is useful to have a good 

knowledge of the processes relating to oxidative stress in 
glaucoma, because oxidative stress plays an important role as 
mediator in the subsequent reaction chains, as a general form 
of biochemical reaction, and this may give rise to new 
therapeutic options. We will structure our presentation of the 
current state of knowledge of oxidative stress in POAG by 
describing the experimental observations and clinical findings 
for the anterior and posterior chambers of the eye separately. 
 
3. OXIDATIVE STRESS AND THE ANTERIOR 
CHAMBER 
 
3.1. General 

The human eye is exposed to powerful photo-
oxidative stress during the day and therefore needs a 
correctly-functioning buffer system in order to scavenge 
the free radicals and reactive oxygen species (ROS) 
constantly being formed. Hydrogen peroxide (H2O2) (3) 
and superoxide anions, for example, have been found in the 
aqueous humour. In the anterior chamber of the eye, a 
particular additional feature is increased stress on the 
structures due to metabolic end-products which are released 
into the aqueous humour by the avascular structures of the 
cornea and lens. The metabolites result from the process of 
mitochondrial respiration and other metabolic processes 
and may exhibit the properties of free radicals. This is why 
an effective protective system consisting of several 
individual components is necessary. For example: 
 
3.1.1. The aqueous humour acts as a stream of fluid that 
flushes out free radicals 

The aqueous humour, of which approximately 
80% is actively secreted and is subject to dynamic 

neurohumoral secretion control, is formed at the rate of 3.1 
µL/minute of aqueous humour in the morning, whilst the 
output at night is 2.3 µL/minute and drops to 1.6 µL/minute 
during sleep (4). This ensures that the aqueous humour is 
replaced approximately every 1½ - 2 hours at the times 
when light stress is greatest, and therefore free radicals, cell 
debris and metabolites are flushed from the eye. 
 
3.1.2. Water-soluble antioxidants 

The composition of the aqueous humour can be 
specifically influenced. This applies in particular to 
ascorbic acid, which is actively transported into the 
aqueous humour via a Na+/ascorbate cotransporter (5). 
Thus very high vitamin C concentrations can be attained in 
aqueous humour as compared to those in plasma (6). 
Ascorbic acid (AA) is one of the water-soluble essential 
nutrients and consequently it must be ingested in food. Its 
physiological importance lies in collagen biosynthesis, in 
the breakdown of cholesterol and in the synthesis of 
neurotransmitters. It is an effective antioxidant, regenerates 
vitamin E, detoxifies toxic metabolites and stimulates the 
immune system. In the aqueous humour, AA scavenges 75-
85% of free radicals (7) and is therefore the most 
significant free radical scavenger. In addition, the 
administration of AA induces a lowering of intra-ocular 
pressure (8, 9, 10). The action mechanism of AA is still 
under debate. On the one hand, an osmotic effect has been 
hypothesised (11), and, on the other, AA has been found to 
improve trabecular outflow (12), which may be due to 
stimulation of hyaluronic acid in the trabecular meshwork 
(TMW) (13). In addition, AA can dose-dependently 
influence the metabolism of TMW cells (14). 

 
Further water-soluble antioxidative substances in 

the aqueous humour include L-tyrosine (15) and 
glutathione (16). Glutathione has been shown to buffer 
hydrogen peroxide (H2O2) in the anterior chamber of the 
eye (17). 
 
3.1.3. Fat-soluble antioxidants 

Vitamin E (tocopherol) is a fat-soluble essential 
nutrient and is regarded as the most important lipophilic 
chain-breaking antioxidant in the human body. Following 
oral administration, elevated levels of glutathione have 
been detected in plasma and also in the aqueous humour in 
man (18), with the consequential hypothesis that vitamin E 
has an indirect stimulant effect on the antioxidant potential 
of the aqueous humour. 
 
3.1.4. Specific enzymes 

Both catalase (19) and superoxide dismutase (20) 
have been found in the epithelium and endothelium of the 
cornea, in the lens, particularly in the epithelium of the 
lens, in the iris and in the ciliary body, as well as in the 
TMW (21). There are indications of the presence of 
glutathione in the iris, ciliary body (22) and TMW (23). 
 
