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1. ABSTRACT

This paper defines potential peptide cross-
reactivity between HIV-1 and the human host. Specifically,
the amino acid primary sequence of HIV-1, isolate CDC-
451, was analyzed for potential immunopathological
relationships with the human proteome. The results
revealed that: 1) HIV-1 shares 50 heptapeptides and three
octapeptides with the human proteome; 2) 34 of the 50
shared heptapeptides are experimentally validated epitopes
targeted by immune responses following HIV-1 infection;
3) the viral heptapeptide epitopes are present in human
proteins that, when altered, are associated with disease
characteristics of acquired immunodeficiency syndrome
(AIDS) such as CD4+ cell loss, encephalopathy,
schizophrenia, myopathy, cardiovascular disorders,
hypertension, corneal diseases, diarrhea, lymphoma, and
bladder cancer; 4) at the pentapeptide level, the viral-
versus-human overlap is extensive (14,227 matches), with
the viral pentapeptides disseminated throughout 10,312
human proteins. The findings are discussed in relationship
to HIV-1 escape from immune surveillance, adjuvant-
induced HIV-1 immunogenicity, autoimmune cross-
reactions following human hyperimmune responses against
HIV-1, and AIDS.

2. INTRODUCTION

During recent decades, many studies have
focused on the existence of extensive sequence similarity
between HIV polyprotein and human proteins, including
the sequence similarity between HIV envelope and
neuroleukin protein (1), the numerous peptide similarities
between HIV proteins and nuclear antigens, such as the 70
kDa component of RNP particles involved in mixed
connective tissue disease, and the centromere CENP-B
protein, related to scleroderma (2,3), the structural
similarity between a HIV-1 sequence overlapping env gp41
and selenium-dependent glutathione peroxidases (4), and
the significant sequence similarity between a HIV-1
encoded peptide and the DNA binding loop of nuclear
factor kappa B, known to bind thioredoxin (5).
Accordingly, HIV pathogenesis has been causally
associated with such peptide sharing (i.e., with autoimmune
phenomena due to molecular mimicry between viral and
host proteins) (6–11). Neuropathogenesis (1, 12),
subversion of the immune system (13), autoimmune thyroid
disease (14), and immunologic thrombocytopenia (15, 16)
are HIV-related pathologies that have been causally linked
to molecular mimicry (8-10, 17). However, despite the
numerous studies, any link between HIV pathogenesis and
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HIV-induced immune response remains unclear. Moreover,
currently, there is an enhanced effort in the clinical search for
anti-HIV vaccines to be used in the prevention and therapy of
HIV infection, notwithstanding the concern of inducing
collateral autoimmune phenomena through cross reactions
with the host proteome. A report of cardiolipin polyspecific
autoreactivity by two broadly neutralizing HIV-1 antibodies is
an example of such crossreactivity (18), and warns against
indiscriminate immune-based approaches.

With the availability of the human proteome and
access to public databases, we have examined the issue of HIV
and molecular mimicry by a sequence-to-sequence analysis of
viral versus human proteomes. Specifically, the current study
addressed the following questions: i) How many human
proteins harbor HIV peptide modules? ii) Can the potential
cross-reactive risk between HIV-1 and Homo sapiens
proteomes be quantified? iii) Based on peptide sharing data,
might a relationship be drawn between viral-versus-human
peptide sharing and HIV-induced AIDS?

3. METHODS

We used a HIV-1 sequence derived from an
infectious clone of the US isolate CDC-451 as an
experimental model. The HIV-1 sequence (Taxonomic
Identifier: 11687, group M, subtype B, isolate CDC-451,
polyprotein length: 1,682 aa) consisted of six proteins. Viral
proteins, abbreviations, length, and UniProtKB/Swiss-Prot
accession numbers are as follows: 1) Gag polyprotein, Gag,
500 aa (P05887-1), 2) Protein Vpr, viral protein R, 16 aa,
(P05953), 3) protein Tat, transactivating regulatory protein,
101 aa (P05907), 4) Protein Rev, regulator of expression of
viral proteins, 116 aa (P05865), 5) Protein Vpu, viral protein
U, 81 aa (P08803), and 6) Envelope glycoprotein gp160, Env
polyprotein, 868 aa (P05879).

The HIV-1 polyprotein sequence was dissected
into 1,676 heptapeptides overlapped by six residues, i.e., they
were each offset by one residue: MGARASV, GARASVL,
ARASVLS, etc.Then, each viral heptapeptide was analyzed
for exact matches with the human proteome using the Protein
Information Resource perfect match program
(pir.georgetown.edu/pirwww/search/peptide.shtml). The
same procedure was applied when pentapeptides were used
as probes in the matching analysis.

