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1. ABSTRACT 
 

Chronic heart failure is one of the major health 
care issues in terms of increasing number of patients, rate 
of hospitalizations and costs. Heart transplantation is the 
best established therapy for patients with severe heart 
failure. However, the number of donors limits the activity 
to 5000 heart transplants performed annually worldwide. 
This limitation has generated alternative treatments. The 
increase of the interest in the reversibility of the heart 
failure and the application of new biological alternatives 
has generated therapeutic strategies designed to integrate 
biology and medical technologies in order to act to the 
biomechanical, the molecular and the neurohormonal 
mechanisms of heart failure. These treatments include 
cellular cardiomyoplasty, tissue engineering, surgical left 
ventricular restoration as well as passive and active 
mechanical ventricular assistance as destination therapy, 
bridge to recovery or bridge to transplantation. The 
integrated development of these approaches could offer 
hopeful treatments, although there is still much to be 
learned regarding the optimal use of these strategies.  
 

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Chronic heart failure is one of the major health 
care issues in terms of increasing the number of patients, 
rate of hospitalization and costs. The prevalence in the 
USA is 5 million patients, almost 400,000 new cases/year 
and 300,000 deceased/year (1, 2). The etiology is ischemic 
cardiomyopathy in two-third of cases. The dilation of the 
left ventricle (LV) occurs in 20% of the patients with a 
transmural acute myocardial infarction (AMI), despite the 
successful early revascularization and the prognosis is more 
closely related to the increase in LV volume than to 
reduction of ejection fraction (LVEF) (3). The remodeling 
is a complex phenomenon with the participation of 
neurohormonal, molecular, genetic and biomechanical 
processes.  

 
A 5% of the patients are very symptomatic, need 

frequent hospitalizations and survival is lower than the 30% 
after 12 months (4). In these patients with chronic heart 
failure class D, the medical therapy acting against 
neurohormonal activation is ineffective. The increase in 
ventricular volume and the normal elliptical shape that 
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becomes spherical are responsible for the progression of 
heart failure (5). These geometric changes lead to structural 
changes of the myocytes and the extracellular matrix, 
which worsen cardiac function and increase neurohormonal 
activation. The treatment must act on this biomechanical 
mechanism of heart failure.  
 
Heart transplantation is the best established therapy for 
patients with severe heart failure. The transplant half-life 
for the entire cohort of adult and pediatric heart transplant 
recipients is currently 10 years, according to the Registry of 
the International Society for Heart and Lung 
Transplantation (6). However, the number of donors limits 
the activity to 5000 heart transplants performed annually 
worldwide, with a decreasing transplant procedure volumes 
in many countries (6). This limitation has generated 
alternative treatments in these patients. The recent 
therapeutic strategies are designed to integrate biology and 
mechanical technologies in order to act to the 
biomechanical, molecular and neurohormonal mechanims 
of heart failure. These treatments include surgical 
ventricular restoration (SVR), mechanical ventricular 
assistance as destination therapy or bridging to recovery, 
passive ventricular constraint, immunoadsorption and tissue 
engineering. 
 
3. LEFT VENTRICULAR REMODELING PROCESS 
 

The chronic effect of the compensatory changes 
to heart failure is known as¨remodeling¨. This process 
includes ventricular dilation and neurohormonal activation. 
The left ventricle dilation increase wall stress according to 
Laplace´s Law: wall tension = 3D x P/2H (D= diameter, P= 
intracardiac pressure, H= ventricular wall thickness). The 
increase of the wall stress secondary to the ventricular 
dilation results in increased oxygen consumption, 
decreased subendocardial blood flow and reduced systolic 
shortening (7). The prognosis in the patients keeps a 
straight relation with dilation and the patients with left 
ventricular end systolic volume index > 40 mL/ m2 are 
more symptomatic and has a worse prognosis (8). 

 
The dilation of the ventricle is associated to a 

change from elliptical to spherical shape and normal 
systolic torsion is reduced. The normal myofibril 
shortening of 15% generates an EF of 30% in spherical 
ventricles and 60% in elliptical ventricles (9). In ischemic 
cardiomyopathy, the curvature increases after infarction 
with loss of the EF in the non-infarcted myocardium and 
the adverse effects are similar for akinesia and dyskinesia 
(10). The increase of the wall stress induces changes in 
gene expression and stimulation of neurohormonal activity 
with promotion of myocyte apoptosis and adverse effects 
on the extracellular matrix (11): increase of p21ras, c-fos, 
p38α/βMAP kinase and decrease of Ca2+ 
ATPase/phospholamban (12)  

 
The treatment for these patients must consider 

the biomechanical model of heart failure and the 
therapeutic approach of the neurohormonal activation, 
myocyte apoptosis and changes in the extracellular matrix. 
In order to reach these objectives, the therapeutic strategy 

must integrate the surgical reduction of the volume and 
restoration of the geometry of the ventricle, by surgical 
ventricular restoration (SVR) or passive ventricular 
constraint, together with immunoadsorption or cardiac 
tissue engineering.  
 
