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1. ABSTRACT 
 
 Tumour associated macrophages (TAMs) are 
increasingly recognized as supporters of tumour growth. 
The present study was undertaken to examine benign 
pilocytic astrocytomas (PAs) for the presence of M2 
macrophages. We have asked the question whether TAMs 
in PAs share the predominant CD163 immunophenotype 
with tumour-associated microglia/macrophages of 
malignant gliomas.  In addition, we were interested in the 
question whether there is evidence that the macrophages in 
PAs derive from resident microglia in surrounding normal 
brain or whether cells expressing a macrophage phenotype 
may invade PAs from the vasculature. The latter question is 
of great interest with regard to so-called “bone marrow-
derived microglia” (BMDM) which may provide a 
physiological route of entry into the CNS that could be 
used for novel cell-based treatments of brain cancer. In 
fact, we have found strong morphological evidence for 
such macrophage recruitment into PAs. We propose 
therefore that PAs may be used as a model for the study of 
macrophage recruitment into gliomas. Importantly, our 
results also confirm that microglia/macrophage infiltration 
per se is not associated with malignant glioma behaviour.  
 

 
 
2. INTRODUCTION 
 
 Brain tumours are the most common solid 
tumours in children, accounting for over 20% of cancers 
before age 15, and pilocytic astrocytomas (PAs) are among 
the most frequently occurring childhood brain tumours (1). 
PA is a relatively circumscribed, slowly growing, often 
cystic astrocytoma which shows benign biological 
behaviour. Its name derives from the “hair-like” (pilus, 
Latin for hair) appearance of tumour cells which possess 
very elongated cell processes. PAs are remarkably confined 
(“solid”) when compared to astrocytomas of the diffuse 
type which invariably progress and become highly 
malignant. Thus, pilocytic and diffuse astrocytoma are 
prognostically very different tumour entities (2) and their 
differences in behaviour reflect distinct growth and tissue 
infiltration properties. 
 
 Microglia and brain macrophages are present in 
both PAs and diffuse astrocytomas (3) and even proliferate 
in PAs. In fact, Klein and Roggendorf (4) found the highest 
indices of proliferating microglia in astrocytomas in PAs 
with an average rate of 32% (+/- 6.8) of all proliferating 
cells.  Microglia expressing MHC class II molecules are
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Table 1. Basic clinical data of cases examined (juvenile PA 
WHO grade I) 

Case Gender Age Location 
1 M 2 Brain stem 
2 M 10 Brain stem 
3 M 11 Brain stem 
4 F 13 Cerebellum 
5 F 5 Cerebellum 
6 M 3 Cerebellum 
7 M 7 Cerebellum 
8 F 3 Optic nerve L 
9 F 15 Suprasellar 
10 M 9 Suprasellar 
11 M 24 Thalamus R 
12 M 7 Thalamus L 

 
also present in PAs (5) but their number is lower than that 
of GLUT5-positive microglia (6). 
 
 CD163 is a haemoglobin scavenger receptor 
exclusively expressed in the monocyte-macrophage system 
(7). Specific antibodies directed against CD163 are now 
available which are suitable for routine use in paraffin-
embedded tissue samples and offer an alternative to CD68 
antibodies for identifying cells of monocyte/macrophage 
derivation (8). Recently, it has been shown that the number 
of microglia/macrophages with positive staining for CD163 
and CD204, which are believed to be markers for M2 
macrophages, is correlated with the histological grade of a 
glioma, and the ratio of M2 macrophages amongst tumour-
associated microglia/macrophages was also associated with 
histological grade (9). The proportion of M2 
microglia/macrophages and macrophage colony-
stimulating factor (M-CSF) expression in tumour cells 
further correlated with the proliferative capacity of 
glioblastoma cells (9). PAs were not studied. 
 