The human proteome consisted of 36,103 proteins
and 15,697,964 occurrences of 10,431,975 unique 7-mers
(20) at the time of analysis. Viral epitopes, functions of
human proteins involved in the viral heptapeptide overlap,
and potential disease associations were explored using the
following publicly available resources: the HIV Molecular
Immunology Database
(http://www.hiv.lanl.gov/content/immunology), Universal
Protein Resource (http://uniprot.org/uniprot), and PubMed
(http://www.ncbi.nlm.nih.gov/omim).

4. RESULTS

In exploring the peptide commonality between
HIV-1 and human proteins, as a first step, we carried out a

systematic sequence-to-sequence peptide matching
analysis of the viral polyprotein versus the human
proteome at the heptapeptide level to quantitatively define
the viral-versus-human overlap. Then, we searched the
HIV Molecular Immunology Database
(http://www.hiv.lanl.gov/content/immunology) for data on
the immunoreactivity of the shared peptides to quantify
the potential HIV-1 cross-reactivity risk in human immune
responses. Finally, we analyzed the possible pathological
impact of potential heptapeptide crossreactivity by
examining the functional relevance of the human proteins
involved in the viral epitope overlap. Table 1 presents the
data obtained.

4.1. Theoretical and empirical values of the viral
versus human heptapeptide overlap

Table 1 shows that HIV-1 shares 50
heptapeptides and three octapeptides with the human
proteome, with a total of 52 human proteins involved in
the overlap. As an immediate observation, the quantitation of
the HIV-versus-human peptide overlap reveals a non-random
nature of peptide sharing. Indeed, the human proteome is
formed by 10,431,975 unique heptamers and 10,797,988
unique octamers, whereas the HIV proteome under analysis is
formed by 1,676 unique heptamers and 1,675 unique
octamers. Given 20 amino acids and the fact that amino acid
composition has little or no effect on peptide frequencies
(21), the theoretical probability p of a sequence of n amino
acids occurring at random in two proteomes is 20-n multiplied
by the n-mers in the two proteomes, according to the
equation: p = 20-n x the number of unique n-mers comprising
the viral proteome x the number of unique n-mers comprising
the human proteome.

Thus, the number of times a given viral 7- or 8-mer
might occur at random in the human proteome (calculated on
the basis of the unique viral and human 7- and 8-mers) is 13.6
and 0.7, respectively. Therefore, the measured extent of
overlap (50 heptapeptides and three octapeptides) reported in
Table 1 is roughly 3.7- and 4.3-fold higher, respectively,
when compared with the theoretically expected values.

4.2. Quantifying the immune cross-reactivity risk
between HIV-1 and human proteins

Following the numerical quantitation of the
HIV-1-vs-human peptide overlap, we tried to quantify the
potential immune cross-reactivity risk by asking whether
the peptides shared between HIV-1 and the human
proteins were endowed with immunoreactive potential.
Specifically, we searched the HIV Molecular Immunology
Database (http://www.hiv.lanl.gov/content/immunology)
for experimentally validated epitope data. We found that
35 of the 50 shared heptapeptides were located in (or are)
epitopes targeted by human humoral and/or cellular
immune response(s) following HIV-1 infection. The viral
epitopes are reported in Table 1 as heptapeptide sequences
shown in boldface (22-92).

4.3. Analyzing the pathologies potentially associated to
HIV-1 cross-reactivity

As a final step, we undertook a functional analysis of
the human proteins hosting the viral heptapeptide epitopes (last
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Table 1. HIV-1 versus human heptapeptide overlap: potential crossreactome
HIV-1 heptapeptide1:
Protein              Aa pos     Sequence                   Epitope Refs.2