4. THERAPEUTIC STRATEGIES 
 
4.1. Immunoadsorption (IA) 

Disturbances in humoral and cellular immunity 
have been described in cases of myocarditis and idiopathic 
dilated cardiomyopathy (DCM) (13, 14). In DCM patients, 
immunohistological methods have been successfully 
introduced for diagnosis of myocardial inflammation. 
Among the phenomena encountered in DCM, infiltration 
with lymphocytes and mononuclear cells, increased 
expression of cell-adhesion molecules, as well as human 
leukocyte antigen (HLA) upregulation are the most 
frequent (15, 16). These findings support the hypothesis 
that the immune process remains active. 

 
Various autoantibodies have been detected in 

DCM patients, including antibodies against mitochondrial 
proteins (17), cardiac myosin (18), cardiac β1-adrenergic 
receptors (19), muscarinergic receptors (20), and the 
sarcolemmal Na–K–ATPase (21). Despite the functional 
role of these cardiac autoantibodies in DCM still remains 
unclear, experimental data indicate that they may play a 
causal response in development of DCM. Active 
immunization of rabbits with peptides derived either from 
cardiovascular G-protein coupled receptors or to the human 
M2 acetylcholine receptor may induce morphological 
changes of the myocardial tissue resembling DCM (22, 23). 
Publications in recent time have demonstrated that rats 
immunized against the second extracellular loop of cardiac 
β1-receptor develop progressive left ventricular dilatation 
and dysfunction (24). 

 
It has been thereby hypothesized that cardiac 

autoantiboides play an active role in pathogenesis of DCM, 
by virtue of triggering the disease process, or by 
aggravating myocardial contractile malfunction after the 
onset of the disease (25). Under this hypothesis, one would 
expect that their elimination could improve the 
haemodynamics of DCM patients. Immunoadsorption (IA) 
makes it possible to extract cardiac antibodies. 
Immunoadsorption is a treatment option that removes 
circulating immunoglobulins from the patient’s blood. 
Highly specific polyclonal antibodies immobilized within 
sepharose adsorbers can bind and retain a predefined 
amount of immunoglobulins and immune complexes. 

 
Dörfflerb (26) conducted the first trial to 

characterize the short-term haemodynamic effects of IA in 
patients with DCM and severe heart failure. Extraction by 
anti-IgG columns of circulating IgGs from the plasma of 
these patients induced significant increase in cardiac index 
(CI), accompanied by simultaneous fall in systemic 
vascular resistance. These data suggested that removal of 
antibodies may improve the haemodynamics in DCM. A 
subsequent open randomized study was aimed to evaluate 
the haemodynamic influence of IA as a therapeutic option 
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of patients in DCM (NYHA III-IV, LVEF<30%, CI<2.5. 
L/min/m2) (27). In the IA group, IVIg was infused to 
reduce the infection risk following IgG depletion, and to 
block the so called ‘immunological rebound’ of antibody 
production in B cells. Both CI and SVI rose significantly 
(30%) in the treatment group, and accompanied by parallel 
reduction in SVR. IA followed by IgG substitution 
enhances cardiovascular function in DCM patients, since 
LVEF and CI increased more than 30% and systemic 
vascular resistance decrease significantly in the treatment 
group. In contrast, haemodynamics and LVEF did not 
change in the control group. 
 

Müller (28) performed IA for 5 consecutive days, 
without IgG substitution. LVEF increased from 22 to 40% 
after IA therapy over one year, differing from the control 
group where no enhancement was achieved. Even though 
no relapse of cardiac autoantibodies took place, it was 
seemingly unclear to explain the prolonged effect of IA –
only a 5-day course without repetition- over one-year 
follow-up.  It could be elucidated that the IA sessions were 
performed with specific anti-Ig adsorbers, obtaining a 
better long-term efficacy. 