3.2. Age-related changes 

As the secretion of aqueous humour is an active 
transport process, it too is subject to age-related changes. It 
is believed that approximately 20% less aqueous humour is 
formed by the time the 80th year of life is reached, as 
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compared with a 20-year old (24). On the one hand, this 
means that the time free radicals and metabolic end-
products are retained in the aqueous humour is prolonged, 
and on the other, that the activity of active transport 
mechanisms declines. This is why the ascorbic acid 
concentration of the aqueous humour also declines with 
increasing age (25). The consequence is diminished 
buffering of free radicals in the aqueous humour, and this is 
further intensified by the decline in performance of the 
antioxidative enzyme systems. As far as the TMW is 
concerned, for example, an age-related decrease in 
superoxide dismutase has been demonstrated (26). Due to 
these processes, a preponderance of free radicals occurs 
and leads, among other things, to accelerated cataract 
development (27), and also transformation processes in the 
TMW (28, 29), which result in turn in a slight increase in 
intra-ocular pressure in advanced age (30). 
 
3.3. In primary open-angle glaucoma 

Independently of the age-related changes in the 
anterior chamber of the eye, protection from free radicals is 
markedly reduced in primary open-angle glaucoma 
(POAG), and this leads to pronounced oxidative stress with 
all its consequences. The aetiology has not yet been 
completely elucidated. It was shown in a pioneering study 
that patients with POAG generally have mitochondrial 
abnormalities (31), which weaken the supply of energy to 
cells and can lead to morphological and structural cellular 
changes. Independently of this, the total reactive antioxidant 
potential in the aqueous humour of glaucoma patients is 64% 
lower than in cataract patients in the same age group (32). This 
can be attributed to reduced ascorbic acid (11) and glutathione 
(33) concentrations. In consequence, superoxide dismutase, on 
the one hand, is reactively up-regulated (32), and, on the other, 
lipid peroxidation increases (34, 35). This leads to damage to 
cell membranes which can significantly influence the physical 
and chemical properties of the membranes (36). As the TMW 
has receptors for low-density lipoproteins (LDL) (37), direct 
impairment of the oxidised LDL on the TMW is to be 
expected. An additional factor is that oxidised LDL can 
activate plasminogen activator inhibitor-1 (PAI-1) via 
autocrine activation of growth factor TGF-β (38), which is 
produced in the ciliary body (39) and is elevated in the aqueous 
humour in POAG (40). Interestingly, cultured astrocytes from 
the optic disk also produce PAI-1 under the effect of TGF-β 
(41). As a result, the extracellular matrix of the cribriform 
plate and TMW may be activated and the viscosity of the 
aqueous humours increased, and this may make it more 
difficult for the aqueous humour to drain. 

 
As far as oxidative reactions in the aqueous 

humour are concerned, high concentrations of hydrogen 
peroxide (H2O2) occur in POAG. H2O2 is stable as an 
intermediate oxidant. H2O2 has been intensively studied in 
the eye and, via activation of cytosolic calcium, causes the 
release of noradrenaline, and activation of nitric oxide 
synthetase (NOS) and arachidonic acid (overview in 42). It 
has also been shown in perfusion experiments that H2O2 
increases outflow resistance in the glutathione-
impoverished TMW (23). On the one hand, this could be 
caused by contraction of the TMW cells due to the elevated 
concentrations of cytosolic calcium, and, on the other, by a 

reorganisation of vimentin and actin, reduced adhesion of 
TMW cells to fibronectin, laminin and Type I and Type IV 
collagen, and activation of cell nucleus activation factor 
NF-κB (43, 95). Another point is that the experimental data 
have been corroborated by clinical investigations. Elevated 
levels of adhesion molecules and also of messenger RNA, 
interleukins and NF-κB have been found in TMW 
specimens from trabeculectomies (44). Oxidative DNA 
damage in the TMW was also detected (45), which actually 
correlates positively with the degree of visual field damage 
and the level of intra-ocular pressure (46). Finally, there is 
a pronounced transformation of both the structure and 
function of the TMW, which provokes accelerated ageing 
and leads to increased outflow resistance (47, 48, 96). The 
increase in intra-ocular pressure associated with this then 
leads to further major biochemical changes, which then 
result in significant problems, especially in the posterior 
chamber of the eye. 

 
To what extent an iatrogenic influence on 

oxidative stress in the TMW exists is still unclear at 
present. The preservative benzalkonium chloride contained 
in most eye drops results in any case in the release of 
superoxide anions on the conjunctiva, and these induce in 
turn apoptosis of conjunctival cells (49). As increased 
apoptosis due to benzalkonium chloride was also found in 
the TMW (50), it is quite conceivable that routine treatment 
with antiglaucoma drugs containing preservatives sustains 
oxidative stress and in this respect tends to have a 
deleterious effect on glaucoma. 
 