Human protein(s) involved in the overlap3

Gag-Pol 6 VLSGGEL 22-25 O75588 : H_YH95C04.1 protein
Gag-Pol 4 RWEKIRL 25-30 FAM5A: DBC1. Deleted in bladder cancer protein 1
Gag-Pol 36 ASRKLER PECR: Peroxisomal trans-2-enoyl-CoA reductase
Gag-Pol 94 RDTKEAL 31-33 STRN: Striatin. Acts  in dendritic Ca2+ signaling
Gag-Pol 99 ALDKIEE 34, 35 Q9NXH5: Leucine-rich repeat flightless-interacting protein 2.
Gag-Pol 22 GNSSQVS 27, 36, 37 THIK: Peroxisomal 3-oxoacyl-CoA thiolase. Beta-ketothiolase
Gag-Pol 24 SSQVSQN 22, 27, 35-39 GUC2C: Heat-stable enterotoxin receptor. STA receptor
Gag-Pol 56 KVIEEKA 27, 40-46 RGS17: Regulator of G-protein signaling 17
Gag-Pol 216 PVHAGPI 26, 37, 40, 47, 48 PTPRE: Receptor-type tyrosine-protein phosphatase epsilon
Gag-Pol 285 RQGPKEP 35, 40, 48-51 Q5T174: Pre-B-cell leukemia transcription factor-interacting protein 1 (isoform 2). HPIP.
Gag-Pol 291 PFRDYVD 37, 40, 48, 50, 52, 53 CPNE5: Copine 5
Gag-Pol 292 FRDYVDR 37, 40, 48, 50, 52, 54 CPNE5: see previous entry
Gag-Pol 302 TLRAEQA 55 Q4UJ75: Ankyrin repeat domain-containing protein 20A4

Q5TYW2: Ankyrin repeat domain-containing protein 20A1
Q5VUR7: Ankyrin repeat domain-containing protein 20A3

Gag-Pol 303 LRAEQAS 37, 50, 52, 56-58 Q8NE76:  Coiled-coil domain-containing protein 87. CCDC87
Gag-Pol 334 KALGPAA 30, 56, 59 TMM24: C2C2L. Transmembrane protein 24
Gag-Pol 335 ALGPAAT 22, 30, 59 BGH3: Transforming growth factor-beta-induced protein ig-h3

TMM24: see previous entry
Gag-Pol 336 LGPAATL 22, 30, 59, 60 BGH3:  see previous entry
Gag-Pol 452 PEPTAPP 26, 31, 61-63 CD5: T cell surface glycoprotein CD5
Gag-Pol 472 SQKQEPR Q53GP5: MOCOS. Molybdenum cofactor sulfurase
Gag-Pol 485 LASLRSL 36, 64-66 GP125: Probable G-protein coupled receptor 125
Gag-Pol 487 SLRSLFG 36, 51, 67 KIF1B: Kinesin-like protein KIF1B
Tat 49 RKKRRQR 68-71 SCN3A: Sodium channel protein type 3 subunit alpha
Tat 78 RGDPTGP RIN3: Ras interaction/interference protein 3
Tat 85 KEPKKEV MAP1B: Microtubule-associated protein 1B
Tat 90 EVEREAE LRC59: Leu-rich repeat-containing protein 59
Tat 91 VEREAET NRG1: Pro-neuregulin-1, membrane-bound isoform . Pro-NRG1
Rev 26 NPPPKPE Q9H814: PHAX. Phosphorylated adapter RNA export protein.
Rev 38 RRNRRRR 71, 72 CO4A: Complement C4-A
Rev 71 VPLQLPP 36, 57, 66, 73, 74 RHG05: Rho GTPase-activating protein 5
Rev 74 QLPPLER 27, 36, 48, 75 AMRA1: Activating molecule in BECN1-regulated autophagy protein 1
Rev 81 LTLDCSE Q9C0D6:  FH2 domain-containing protein 1
Rev 03 LVESPAV 48, 76-78 PKD1: Polycystin-1. Polycystic kidney disease 1 protein
Env gp160 47 KEATTTL 27, 37, 58, 79-81 K0690:  RRP12-like protein. Ribosomal RNA processing 12
Env gp160 209 TSVITQA 37, 56, 80, 83, 84 ATF7: cAMP-dependent transcription factor ATF-7
Env gp160 245 NGTGPCT 85 LRTM3:  Leu-rich repeat transmembrane neuronal protein 3
Env gp160 270 LLLNGSL 62, 85-88 Q6PIK4: Dixin. DIX domain-containing protein 1
Env gp160 280 EVVIRSE 88 RBL1: Retinoblastoma-like protein 1. Tumor suppressor
Env gp160 303 VEINCTR 62, 82, 85, 89 TNR6: Tumor necrosis factor receptor superfamily, member 6
Env gp160 369 AFNQSSG 87 ZN595: Zinc finger protein 595
Env gp160 373 SSGGDPE 85, 87, 89 Q8NAP4: cDNA FLJ35033 fis
Env gp160 489 NWRSELY 35, 85 ACOT4: Acyl-coenzyme A thioesterase 4
Env gp160 523 AVGMLGA COX11: Cytochrome c oxidase assembly protein COX11
Env gp160 549 LTVQARQ 39, 90 Q8IVF2: AHNAK2. Interacts with dysferlin
Env gp160 669 QQELLQL DOT1L: Histone-lysine N-methyltransferase, H3 lys-79 specific