 The immunosuppressive M2 macrophage 
phenotype is expressed by tumour-associated macrophages 
(TAMs), which constitute major infiltrates of solid tumours 
(10), and which contribute to tumour growth, invasion, and 
metastasis (11).  TAMs represent the major inflammatory 
component of the stroma of many tumours, and can affect 
different aspects of the neoplastic tissue (12). With regard 
to M1 and M2 macrophage terminology, current thinking 
has replaced the “on/off ” model of M activation with a 
more complex one in which macrophages exist in resting, 
classically, or alternatively activated forms (13). Classically 
activated macrophages are referred to as M1, and non-
classically activated macrophages have been dubbed M2 
(see ref. 13 for details). 
 
 The CD163 antigen is constitutively present in 
perivascular macrophages of the human CNS (14).  They 
are the same perivascular cells that express the well-known 
ED2 molecule in rat CNS (15). Indeed, the ED2 antigen is 
the rat CD163 surface glycoprotein (16). CD163 is not a 
marker of normal ramified microglia and when seen on 
microglial cells may indicate a particular form of microglial 
activation (17). Alternatively, such cells may have invaded 
the CNS tissue from the bloodstream because ED2 has 
been shown to be expressed by bone-marrow derived 
microglia (BMDM) (18). 

 It was the purpose of this study to characterise a 
representative series of PAs with respect to their content of 
CD163 expressing (M2) macrophages. In addition, CD34 
was used to assess the vascularisation of the tumour tissue 
investigated. 
 
3. MATERIAL AND METHODS 
 
3.1. Tissue samples 
 We selected tumour samples from patients with 
PAs operated at King Fahad Medical City (KFMC), 
Riyadh, KSA, between 2007 and 2009. All tumours were 
classified based on current WHO criteria (19). The 12 cases 
used in the study were selected by two neuropathologists 
(WAS, MBG) based on “typical appearance” in standard 
haematoxylin and eosin-stained paraffin sections. The 
study was reviewed and approved by the Institutional 
Review Board of KFMC. All cases were diagnosed as 
juvenile PAs WHO grade I. The average age of the patients 
was 9.1 years; the median age was 8 years. Basic clinical 
data are summarized in Table 1. Tumours from the most 
common locations of PAs such as brain stem, cerebellum, 
thalamus, suprasellar region and optic nerve were all 
represented. 
 
3.2. Immunohistochemistry 
 Biopsies were fixed in 3.7% buffered 
formaldehyde (Avonchem) and embedded in paraffin. 
Immunolabelings for the two macrophage markers, CD163 
and CD68, the CD34 stem cell antigen and the proliferation 
marker MIB-1 were performed on adjacent tissue sections 
using a Leica Bond-Max automated immunostainer system 
with diaminobenzidine (DAB) as the peroxidase substrate. 
The CD163 mouse monoclonal antibody recognises a 
membrane protein designated as M130 antigen, Ber-Mac3, 
Ki-M8 or SM4; it is present on all circulating monocytes 
and most tissue macrophages but not in those found in the 
mantle zone and germinal centres of lymphoid follicles, 
interdigitating reticulum cells and Langerhans cells 
(Novocastra, Leica Microsystems, product code: NCL-
CD163). The monoclonal antibody directed against CD68 
(Novocastra, Leica Microsystems, product code: NCL-L-
CD68) also detects monocytes/macrophages but it 
highlights lysosomes giving the staining a more granular 
appearance. CD34 is a transmembrane protein expressed on 
immature haematopoietic stem/progenitor cells, capillary 
endothelial cells, embryonic fibroblasts and rare cells in 
nervous tissue (Dako, clone QBEnd-10, product code: 
M7165). Two cases were not labelled for CD34 due to 
limited tissue availability. The nuclear MIB-1/Ki-67 
proliferation marker is preferentially expressed during all 
active phases of the cell cycle but is absent from resting 
cells. There appears to be no expression during DNA repair 
processes. MIB-1/Ki-67 was detected using a monoclonal 
antibody from Dako (product code: M7240). Sections were 
slightly counterstained with Mayer's haematoxylin. The 
two neuropathologists and YA evaluated all slides. All 
stains were performed using established laboratory and 
tissue controls for the antibodies employed. 
 