4. OXIDATIVE STRESS AND THE POSTERIOR 
CHAMBER OF THE EYE 
 
4.1. General 

Like the anterior chamber of the eye, the retina is 
intensely exposed to light during the day. Short-wavelength 
blue light in particular can induce the formation of free 
radicals (51) and in addition can influence ATP synthesis in 
the mitochondria of retinal ganglion cells, with the 
consequence that free radicals may be less well scavenged 
and thus apoptosis may be set in motion (52). In addition, 
the retina is very susceptible to oxidative stress due to 
 

- it being responsible for the greatest consumption 
of oxygen in the eye (53), 

- the high proportion of polyunsaturated fatty acids 
in the outer segments of photoreceptors (54), 

- the phagocytosis of the retinal pigment 
epithelium, which results in free radical 
formation (55), and 

- age-related changes in the retina, which intensify 
oxidative stress due to the formation of 
catabolites such as lipofuscin and “advanced 
glycation end-products” (AGEs). 

On account of these stresses due to free radicals, there are 
also numerous buffer systems in the retina. These include 
 
4.1.1. Pigments 

The neuromelanin present in the retinal pigment 
epithelium and the macular pigments lutein and zeaxanthin 
have antioxidant properties (56, 57). 
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4.1.2. Hormones 
The production of melatonin (58) and its receptors has been 
demonstrated in the retina (59). Melatonin has antioxidant 
properties in that it can itself scavenge free radicals. It 
stimulates antioxidant enzymes and increases 
mitochondrial oxidative phosphorylation (60). 
 
4.1.3. Water-soluble antioxidants 

Glutathione (61) and ascorbic acid are available 
as antioxidants in the retina (62, 63), and ascorbic acid has 
a growth-inhibiting effect on the retinal pigment epithelium 
(64). 
 
4.1.4. Fat-soluble antioxidants 

Vitamin E, a fat-soluble antioxidant, has been 
found in the retina (65). 
 
4.1.5. Specific enzymes 

Catalase, glutathione peroxidase and superoxide 
dismutase have all been found in the retina (19, 29, 66). 
 
4.2. Age-related changes 

The proportion of melanin in the retinal pigment 
epithelium (67) and of lutein and zeaxanthin in the macula 
(68) fall with increasing age. At the same time, there is an 
increase in lipofuscin, a pigment formed from the 
accumulation of molecular aggregates from photo-
oxidative processes (69). Lipofuscin itself acts as a 
photosensitiser, generates free radicals (69) and inhibits 
antioxidant processes (70). Due to metabolic stress, 
“advanced glycation end-products” are formed in addition, 
which can in turn initiate apoptotic processes, cell 
proliferation and oxidative stress (71, 72, 73). Finally, 
considerable age-related changes occur in the posterior 
chamber of the eye, with a decline in free radical buffering 
power, as a consequence of which oxidative stress on the 
retina is actually increased further, for example by the 
formation of drusen, lipofuscin and “advanced glycation 
end-products”. These changes alone explain why 
physiological sensory capabilities decline with increasing 
age, because the complex association of cells that is the 
“retina” is perceptibly disturbed. If there are pre-existing 
genetic impairments and/or there is severe toxic (smoking) 
and vascular damage (diabetes mellitus, hypertension, 
arteriosclerosis), these age-related transformation processes 
are intensified, and their final stage is age-related macular 
degeneration. 

 
As far as the optic nerves are concerned, there is 

a transformation of the collagen structures, provoked 
mainly by collagen cross-linking. This results in reduced 
elasticity, and this is also corroborated by the increase in 
thickness of the septa within the cribriform plate (74, 75, 
76). 
 
4.3. In primary open-angle glaucoma 

While age-related changes in themselves place a 
tremendous stress on the retina and optic disk, additional 
disturbance is especially harmful. In the context of 
glaucoma, elevated intra-ocular pressure must be 
particularly mentioned. Under experimental conditions, 

elevated intra-ocular pressure results in the following in the 
retina: 
 

- a reduction in superoxide dismutase (77), 
- a reduction in catalase (77), 
- a reduction in the concentration of melatonin 

(77), and 
- a reactive increase in lipid peroxidation (77) 

 
and the following in the optic disk: 
 

- activation of nitric oxide synthetase-2 in 
astrocytes (78). 
 