 
It is possible that IA not only enhances 

haemodynamics, but likewise makes an influence on 
myocardial inflammation in DCM patients. In Staudt´s 
study (29), IA was performed in four courses, at 1-month 
intervals. Right ventricular biopsies were obtained from all 
patients at baseline and after 3 months. In those patients 
with no immunomodulatory treatment, the number of 
lymphocytes (CD3, CD4 and CD8) as well as the number 
of leukocyte common antigen (LCA)-positive cells in the 
myocardium remained stable during all the study period. 
Differently, IA therapy and subsequent IgG injection 
reduced the amount of lymphocytes and LCA-positive 
cells. Furthermore, this behavior was accompanied by 
significant decline of the HLA class-II antigen expression, 
whereas this pattern was unchangeable in the control group. 
In addition, it has been recently published that IA may 
influence a variety of changes in the myocardial gene 
expression of a cytoskeletal filament desmin that is known 
to be upregulated in patients with DCM and heart failure 
(30). 

 
Further confirmation of the therapeutic benefit of 

IA in DCM has been experimentally revealed because of 
the improved cardiac structure and function achieved after 
the specific removal of anti-β1-adrenoreceptor 
autoantibodies in rabbits with autoimmune cardiomyopathy 
induced by immunization with a β1-adrenoceptor peptide 
(31). However, the contribution of a particular antibody to 
myocardial damage in DCM remains to be elucidated. 
Experimental models have shown that both antibodies 
against β1-adrenergig receptor and against troponin I (32, 
33) actually induce myocardial dysfunction and left 
ventricular dilatation resembling DCM. A recent study has 
demonstrated that autoantibodies removed by IA from 
DCM patients induce positive chronotropic effects and 
exhibit complement-dependent cytotoxicity in neonatal rat 
cardiomyocytes (34). 

Detection of cardiodepressant antibodies may be 
of essential therapeutic relevance, since the contribution of 
humoral activity, with production of cardiodepressant 
antibodies, may differ among DCM patients. Since IA 
successfully removes cardiac autoantibodies from plasma, 
this technique enables assessment of the role played by the 
humoral immune system in cardiac dysfunction among 
DCM patients. It has been lately confirmed that the 
presence of cardiodepressant antibodies serves as predictor 
of acute and long-lasting hemodynamic benefits during IA 
(35). 

 
Immunological differences prevail throughout 

IgG subclasses. For instance, complement activation is 
more active with IgG-3 (36). Furthermore, IgG-3 
antibodies are more efficient than IgG-1 as mediators of 
antibody dependent cellular cytotoxicity. It was recently 
shown that DCM patients have elevated levels of IgG-3 
antibodies against a- and b-myosin heavy chains. The level 
of these antibodies correlates with the degree of left 
ventricular dysfunction (37). Some studies have 
investigated the role of antibodies belonging to various IgG 
subclasses with respect to cardiac dysfunction in DCM, and 
concluded that the negative inotropic effect of antibodies 
obtained from DCM patients is primarily attributable to 
antibodies belonging to IgG-3 subclass (38). The acute and 
prolonged efficacy of IA therapy for DCM patients will be 
depending on the capacity of the effective removal IgG 
subclass 3 antibodies (38, 39). Therefore, removal of IgG-3 
may represent the essential mechanism of IA in DCM. 
However, not all the IA techniques have shown the same 
efficacy at time to deplete this subclass of IgG. 
Immunoadsorption columns constituted by polyclonal 
antibodies conjugated to sepharose retain all classes of 
immunoglobulins, including IgG-3. 

 
The results from the studies cited above suggest 

that activation of the humoral immune system, 
simultaneous to the production of cardiac autoantibodies, 
could play a functional role of the cardiac dysfunction 
occurred in DCM patients. Influencing the humoral 
immune system through IA could then offer a hopeful 
treatment approach for intervention into the autoimmune 
process in DCM patients with symptomatic heart failure 
and severe reduction of LVEF. 
 
4.2. Cardiac tissue engineering and cellular 
cardiomyoplasty 

Stem cell therapy, as a strategy to regenerate 
injured tissues, has emerged as one of the most promising 
areas for the treatment of illnesses with reduced cure 
expectations (with low possibilities of treatment). The heart 
failure, mainly of ischemic etiology, is one of the diseases 
that more can benefit from this therapeutic strategy, called 
cellular cardiomyoplasty (CCMP). The aim is to regenerate 
the muscle, reduce apoptosis, increase the expression of the 
collagen and get an effective production of new vessels. 
This very attractive approach is undergoing in vitro and in 
vivo studies with a variety of myogenic and angiogenic 
cells (40, 41): skeletal myoblasts; mononuclear bone 
marrow cells; circulating blood-derived progenitors; 
mesenchymal stem cells from bone marrow, endometrial or 
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adipose-derived stromal cells, mesothelial cells and 
induced pluripotent stem cells (iPSC).   