Q9BZE0: Zinc finger protein GLIS2
Env gp160 670 QELLQLD CAPS1: Ca2+-binding protein
Env gp160 736 PRGPDRP Q8N7J0: CDNA FLJ25488 fis, clone CBR00232

Q8TDX4: Nbla 3076 protein.  Specifically expressed in brain
Env gp160 743 EGTEEGG VGF: Neurosecretory protein VGF. Involved in synatogenesis
Env gp160 785 DLLLIVA B3A2:  Anion exchange protein 2. SLC4A2
Env gp160 794 VELLGRR 27, 91, 92 GTR5: Glucose transporter type 5, small intestine. GLUT-5
Env gp160 821 NSAVSLV RGR: RPE-retinal G protein-coupled receptor
1   HIV-1 heptapeptides experimentally validated as epitopes are given in boldface. 2  References refer to experimentally validated
heptapeptide epitopes 3 UniProt/Swiss entry, accession number, protein name and abbreviation from Universal Protein Resource. Proteins
that, when altered, may be associated to AIDS pathologies (see text for refs), are given in boldface. Visit http://www.uniprot.org
for further details on the human proteins involved in the viral overlap.

column in Table 1, entries in boldface). We found
that, in general, the potential cross-reactivity risk
related to the viral-versus-human epitopic peptide
commonalities reported in Table 1 defines typical
pathologies that occur in the course of HIV
infection, such as immunosuppression, neurological
disorders, myopathies, lipodystrophia, and
malignancies.

4.3.1. HIV-1 heptapeptide cross-reactivity and
immunosuppression

In addition to the well-known PEPTAPP
peptide shared between HIV-1 Gag-Pol protein and the
human T cell surface glycoprotein CD5 (26, 31, 61-63), a
receptor that regulates T cell proliferation, we found the
following cross-reactivities. 1) The Rev71-77VPLQLPP
epitope is present in human Rho GTPase-activating
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protein 5. Rho GTPases have an essential role in human T
cell development (93) and, clearly, a cross-immune
reaction may contribute to destroying T cells. 2) The same
observation holds for the occurrence of the Rev74-

80QLPPLER epitope in the human activating molecule in
BECN1-regulated autophagy protein 1, a protein involved
in the control of T cell homeostasis (94). 3) The Env
gp160303-310VEINCTR epitope is present in the human
tumor necrosis factor receptor, also called CD95 (82).
CD95 is expressed on CD4+, CD8+ and B cells. It is worth
underlining that CD95, isoform 6, can block apoptosis.

It is logical to argue that altogether, immune
cross-reactions with the above described T cell-related
proteins may contribute to T cell loss and the consequent
immunodeficiency characterizing HIV infection.
Moreover, the Gag-Pol99-105ALDKIEE sequence is
present in leucine-rich repeat flightless-interacting protein
2, which positively regulates cytokine production in
macrophages (95). Cross-reactivity with LRRFIP2
following virus infection might contribute to reducing
host defenses, thus adding to AIDS-associated
immunosuppression. Immunodeficiency might also be
enhanced by an immune hit on the C4a anaphylatoxin
complement, hosting the Rev38-44RRNRRRR epitope,
because alterations of CO4A are involved in
inflammatory processes and primary immunodeficiency
diseases (96).

4.3.2. HIV-1 heptapeptide cross-reactivity and neurological
disorders

The Gag-Pol94-100RDTKEAL epitopic sequence
occurs in the human striatin protein and might explain the
frequency of comorbid HIV infection and schizophrenia
(97). In fact, striatin is preferentially expressed in brain
neurons and may play a role in dendritic Ca2+ signaling
(98). Of relevance, a prefrontal cortex shotgun proteome
analysis revealed altered calcium homeostasis and
immune system imbalance in schizophrenia, with striatin
showing statistically significant differential expression
(99). Moreover, striatin is involved in the activation of
endothelial NO synthase (100). Hence, the alteration of
striatin may also prevent NO formation, thus underlying
the association between HIV infection and stiffness of the
common carotid artery (101).