YA and MBG also assigned numerical scores to 
the cases for each macrophage marker. A score of 0 was 
assigned if no immunoreactive cells were observed in a
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Figure 1. A-D Illustrate the biphasic pattern which is so 
typical of PA. There are varying proportions of compacted 
bipolar cells (B) associated with Rosenthal fibres (red, 
brightly eosinophilic structures in B) and loose-textured 
multipolar cells (C) associated with microcysts (D). 
Immunocytochemical labelling for the M2 macrophage 
antigen, CD163 reveals strongly immunoreactive rounded 
cells associated with a microcyst and strong diffuse staining 
of cyst content (E). CD68 immunostaining of an adjacent 
section labels fewer macrophage profiles within the 
microcyst and there is no diffuse labelling (F). Scale bar: 
100 µm. 

 
randomly chosen 40X microscopic field within the selected 
tumour area. A score of 1 was assigned if only a few 
immunoreactive cells were observed and a score of 2 was 
assigned if more than 10 immunoreactive cells were found 
while a score of 3 indicated a high number of 
immunoreactive profiles in a randomly chosen 40X 
microscopic field. The results demonstrated good interrater 
correspondence but due to the small number of cases from 
each region a statistical analysis was not performed.  
 
3.3. In silico analysis  
 Biological associations representing functional 
interactions of CD163 were retrieved using PathwayStudio 
6.1 software and the ResNet database of molecular 
interactions essentially as described previously (20). The 
microarray dataset used can be found at the National Centre 
for Biotechnology Information, Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/projects/geo), GEO Series 
accession number GSE12657.  
 
4. RESULTS 
 
 The classical biphasic pattern of PA is illustrated 
in Figures 1A-D. Figure 1A shows alternating compact and 
loosely textured tissue areas. Brightly eosinophilic 
Rosenthal fibres (19) which are typically found in fibre-rich 
tissue can be seen in Figure 1B.  Figure 1C shows less 
dense tumour tissue and an associated microcyst in Figure 
1D. Microcysts were strongly positive for CD163 
demonstrating both diffusely immunoreactive material 
apparently containing CD163 in its soluble state (Figure 
1E) and round cellular elements most likely representing 
macrophages which expressed high levels of CD163 
(Figure 1E). A smaller number of microcyst-associated 
macrophages were CD68 immunoreactive (Figure 1F).  
  
 All PAs studied contained CD163 expressing 
macrophages (non-ramified cells) and usually even higher 
numbers of ramified, CD163 positive cells resembling 
microglia (Figure 2A). In the majority of cases, the number 
of CD163 immunoreactive cell profiles was higher than 
that of CD68 positive profiles (Figure 2B). Interestingly, it 
appeared that CD163 immunoreactivity was most 
pronounced and often even confined to tissue areas 
showing unequivocal tumour involvement. The only cells 
positive for CD163 in normal brain tissue (present in some 
biopsies) were perivascular cells (21). 
 
 Cellularity was higher in some tumours but the 
proliferation index was low in all and within the range for 
WHO grade I tumours (19). As expected, not all tumours 
studied showed Rosenthal fibres, and in a minority of cases 
the tissue pattern was compacted and uniform rather than 
biphasic. Within tumours showing a biphasic pattern, the 
vasculature appeared generally more prominent in the loose 
tissue areas.  
 
 As can be seen in Figures 2C and 2D, the 
presence of CD163 immunoreactive macrophages 
highlighted blood vessels because CD163 immunoreactive 
macrophages were more concentrated there. This illustrates 
a main finding of this study, the remarkable association of 
CD163 immunoreactive cells with blood vessel walls. 
CD163 immunoreactive cells appeared to transverse the 
latter, i.e. to leave the perivascular spaces and to migrate 
into tumour parenchyma. The area marked by the arrow in 
Figure 2C is shown at higher magnification in Figure 2D.  
 