 
The current indications concern patients with 

ischemic cardiomyopathy and previous AMI, DCM, 
Chagas heart disease (American Trypanosomiasis), 
ischemic mitral regurgitation and diabetic cardiomyopathy. 
The approaches for cell implantation are surgical 
performing the main implantation in the infarct and peri-
infarct areas (42), intracoronary and endoventricular 
catheter-based cell delivery. The percentage of cells grafted 
into the myocardium is less than 10% and the high 
mortality is probably linked to the injection itself and the 
poor vascular supply of the scars. In patients with ischemic 
cardiomyopathy, the best results seem to be obtained in 
patients presenting a heterogeneous infarct area, a mixture 
of viable myocardial tissue and multiple small scars (42). 
Cell therapy is being recognized as a viable strategy with a 
dose-dependent improvement in heart function (43). 
Determining optimal delivery methods raises issues not 
only for dosing, but also of timing. The development of 
new catheter-based cell implantation procedures and 
repeated cell injections seem to improve the efficiency of 
cell therapy (44). 

 
The proposed mechanisms of action are reduction 

of the size and fibrosis of infarct scars, improvement of 
myocardial viability, limitation of ventricular remodeling, 
improvement of ventricular compliance and paracrine effects 
(41). However, the results of clinical trials have reported only 
limited improvement in systolic ventricular function and 
remodeling (40, 41, 45,. 46) This poor effect in systolic 
function without participation of the implanted cells in the 
force generation, could be due to the lack of electrophysiologic 
connections between the implanted cells and the myocardium 
and the gap junction protein (connexin 43) (47, 48). Combined 
cellular transplantation with atrial synchronized biventricular 
pacing induces synchronous contraction of the transplanted 
cells and the host myocardium, improving myocardial function 
(48, 49). When cellular cardiomyoplasty was performed using 
skeletal myoblasts, the differentiation in myotubes and 
enhanced expression of slow myosin heavy chain was 
observed in the electrostimulated group (48). 

 
The development of strategies for improving cell 

survival and differentiation should be encouraged, such as 
preconditioning procedures with cell electrostimulation or 
by using tissue engineering. The cell niche provides crucial 
support needed for cell maintenance. Cell transplantation 
associated with tissue-engineering approaches would be 
beneficial to create a myocardial repair procedure.  The 
scaffolds used for tissue engineering have the following 
objectives (41): deliver and retain cells and biochemical 
factors, enable diffusion of vital cell nutrients and 
expressed products, exert mechanical and biological 
influences to modify the behavior of the cell phase.  

 
The extracellular heart matrix is composed 

mainly of collagen with smaller amounts of elastin, laminin 
and fibronectin. In normal hearts, collagen type I represents 
80% and collagen type III 10% of the extracellular 
myocardial matrix. In heart failure or after a myocardial 

infarction, the extracellular matrix is modified with 
collagen type I, decreasing from 80% to 40% (50, 51). It 
could be important to associate a procedure aiming at 
regenerating myocardial cells and the extracellular matrix 
(50). Preclinical investigations showed that this approach 
might contribute to improve the efficiency of cellular 
therapy. Stem cells promote secretion of angiogenic factors 
and the paracrine signaling, rather than cell incorporation, 
that promotes functional recovery (52). The association of 
stem cells and matrices seeded cells may release growth 
factor that may preserve extracellular matrix and promote 
the recruitment of cardiac stem cells that would provide a 
new endogenous pool of contractile cells (53). The research 
in specific biomaterials is of great interest to develop the 
optimal microenvironment to induce the release of 
angiogenic factors of control cellular adhesion or 
mechanical function (41). It seems logical the association 
of a cellularized matrix as a supplement to intramyocardial 
cell therapy.  

 
The association of a collagen matrix and stem 

cells is an interesting approach to adjust the proportion of 
collagen type I and III in the scar zone and in the adjacent 
and remote zones (49).  The first clinical study, MAGNUM 
trial, has demonstrated that this tissue-engineered approach 
is feasible, safe and improves the efficiency of the cellular 
transplantation. The association of a collagen type I matrix 
to mononuclear bone marrow cells in patients with 
ischemic myocardial scars, increases the thickness of the 
infarct scar with viable tissues and helps to normalize wall 
stress and myocardial viability in injured regions, limiting 
ventricular remodeling and improving diastolic function. 
The results of the MAGNUM trial show a higher increase 
of LVEF, ventricular filling deceleration time and a bigger 
reduction of left ventricular end diastolic volume and 
diameter (LVEDV and LVEDD) in collagen matrix + bone 
marrow cells group than en bone marrow cells group (53, 
55). The improvement of the remodeling with a reduction 
of the LVEDV > 20% has not been published in any 
clinical study of cell therapy alone (55). 