Due to increased intra-ocular pressure and to the 

changes mentioned above, astrocytes are activated in the 
cribriform plate (79) and in turn express COX-2 (80), TNF-
α (81) and metalloproteinases (82), for example. The 
chronic inflammatory reaction triggered thereby leads to a 
transformation of the collagen structures of the cribriform 
plate, among other things (83). In addition, biochemical 
disturbance occur. One example of this is the activation of 
growth factors, such as TGF-β, which has been found at 
elevated concentration in the aqueous humour of glaucoma 
patients (84) and is formed among other things by the 
activated astrocytes (85). For its part, TGF-β increases the 
extracellular matrix both in the TMW (86) and in the 
astrocytes of the cribriform plate (87), and contributes to 
disturbing outflow as well as to the transformation of the 
cribriform plate. In the context of increased oxidative 
stress, TGF-β (88) is secreted in addition, thereby further 
promoting the biochemical transformation processes in the 
TMW and cribriform plate. 

 
Due to these serious metabolic changes, 

accelerated metabolic and structural transformation occurs 
in the retina and optic disk in glaucoma. The transformation 
also affects the surface structures of membranes and 
molecules, which can then lead to immunological 
abnormalities (97). The influence of systemic vascular 
diseases, which can lead to endothelial dysfunction and to 
accelerated arteriosclerosis, results in further damage to the 
already considerably stressed retina and optic disk in 
POAG (98). The associated ischaemia promotes oxidative 
stress in the eye and results in a vicious circle. 
 
5. SYSTEMIC MARKERS FOR OXIDATIVE STRESS 
IN POAG 
 

POAG appears not to be an exclusively 
ophthalmological condition. We are still only on the 
threshold of an understanding of this, but one of the most 
significant studies was that which provided evidence of 
mitochondrial abnormalities in POAG patients (31), 
demonstrating a general metabolic disorder in POAG with 
restricted capability to cope with oxidative stress. This is 
the rationale for blood tests in patients with POAG. 
Reduced glutathione levels and elevated levels of 
malondialdehyde, a reactive catabolite formed in the course 
of lipid peroxidation (90), have been found in untreated 
glaucoma patients (89). There is, in addition, disturbance of 
the vitamin balance, including reduced vitamin B1 levels 
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(91). This is interesting because vitamin B1 is involved in 
neuronal glucose metabolism. Under normal conditions, the 
highest consumption of glucose at any point along the axon 
of the optic nerve occurs in the disk (92). Accordingly, if 
too little Vitamin B1 is present in the serum of glaucoma 
patients, papillary glucose metabolism could be disturbed 
and neurodegenerative processes promoted. In addition, 
elevated uric acid and fasting blood glucose concentrations 
have been found (93). 
 
6. INTENSIFICATION OF OXIDATIVE STRESS IN 
GLAUCOMA DUE TO SYSTEMIC DISEASE 
 

Patients with POAG frequently have systemic 
vascular diseases, which can exert a considerable influence 
on the POAG disease process and promote progression of 
the glaucomatous optic neuropathy (100, 101). This is 
mainly because the direct consequences, such as hypoxia, 
the accumulation of metabolic end-products and free 
radicals, and the reperfusion syndrome, can exacerbate the 
biochemical status of the optic nerve. Chronic processes in 
particular are of significance in this context, because they 
continuously impact negatively on the oxidative stress and 
can therefore promote the transformation processes. A 
classic example of this type of vascular disease is diabetes 
mellitus, in which endothelial dysfunction occurs and 
oxidative stress is central to the consequential reactions 
(102, 103). But endothelial dysfunction and/or increased 
oxidative stress have been demonstrated in other vascular 
diseases, such as tinnitus (104) and migraine (105, 106). 
 
7. THE TRIGGERING OF IMMUNOLOGICAL 
PROCESSES IN GLAUCOMA DUE TO OXIDATIVE 
STRESS  
 

Many questions remain unanswered when one 
considers the pathogenesis of glaucomatous optic 
neuropathy (95,97). Interestingly, however, many of the 
events come together to form a common final path and are 
mediated by certain key proteins. If, as in POAG, 
mitochondrial activity is primarily diminished (31) and it is 
adversely affected further under elevated intra-ocular 
pressure (107), free radicals may be less well buffered, and, 
at the same time, the cells are not supplied with sufficient 
energy to counteract this stress. Oxidative stress in the eye 
affected by glaucoma builds up due to increased 
fluctuations in diurnal pressures, due to the elevated intra-
ocular pressure itself, and, indeed, also due to the 
underlying systemic vascular diseases and/or due to 
exogenous factors, such as smoking. As a result – in 
addition – immunological processes are stimulated. Many 
of the factors described as influencing the pathogenesis of 
glaucoma, such as:  
 