Another possible link between immune activation
and schizophrenia might be represented by the Env gp160270-

276LLLNGSL epitope, which is common to the human dixin
protein. Dixin is expressed ubiquitously, with higher
expression in cardiac and skeletal muscles. Interestingly,
dixin is a critical regulator of DISC1, the alteration of which
has been associated with schizophrenia (102).

Neurological disorders might be related to
potential cross-reactivity due to the presence of two
consecutive overlapping viral epitopes, i.e., the Gag-
Pol291-298PFRDYVDR octapeptide in the human copine 5
protein. Copine 5 is expressed in both neural progenitor
cells and in differentiated neurons during neural
development, suggesting a role for CPNE5 in the
development of the central nervous system (103).
Alterations in CPNE5 might underlie the cognitive delay

and the course of HIV-1-associated progressive
encephalopathy in children (104, 105).

Env gp160245-261NGTGPCT is found in the
human leucine-rich repeat transmembrane neuronal
protein 3 (LRTM3). In addition to a role in the
development and maintenance of the vertebrate nervous
system, LRTM3 is expressed almost exclusively in the
nervous system, including regions affected during
Alzheimer’s disease, such as the dentate gyrus (106). An
immune attack targeting the NGTGPCT sequence may
determine inflammatory reactions at sites anatomically
related to Alzheimer’s disease, thus representing a
pathogenic mechanism underlying the emerging
intersection of HIV infection and Alzheimer’s disease
(107).

A potential neurological burden might be
aggravated by the sharing of the Gag-Pol487-493SLRSLFG
epitope with the human kinesin-like protein KIF1B,
isoform 2, expressed abundantly in the brain. It is worth
recalling that the down-regulation of KIF1B has been
associated specifically with sporadic amyotrophic lateral
sclerosis (108). Thus, an immune reaction against KIF1B
might underlie the suggested association between HIV
and sporadic amyotrophic lateral sclerosis (109-111).
Also, the Tat49-55RKKRRQR epitope might play a role in
amyotrophic lateral sclerosis because it is shared with the
sodium channel protein type 3 subunit alpha, a protein
that mediates the voltage-dependent sodium ion
permeability of excitable membranes (112). Also, motor
neuron disorders might be associated with the cross-
reactivity derived from the presence of the Gag-Pol156-

162KVIEEKA epitope in the regulator of G-protein
signaling 17, a protein that inhibits signal transduction by
increasing the GTPase activity of G protein alpha subunits
and is expressed predominantly in the cerebellum, cortex,
and medulla. Alterations in GTPase activity have been
related not only to amyotrophic lateral sclerosis (113), but
also to malignancies. Indeed, neurofibromin 1 protein and
tuberous sclerosis tumor suppressor complex regulate
GTPase activities (114-116).

4.3.3. HIV-1 heptapeptide cross-reactivity and muscle
diseases

Cross-reactivity between HIV and human
ankyrin repeat domain containing protein occurs through
the Gag-Pol302-308TLRAEQA epitope. Alterations of
ankyrin repeat domain-containing proteins are involved in
muscle diseases (117), and may be a cause of HIV-
associated myopathies (118). A role in myopathy genesis
following HIV-1 infection might also be played by
immune activation against the Env gp160549-

555LTVQARQ epitope, which is shared with the human
AHNAK2, a protein that interacts with dysferlin. In
dysferlinopathies, the reduction or absence of dysferlin is
correlated with a secondary muscle-specific loss of
AHNAK (119).

4.3.4. HIV-1 heptapeptide cross-reactivity and malignancies.
Regarding HIV-associated malignancies,

potential cross-reactions might relate to the following
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matches: 1) the Gag-Pol285-292RQGPKEP epitope is shared
with the human pre-B-cell leukemia transcription factor-
interacting protein 1, which can inhibit the transcriptional
activation of the oncogene E2A-Pbx (120); 2) the Gag-
Pol14-20RWEKIRL epitope is present in the human
"deleted in bladder cancer protein 1" (DBC1). This
sharing fits with recent reports that bladder cancer can be
added to the list of cancers that may be encountered in
patients living longer with chronic HIV infection (121); 3)
Env gp160209-215TSVITQA is present in the human
cAMP-dependent transcription factor ATF-7, which binds
the cAMP response element (consensus: 5'-
GTGACGT(AG)(AG)-3'), a sequence present in many
viral and cellular promoters. Moreover, it mediates the
transcriptional activation exerted by the adenovirus
oncoprotein E1 (122). ATF-7 is thought to support gene
silencing by inducing histone H3-K9 trimethylation and
may have a critical role in gene expression induced by
social isolation stress (123); 4) the Env gp160280-

286EVVIRSE epitope is shared with the human tumor
suppressor retinoblastoma-like protein 1, also known as
p107, a protein with a critical role in suppressing tumor
progression (124, 125).