 
Future approaches are the application of 

mesenchymal stem cells as “universal donor cells” or 
human cells reprogrammed to iPSC, the preconditioning of 
the cells to improve the efficiency and the developments of 
nanotechnologies and bioengineered platforms with 
bioactive membranes made of two types of nanofiber 
matrix to promote local angiogenesis in the necrotic tissue 
as well as its regeneration (41). 
 
4.3. Biomechanical approaches 
4.3.1. Surgical ventricular reconstruction 

According to the biomechanical model of 
chronic heart failure, the geometric changes in volume and 
shape of the ventricle are responsible of the changes in 
myocytes and extracellular matrix (5, 56). This concept 
introduces the need for surgical therapies that reduce the 
LV volume and improve geometry (57). 
 

Surgical ventricular reconstruction includes 
surgical procedures that reduces LV volume and restore the 
elliptical shape. The surgical approaches can be 
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summarized in left ventricular reconstruction through 
surgical treatment of mitral insufficiency, partial left 
ventriculectomy and surgical ventricular restoration 
associated to coronary artery bypass graft (CABG) in 
ischemic cardiomyopathy.  
 
4.3.2. Mitral valve repair or replacement 

Mitral insufficiency in dilated cardiomyopathy is 
secondary to the interaction of several factors as the 
segmental alterations in contractility, dilation of the mitral 
annulus, papillary muscle dysfunction and geometric 
change of the ventricle from an elliptical to a spherical 
shape (57, 58). The objectives of surgical treatment are the 
correction of the mitral regurgitation and the restoration of 
the LV geometry.  
 

The restrictive mitral annuloplasty repairs the 
regurgitation and contributes to reverse the remodeling of 
the LV with LVESD < 50 mm and LVEDD < 65 mm (58, 
59).  The implantation of a mitral prosthesis that is smaller 
than the annulus, and preservation and traction of the 
papillary muscles to reduce sphericity of the ventricle is a 
simple and reproducible technique to correct mitral 
regurgitation and rebuild the ventricular shape in ischemic 
and dilated cardiomyopathy (57). 
 
4.3.3. Partial left ventriculectomy (Batista operation) 

The Batista Operation consists of the resection of 
a slice of the lateral wall of the left ventricle between the 
two papillary muscles, from the apex to the mitral annulus 
and closure with a single suture with or without mitral 
annuloplasty (60, 61). The objective is to reduce the 
ventricular volume, intraventricular pressure and wall 
tension. The high mortality and the results with no 
documented benefits at long term make that the procedure 
is not included nowas a valid and safe strategy. The 
resection of the lateral ventricular wall is made in an 
unsuitable region. It is not taken in account neither the 
viability of those segments nor the lesions of branches of 
the circumflex artery. Therefore this procedure can induce 
acute myocardial infarctions and malignant arrhythmias. 
The conceptual mistake in the Batista operation is not the 
Laplace’s Law application, but the vulneration of the basic 
principles of anatomy and the physiology of the cardiac 
function.    
 
4.3.4. Surgical ventricular restoration (SVR) 

Vincent Dor developed the endoventricular 
plastia in order to treat both dyskinesias and big akinetic 
areas (62).  This technique has been developed by surgeons 
from twelve hospitals wich formed the RESTORE Group7. 
The technique has been modified by several groups and the 
bigger refinement has been the introduction by Menicanti et 
al. of the mannequin TRISVR to optimize size and shape of 
the new ventricle (63).  
 

Torrent-Guasp´s model of the helical heart 
consider that cardiac muscular structures produces two 
loops that start at the pulmonary artery and end in aorta (64, 
65), forming a descending and ascending segment of the 
apical loop with an apical vortex. Basing on this helical 
heart model, on the Laplace´s law and on the elliptical 

shape of the ventricle, Buffolo (66) and Trainini (67), have 
developed a surgical technique for ischemic and dilated 
cardiomyopathy, named pacopexy (65). The advantages of 
this technique are 1) the preservation of the muscle by 
acting in an area without vessels limited by the descending 
and ascending segments that are far away from each other 
in heart failure, 2) the recovery of the elliptical shape, and, 
3) the absence of implanted synthetic materials.  

 
The results of the RESTORE study (7, 10, 63, 

66) associating SVR to CABG in patients with antecedents 
of AMI, NYHA class III-IV, LVESV > 60 mL/m2, regional 
asynergic LV circumference > 35%  and EF < 35%, show a 
hospitalization mortality < 6% and a five-year survival 
between 68% and 89%, just needing re-hospitalization the 
80% of the patients (7, 63). These results seems to be better 
than those published with isolated CABG which show five-
year survivals lower than 60% with persistent signals of 
cardiac insufficiency in the majority of the patients (68). 