1. elevated free radicals and oxidative stress (108), 
and also smoking (109), 

2. short-wavelength light (52), 
3. ischaemia/reperfusion (110, 111) 
4. surface antigens of bacteria, such as those of 

Helicobacter pylori (112,113), and 
5. inflammation mediators, such as IL-1 (114, 115) 

and TNF-alpha (81), 

activate a nucleoprotein, nuclear factor kappa B (NF-κB). 
The latter is an important transcription factor, which occurs 
in almost all cell types and tissues. NF-κB is of major 
importance in the regulation of the immune response, cell 
proliferation and apoptosis. After activation (116), the 
following are stimulated: 
 

1. acute-phase response proteins, such as 
angiotensinogen or complement C3, 

2. adhesion molecules, such as VCAM-1, ELAM-1, 
and ICAM-1, and 

3. cytokines, such as IL-1, IL-2, IL-6, IL-8, G-CSF, 
GM-CSF, TNF-α, TNF-β, and IFN-β. 

 
Due to this up-regulation of a wide variety of 

factors, biochemical processes are initiated and advance the 
process of glaucomatous optic neuropathy and lead to 
numerous reactions. By way of example, it is to be noted 
that activation of NF-κB leads, firstly, to activation of 
endothelin-1 (117), which occurs to a greater degree in 
POAG in both the serum and aqueous humour and, due an 
adverse effect on outflow resistance, in the trabecular 
meshwork, and also, due to disturbed perfusion of the optic 
nerve, plays a significant role in POAG (118). Secondly, it 
has been shown that hypoxia-inducible factor 1 (HIF-1) is 
also up-regulated via NF-κB (119). Elevated HIF-1 has 
been detected in the retina and optic nerve in cases of 
POAG (120). It has so far been possible to demonstrate up-
regulated NF-κB directly in the trabecular meshwork in 
glaucoma patients (44,121), and also in the ciliary body in 
an experimental murine glaucoma model (122). 

 
The role of NF-κB in the immunological context 

has been confirmed. An almost incalculable number of 
immune reactions occur due to activation of the widest 
variety of cytokines. For example, cytokines, and also 
ischaemia, lead to the induction of HLA-DR expression in 
the astrocytes of the cribriform plate (123). High 
concentrations of TGF-β, which have been demonstrated in 
POAG, cause the activation of microglia with 
corresponding immunocompetence (124). Finally, in the 
course of POAG, a powerful immune reaction occurs and 
leads to auto-immune reactions. The pattern of the 
reactions is partly known, but the individual reactions have 
yet to be elucidated (106). One of the antibody reactions 
consists in the formation of antibodies against heat shock 
proteins, which normally act to protect cells against 
powerful stresses, such as those that occur in oxidative 
stress (125). In addition, studies have shown the formation 
of antibodies against Helicobacter pylori (112). 
 
8. SUMMARY 
 

While lowering intra-ocular pressures is the 
dominant therapeutic option in glaucoma treatment strategy 
today, and its effectiveness has been proven insofar as a 
high proportion of glaucoma patients benefit from it, one 
must not overlook the fact that many patients are not 
sufficiently helped by lowering intra-ocular pressure alone. 
For example, in the Early Manifest Glaucoma Trial, the 
glaucoma had progressed after 6 years’ follow-up in 45% 
of the patients treated (93), and this figure actually rose to 
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59% after 8 years (100), in spite of lowering intra-ocular 
pressure by 25% to an average of 15.5 mmHg. This is not 
to question the value of lowering intra-ocular pressure, 
but the data relating to POAG presented here show 
emphatically that the therapeutic strategy should be far 
more comprehensive, in other words, more holistic. In 
addition to optimally stabilising the metabolism (blood 
glucose, blood lipids, thyroid) and blood flow (blood 
pressure, vasospasticity), orthomolecular therapy should 
be included as well, to bring oxidative stress under 
control. Lifestyle strategies are, of course, important to 
this end as well, such as not smoking, adopting regular 
eating habits and getting sufficient sleep, for example. 
These measures require close collaboration between 
patient, ophthalmologist and general 
practitioner/internal medical specialist and can only 
work if the patient is aware of the wider significance of 
the disease glaucoma. 
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