4.3.5. HIV-1 cross-reactivity and other AIDS disorders:
lipodystrophies, diarrhea, bone loss, corneal alterations,
kidney disease, hypertension

The Gag-Pol122-128GNSSQVS epitope is present
in a human peroxisomal enzyme, 3-ketoacyl-CoA
thiolase. Dysregulation of peroxisome function appears to
be associated with the spectrum of biochemical changes
seen in HIV associated lipodystrophies (126). Alterations
in lipid metabolism might also derive from a cross-
reaction between Env gp160489-495NWRSELY and the
human acyl-coenzyme A thioesterase 4, a protein that
catalyzes the hydrolysis of acyl-CoAs into the free fatty
acid and coenzyme A, so regulating the intracellular
levels of acyl-CoAs, free fatty acids, and coenzyme A.

The Gag-Pol124-130SSQVSQN epitope is present
in the human intestinal guanylate cyclase C protein. This
match may be of importance in AIDS syndrome, in light
of two observations: 1) the binding of heat-stable
enterotoxins to the intestinal receptor guanylyl cyclase C
activates guanylyl cyclase and catalyzes the formation of
cGMP, initiating a signaling cascade that opens the cystic
fibrosis transmembrane conductance regulator chloride
channel at the apical cell surface, thus causing secretory
diarrhea, a leading cause of infectious diarrhea in humans
(127). Thus, a HIV infection-induced humoral immune
response targeting the SSQVSQN sequence may indicate
the activation of guanylyl cyclase C and subsequent
activation of the signaling cascade, leading to the
secretory diarrhea status affecting HIV infected
individuals (128, 129).

The Gag-Pol216-222PVHAGPI peptide epitope is
present in the human receptor-type tyrosine-protein
phosphatase epsilon (PTPRE), a protein that regulates
osteoclast formation (129). Cross-reactivity with PTPRE
might relate to HIV-associated bone loss and alterations
(130, 131).

Two consecutive overlapping viral epitopes, in
the Gag-Pol335-342ALGPAATL octapeptide, are present in
the human transforming growth factor-beta-induced
protein ig-h3 (BIGH3). This adhesion protein binds to
type I, II, and IV collagens and is expressed highly in the
corneal epithelium. Defects in BIGH3 cause corneal
dystrophies (132). A cross-reaction with BIGH3 may
underlie corneal alterations associated to HIV infection
(133-135).

Cross reactivity between Rev103-109LVESPAV
and the human polycystic kidney disease 1 protein might
contribute to one of the primary comorbid conditions
affecting HIV-infected individuals, chronic kidney
disease (136).

Env gp160794-800VELLGRR is shared with a
glucose transporter, GLUT-5, that functions primarily as a
fructose transporter. Alterations of GLUT-5 are related to
hypertension (137). Cross-reaction with GLUT-5 might
contribute to the hypertension associated to HIV infection
(138-141).

4.4. Analyzing sequence similarity of HIV-1
polyprotein to the human proteome at the
pentapeptide level

We further analyzed the sequence similarity
between the HIV polyprotein primary sequence and the
human proteome to evaluate precisely the potential
immunological cross-reactivity between viral and human
proteins. To this aim, we used pentapeptides as scanning
units. In fact, analyzing the sequence similarity between
biological sequences in the immunological context
equates to identifying the number of aligned epitopes with
perfect sequence matching. In this case, immunological
similarity analyses must consider the minimal length of an
epitopic sequence (142, 143). As long ago as 1939,
Landsteiner and van der Scheer demonstrated that a
grouping of five amino acids could be an antigenic
determinant (144). Since then, a number of scientific
reports have validated five or six amino acids as the
minimum size of the epitopic space characterizing
humoral and cellular immune responses (147-151;
reviewed in 152, 153), also exemplified by the HIV
epitopes reported by Fiebig et al. (148). Based on these
experimental reports, we defined immune epitopic peptide
units as pentapeptides (143).