 
Recently has been published the Hypotheses 2 of 

the STICH trial that is: if SVR when added to CABG 
would decrease the rate of death or hospitalization as 
compared with CABG alone (69). The results show that the 
association of SVR does improve neither the mortality nor 
the functional capacity. These results question the previous 
experience published of studies with thousands of patients 
and a very rigorous methodology, although they haven’t 
been randomized studies (62, 63, 66, 67, 70, 71, 72). The 
reasons for these contradictions are due to some features of 
the STICH (69): a) Features of the patients with a 52% in 
class I-II of the NYHA, 49% with angina II-IV of the CCS, 
13% without clinical history of previous acute myocardial 
infarction and 26% of patients didn’t have significant lesions 
of the left descending coronary artery; b) The number of 
randomized patients was less than 20% of eligible patients. 
The 80% of eligible patients was treated with SVR because the 
clinical evidence of the superiority of this procedure; c) The 
surgical technique is crucial in determining the final result. In 
the STICH study took part 127 hospitals from 26 countries. 
The variability of the technique experience is shown by the 
scarce reduction of the LVEDV; if the 318 patients would be 
selected from Canada and West Europe, the benefits of SVR 
would be better (69). 
 
4.3.5. Passive ventricular constraint 

Passive containment is designed to provide 
diastolic ventricular support that helps to stop the 
progressive HF remodeling. As it reduced wall stress, it 
promotes down regulation of increased local 
neurohormonal activity and reduction of cardiomyocyte 
maladaptative gene expression (12, 73). The Acorn 
CorCapTM is a mesh like jacket that is easily slipped around 
the heart and adjusted to provide ventricular support. It 
provides circumferential support to the heart, relieving wall 
stress while preventing further dilation without 
compromising beat to beat dynamics. The clinical studies 
in patients with idiopathic or ischemic DCM, associated or 
not to other procedures like CABG or restrictive mitral 
anuuloplasty (74), have demonstrated reduction in LVEDV 
and LVESV, improvement in EF, recover of an elliptical 
shape (74-76), and reversal of remodeling on a cellular 
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level (single myocyte studies) and on a molecular level 
(decrease in stretch protein levels, improvement in Ca2+ 
cycling and better NT-pro. BNP) (77). In acute infarct 
models, the Acorn CorCapTM device has shown limitation 
of infarct expansion, improvement of myocardial energetics 
and attenuation of the expression of cellular determinants 
of the remodeling process (73). However, long-term 
evolution of diastolic filling and ventricular contractility 
are not clearly improved with this approach. This fact 
represents a drawback for large clinical application. 
 
4.4. Left ventricular assist devices (LVAD) 

The most common indication for LVAD is as 
bridge to transplantation that represents 80% of all 
implants, whereas as destination therapy or as bridge to 
recovery are less frequents indications (78). The indications 
of LVAD according the INTERMACS levels to classify the 
stage D heart failure are (79) cardiogenic shock and 
patients declining the response to inotropes (INTERMACS 
levels 1 and 2). The goal is to rescue potential heart 
transplantation whereas destination therapy should be 
reserved for stable patients as an elective surgery. Heart 
transplantation and LVAD have shown to provide the 
greatest survival benefit at this stage of INTERMACS level 
3.  The criteria for LVAD implantation is considered if 
patient´s condition worsens, in patients with anticipated 
long waiting time to heart transplantation and as destination 
therapy in non transplant candidates. Although the quality 
of life of patients in INTERMACS levels 4, 5 and 6 is 
severely compromised, the right timing of LVAD remains 
an area of controversy.  

 
Several risk factors have been identified to 

correlate with increased operative risk of LVAD and scores 
have been developed to predict the outcome of patients 
with LVAD as bridge to transplantation or destination 
therapy (80, 81). The patients with a Destination Therapy 
Risk Score < 16 achieved 1-year survival ranging between 
71% and 80% (82, 83), superior to even those of medical 
therapy in the REMATCH study with 1-year survival of 
28% (84). Outcomes for LVAD destination therapy in 
patients with chronic end-stage heart failure have improved 
in the post-REMATCH era. In groups of selected patients, 
2-year survival may exceed that reported for heart 
transplantation in an older population (85).  The emerging 
HeartMate II technology, using an axial-flow pump, 
illustrates the changes in technologies and the timing of 
destination therapy that shift to earlier stages of heart 
failure (86).   

 
There is increasing interest in LVAD as bridge to 

myocardial recovery. It may be feasible to use LVAD to 
bridge selected patients to myocardial recovery, reducing 
the need for heart transplantation.  LVAD induces LV 
reverse functional and structural remodeling. It was 
observed: reduction of total collagen content as well as 
collagen type I and III (87, 88); increase in adrenoreceptors 
and relocation of specific receptor subtypes with 
differences in the distribution of β2 and α1-receptors and in 
α1A subtypes (88),  disappearance of A-β1-AAB (89), 
decrease of myocyte size (87, 88), decrease of intracardiac 
tumor necrosis factor-α, a protein capable of producing 

hypertrophy and fibrosis (87), increase in sarcomeric and 
non-sarcomeric cytoskeletal proteins (myosin heavy chain, 
sarcomeric actin, troponin C, αII spectrin, troponin T, 
cytoskeletal actinin and smooth muscle α-actin) (90),  
reverse of the increase of desmin and β-tubulin (91) and 
decline of natriuretic peptides (NT-proBNP, BNP, MR-
proANP) (92, 93). 

 
There is still much to be learned regarding 

optimal use of LVAD for ventricular recovery. The rate of 
recovery in patients with non ischemic cardiomyopathy 
receiving an LVAD is between 8% and 70% (89, 94-98).  
The actuarial survival rates are similar to transplanted 
patients, 90%-86% and 81%-77% at 1 and 5 years after 
explantation (94-96) and the quality of life is better than the 
transplant patients (99). The results indicate that, although 
recovery is seen in patients with myocarditis in a few 
weeks (100), patients with DCM need several months of 
LVAD before weaning (94).  Studies of explanted human 
hearts have indicated that reverse remodeling is complete 
by 40 days and these data support the clinical results that 
waiting two months would capture half of the patients, and 
waiting up to three months would capture 80% of patients 
who would recover ventricular function followed by 
successful device removal (95, 101).   

 
A short history of heart failure, less than three 

months (95), EF > 40% and LVEDD < 50 mm after LVAD 
(89), are favorable prognostic criteria for recovery. 
Identifying predictive parameters for possible recovery is 
difficult, without differences in pre-operative clinical and 
hemodynamic values. Except for the EF and LVEDD, no 
echocardiographic parameters have a predictor value in 
patients with the LVAD switched on. However, monitoring 
recovery prior the LVAD explantation is mandatory. 
Switching off the device for 15 minutes, followed by 
exercise under echocardiographic monitoring, is a safe 
procedure under full heparinization, and provides a method 
to assess the inotropic reserve (97). After weaning from 
LVAD, more than 80% of the weaned patients are freedom 
from recurrent heart failure (89, 94).  An index of Liang 
(89) < 0 (prognostic index = - 10.1.0 + 0.2.08 x years of 
heart failure + 0.1.73x pre-explantation LVEDD in 
millimeters) is the best value to predict long-term heart 
function (89).  
 
5. PERSPECTIVES 
 

Heart transplantation is a consolidated treatment. 
Currently, more than 25.0.00 patients in the United States 
could benefit from heart transplantation. However, the 
donor pool limits the number to 2.3.00 per year (6). 
Furthermore, the incidence of heart failure and the 
disproportion with the number of heart donors makes 
necessary to restrict cardiac transplant to patients with no 
other treatment possibilities and develop alternatives such 
as CABG, treatment of mitral regurgitation, LVAD as 
destination therapy or bridge to recovery, SVR, 
regeneration therapy and immunoadsorption.  

 
The percentage of patients with DCM weaning 

from LVAD is low and the strategy of combined LVAD 
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and pharmacologic therapy with the β1 agonist clenbuteral 
used to stimulate physiologic hypertrophy has failed the 
initial expectations (104). On the other hand, HF patients 
(stage D and INTERMACS level 3 to 6) treated with 
cellular cardiomyoplasty showed limited improvements in 
systolic function and in ventricular remodeling, thus this 
treatment is insufficient for this HF population. Therefore, 
it is necessary to develop strategies designed to integrate 
biological and biomechanical approaches.  

 
Based on the physiopathology of the stage D 

heart failure, and the preliminary results of the mentioned 
treatments, we are involved in the design and development 
of clinical trials that integrate biological and mechanical 
approaches. Some of these clinical trials are in a stage of 
clinical evaluation, while other trials are still in a stage of 
design, approval of the Ethic Committees or management 
of financing. The proposals to confirm our hypothesis are 
the following: 
 
6. THERAPEUTIC PROPOSALS USING COMBINED 
PROCEDURES 
 
6.1. Acute ischemic cardiomyopathy 

In acute myocardial infarction (AMI), 
percutaneous coronary revascularization associated to 
intracoronary mononuclear bone marrow cells is a well-
established treatment.  