Thus, with the aim of obtaining a better
definition of the potential cross-reactivity between HIV
and the human host, the HIV-1 polyprotein sequence
under analysis was dissected into 1,678 pentapeptides,
each offset by one residue. Each viral pentapeptide was
then used as a probe to scan the entire human proteome,
searching for perfect matches. The data we obtained are
presented in Figure 1, showing the number of matches
with the human proteome for each HIV-1 pentapeptide
and clearly documenting the existence of a massive viral-
versus-human pentapeptide overlap. The pentapeptide
identity profile of the HIV-1 polyprotein primary
sequence versus the human proteome (i.e., the number of
times each HIV-1 pentapeptide is present in the human
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Figure 1. HIV-1 similarity profile versus the human proteome at the pentapeptide level. Columns indicate the number of the
HIV-1 pentapeptide occurrences in the human proteome. Numbering 1 to 6 refers to the location of the 6 viral proteins along the
analyzed HIV-1 polyprotein primary sequence. Viral proteins as detailed under Methods section. For further methodology
details see also Refs. 152-154.

proteome) exhibits a range of behavior, with some HIV-1
polyprotein areas formed by pentapeptides matching a
low number of human proteins, while others are formed
by pentapeptides recurring in many different human
proteins. As an example, the HIV-1 Env gp160675-

679LDKWA pentapeptide matches only a single human
protein (kynureninase, UniProtKB/Swiss-Prot accession:
D3DP79), whereas the HIV-1 Env gp160 671-675ELLQL
pentapeptide occurs in 68 different human proteins. In
parallel, multiple viral occurrences can also occur in the
human proteins (e.g., human titin shares 35 pentapeptides
with HIV-1).

A snapshot of the HIV pentapeptide overlapping
with the human proteome is reported in Table 2. Numerically,
the viral 5-mers occurring in the human proteome (including
multiple occurrences) amount to 14,227 and include proteins
associated with the most crucial functions of the cell, from
proliferation to apoptosis, from immune regulation to enzyme
activity. Theoretically, the number of times a given pentamer
from HIV-1 (isolate CDC-451, polyprotein length 1,682 aa)
might occur at random in the human proteome (as calculated
on the basis of the unique viral and human 5-mers) is 1,252.
Therefore, the extent of overlap (14,227 matches) reported in
Table 2 is roughly 11-fold higher than the expected value.
Similar data were obtained by analyzing HIV-1, Taxonomy
ID 11676 (data not shown).

The human proteins hosting HIV-1 pentapeptide(s)
are listed in Table 3 (see Supplemental Data).

5. DISCUSSION

The current study demonstrated that: 1) HIV-1,
isolate CDC-451, shares numerous perfect heptapeptide

matches with human proteins; 2) most of the shared
heptapeptides are part of epitopes immunologically
recognized by a human immune response(s) following
HIV-infection (i.e., they have immune potential), and 3)
the viral epitopes are present in human proteins that, when
altered, are related to diseases characteristic of HIV-
associated AIDS.

These data suggest that the constellation of
diseases associated with HIV-infection may be related to
anti-HIV immune responses. This hypothesis is supported
by a pioneering study by Martinez et al. (154), who
observed that AIDS-associated immunosuppression might
be due to human anti-HIV immune responses, rather than
to the pathogenicity of the virus. It was suggested that the
basis of the immunosuppression could be molecular
mimicries involving viral gp-110, CD4 molecules,
antibodies, and CD4-acceptor sites. As a conclusion, the
study remarked on the advantage of being a low
responder subject (i.e., a low producer of potentially
harmful autoantibodies), and warned that anti-HIV
vaccination might protect against infection but, at the
same time, cause immunosuppression and disease. Using
the current databases, our study scientifically validates the
reasoning of Martinez et al. Successively, Victorino's
group (155) reached a similar conclusion by comparing
several immunological and viral variables during HIV-1
and HIV-2 infection, and found that immune activation,
and not viremia, is closely linked to the extent of CD4
depletion in both infections.

Additionally, the current study provides a
detailed picture of the phenetic commonalities between a
HIV-1 strain and the human host. As discussed in the
Introduction, numerous studies on the HIV-versus-human
sequence similarity and potential cross-reactivity have
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Table 2. Numerical description of the pentapeptide overlap between HIV-1 polyprotein and the human proteome1