 
In AMI and cardiogenic shock, despite coronary 

revascularization, inotropes and IABP (INTERMACS level 
1 and 2 of the stage D of heart failure) (78), the results of 
the “Refractory Shock post-AMI. AB5000 Registry”, 
justify the indication of LVAD as a bridge to recovery. The 
67% of the patients recovered and were weaning of the 
LVAD without transplantation (105). During the surgical 
procedure of LVAD implant, the association of tissue 
engineering with bone marrow CMP-cell seeded collagen 
matrix is a safe and feasible approach that could potentiate 
the benefit of the LVAD in terms of improvement of the 
systolic function and remodeling.  

 
6.2. Chronic ischemic cardiomyopathy 

Mitral valve regurgitation must be repaired. The 
objectives of surgical treatment (restrictive mitral 
annuloplasty or replacement with Buffolo technique) (57), 
are the correction of mitral valve regurgitation and the 
restoration of left ventricular geometry.  

 
SVR (endoventricular plasty of Dor or the 

pacopexy technique, based on Torrent-Guasp´s model of 
the helical heart) associated to CABG is the technique of 
election in patients with previous AMI, NYHA class III-IV, 
LVESV > 60 mL/m2, regional asynergic LV circumference 
> 35% and EF < 35%. It seems logic and feasible to 
propose the association of CCMP (cellular 
cardiomyoplasty) or CCMP associated with cell seeded 
collagen matrix to induce regeneration of the remaining 
myocardium. The immunoadsorption with fibrinogen 
membranes, instead IgG membrane, improves ischemia in 
patients with coronary chronic disease. This association of 
fibrinogen immunoadsorption is safe and feasible. 

A second approach in patients with extremely 
dilated LV and morphology type III of Di Donato 
classification (106) can be passive ventricular constraint 
associated to CCMP and cell seeded matrix to add or 
replace SVR. The group of Chachques in Georges 
Pompidou Hospital (Paris) has demonstrated that in 
ischemic models, stem cells associated with a collagen 
matrix and Acorn CorCap ventricular constraint, improves 
EF and diastolic function, inducing also myocardial 
regeneration. 
 
6.3. Idiopathic dilated cardiomyopathy 

Mitral valve regurgitation must be repaired as in 
chronic ischemic cardiomyopathy, performing restrictive 
mitral annuloplasty or valve replacement with Buffolo 
technique (57).  There is increasing interest in the 
reversibility of certain forms of end-stage heart failure 
during support with LVAD, but there is still much to be 
learned regarding optimal use of LVAD for ventricular 
recovery. A short history of heart failure and a limited 
dilatation of the LV are favorable predictors for LVAD as 
bridge to recovery: 

 
In patients with a history of heart failure < 3 

years and LVEDD < 60 mm, the proposition is LVAD as 
bridge to recovery associated to immunoadsorption and the 
possibility to add CCMP and cell seeded collagen matrix. 

 
In patients with a longer history of heart failure 

or more dilated LV, the  ventricular constraint Acorn 
CorCap associated to CCMP-cell seeded matrix should be 
added to the treatment with LVAD + immunoadsorption.  
 
6.4. Chagas disease cardiopathy 

Although heart transplantation has been 
successfully performed in Chagas disease, the infectious 
etiology demands to exhaust other approaches. The 
intracoronary delivery of mononuclear bone marrow cells 
has shown its efficiency with the improvement of the 
NYHA class, increase of the EF and decrease of LV 
volumes. The therapeutic strategy can be related to the 
benefit of associated surgical procedures: 

 
In patients without mitral regurgitation and 

LVESV < 60 mL/m2, the association of intracoronary 
cellular CMP with immunoadsorption, can potentiate the 
efficiency of each treatment. 

 
In patients with severe mitral valve regurgitation 

and/or LVESV > 60 mL/m2, immunoadsorption treatment 
can be associated with ventricular constraint Acorn CorCap 
+ CCMP-cell seeded matrix. In addition, the correction of 
mitral regurgitation can be considered. 
 
7. CONCLUSIONS 
 

In conclusion, the number of donors that limits 
the activity of heart transplants performed annually has 
generated the development of alternative therapeutic 
approaches. There is an increasing interest in the 
reversibility of certain forms of end-stage heart failure and 
the application of biological procedures for the treatment of 
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these patients. The therapeutic strategies which integrate 
biological approaches with mechanical assist devices could 
offer hopeful treatment approaches. Great interest exists in 
the revival of Cardiac Bioassist procedures (108) (e.g.: 
latissimus dorsi dynamic cardiomyoplasty) and new 
devices are under development (e.g. Parachute 
intraventricular device). However, there is still much to be 
learned regarding the choice of strategies, optimal use and 
opportunities. 
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