Viral 5-mers   1,678
Viral 5-mers occurring in the human proteome (including multiple occurrences) 14,227
Human proteins involved in the viral overlap1 10,312
Expected number of viral 5-mer occurrences in the human proteome3   1,252
1 Human proteome formed by 2,388,563 unique 5-mers (20). 2 The list of human proteins hosting viral 5-mer(s) is given in
Supplemental Table 3. 3 Calculated as described in text

been reported (1-18, 20, 61, 62). Here, using the immune
pentapeptide unit, we report for the first time a
complete immune cross-reactivity map between HIV-1
and the human proteome. The present study
demonstrates that the HIV-1 polyprotein analyzed
presents thousands of pentapeptides (14,227)
disseminated widely and repeatedly throughout the
human proteome. Moreover, the human proteins
involved in the viral overlap amount to 10,312; that is,
about 32% of the human proteome contains viral
pentamers. The implications of these data are
profound, because pentapeptides are the minimal
biological units exerting roles in immunobiology (151,
152). De facto, given the extent of the pentapeptide
identity pattern between HIV-1 and humans, clearly,
an anti-HIV immune response may explain the wide
spectrum of autoimmune disease, as well as the
complex array of autoantibodies towards the most
disparate human targets in HIV/AIDS (156), definitely
supporting the link described in Table 1 between the
(auto)immune activation caused by HIV infection and
AIDS.

However, the pentapeptide identity pattern
between HIV-1 and humans poses the following
unavoidable crucial question: what triggers the anti-
HIV immune response in the high-responders HIV-
infected subjects? As a matter of fact, when high
degrees of immunological similarity (i.e., identity at
the level of immunobiological units) are present
between microbial organisms and humans, the
breaking of the immunotolerance mechanisms that
avoid harmful self reactivity seems unlikely, because
the sharing of epitopes with the host’s molecules may
rather represent an elective microbial mechanism to
escape immune surveillance (157, 158). In fact, we and
others (19, 20, 159, 160) have demonstrated that a
number of viral proteomes, independent of their
structural or pathogenic characteristics, present a high
number of pentapeptide overlaps with the human
proteome (19, 20) and, likewise, bacterial peptides are
present throughout the human proteome (159, 160). As
a logical conclusion, Kanduc (143, 161, 162) argued
that the peptide identity platform unifying microbes
and humans is at the root of the immune escape
phenomenon (i.e., the root of what the immunologists
call the enigma of successful viral/bacterial escape
from immune surveillance) (163-165). According to
the relationship of high similarity-immune escape
advocated by Kanduc (143, 162), vaccines containing the
infectious agent are generally ineffective because they
have scarce or no immunogenicity. To induce/increase an
immune response, as a rule, vaccinology uses adjuvants

(166), a highly heterogeneous group of chemical
compounds which, through mechanisms not yet clear,
bypass the host immunotolerance mechanisms and elicit
hyperactivation of the immune system. Currently,
aluminum salts and aluminum hydroxide are the most
powerful (and used) adjuvants.

Consequently, to determine what triggers the anti-
HIV immune response in the high-responders to the HIV-
infection, we cannot help to recall that aluminum hydroxide
has many applications in pharmaceuticals. In particular, it is
an antacid, as well as an approved protectant used to heal and
protect minor wounds, skin abrasions, skin tears and partial
thickness pressure ulcers, and a component par excellence of
ointments for treatment of hemorrhoids and nonhemorrhoidal
anorectal conditions (such as fissure, abscess, skin tags,
rectal prolapse, or pruritus ani) (167). In this regard,
epidemiological studies aimed at analyzing a possible
link between the use of aluminum-based compounds
and immune activation following HIV infection are
warranted. Also, the adjuvant action exerted by
bacterial lipopolysaccharides (LPSs) has to be
considered. LPSs act as adjuvants by inhibiting the
induction of tolerance by nonimmunogenic tolerogenic
antigens (168). Likewise, it is well known that bacteria
are also frequent concomitant pathogens to HIV
infection (169) and have been implicated in promoting
HIV-1 pathogenesis through bacterial LPSs (170, 171).
To conclude, it seems that the immune hyperactivation
against the high-similarity tolerogenic HIV polyprotein
and the successive progression to AIDS in specific
cohorts of HIV-infected individuals might be
specifically related to the presence of adjuvants of
bacterial and/or chemical nature. Of note, our
considerations would explain the highly context-
dependent progression of HIV/AIDS and its secondary
complications among patients (172-176).

Finally, this study joins other reports (18, 61)
in suggesting that HIV antigen-based vaccines might
have harmful outcomes in the prevention or treatment
of HIV infection, and further supports Kanduc's
suggestion (177, 178) that only epitopic peptides with
low similarity to the human proteome may offer a basis
for rational anti-HIV vaccines avoiding collateral
adverse events (179, 180).
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