 Blood vessels within neoplastic tissue areas were 
generally wider in diameter and more variable in size and 
shape compared with normal brain tissue. Blood vessels 
immunolabelled for CD34 can be seen in Figures 2E and 
2F. CD34 immunoreactivity was not confined to blood 
vessels but occasionally also marked individual cells that 
could represent microglia/macrophages and/or their 
precursors (Figure 2F). However, all observers agreed that 
there was no obvious correlation between macrophage 
marker positivity and the presence of blood vessels in a 
given pilocytic tumour tissue area.
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Figure 2. Ramified as well as round cells which express 
CD163 (A) and CD68 (B), respectively can be seen in 
association with both compact and loose-textured pilocytic 
tumour areas. The most striking finding of this study is the 
association of CD163 immunoreactive cells with blood 
vessel walls, which the former appear to cross from the 
bloodstream before invading the tumour (C, D). The area 
marked by the arrow in C is shown at higher magnification 
in D. E reveals larger, abnormal blood vessels staining for 
CD34 in a PA whereas F shows that CD34 
immunoreactivity is also detectable in small round structures 
probably representing single cells (arrows). The photographs 
of both figures were taken from the same tumour.  
 
 Our in silico search for biological associations of 
CD163 revealed a number of interesting candidates for 
future histological studies, i.e. proteins interacting with 
CD163 whose expression is co-upregulated in PAs as 
indicated by the shades of red of the respective gene 
symbols shown in Figure 3:  CSF-1, colony stimulating 
factor-1; HMOX1, heme oxygenase (decycling) 1; NR3C1, 
nuclear receptor, subfamily 3, group C, member 1 
(glucocorticoid); ICAM1, intercellular adhesion molecule 
1; LRP1, low density lipoprotein-related protein 1 (alpha-2-
macroglobulin receptor). 
 
5. DISCUSSION 
 
 Our observation that CD163 immunoreactive 
ramified microglia and, to a lesser extent, CD163 positive 

macrophages are present in significant numbers in PAs fits 
well with results of studies by other authors. Tanaka et al. 
(22) reported that on semiquantitative analysis, many Iba1-
positive, microglia/macrophages were observed in PAs 
(19.9 +/- 6.5%).  Iba1-positive, activated 
microglia/macrophages were commonly found in 
microcystic areas (22). The rather intense diffuse CD163 
immunoreactivity observed by us in microcysts and also in 
compact tumour tissue of some cases may be explained by 
presence of the soluble form of CD163 (23), and it is 
tempting to speculate that CD163 could be useful as a 
biomarker for  PAs. 
 
 In rectal cancer, expression of the macrophage 
antigen CD163 is associated with early local recurrence and 
reduced survival time (24). The same authors previously 
demonstrated that in breast cancer, expression of CD163 is 
associated with early distant recurrence and reduced patient 
survival (25). The authors consider CD163 expression by 
cancer cells following heterotypic fusion with TAMs  a 
possibility. However, it is not clear how the highly up-
regulated expression of CD163 in neoplastic lesions relates 
to the functions of this molecule. The human protein 
CD163 is a member of the scavenger receptor cysteine-rich 
(SRCR) superfamily (26). In vitro culture of human blood 
monocytes with recombinant M-CSF induces CD163 
transcription (27). Heme, the functional group of 
haemoglobin, myoglobin and other haemoproteins, is a 
highly toxic substance when it occurs in the extracellular 
milieu (28) but it can be handled safely by two cellular 
systems, which both function by way of a circulating 
plasma carrier protein that upon ligand binding is 
recognized by a receptor. The haemoglobin-binding 
haptoglobin and the receptor CD163 represent one of them 
(28). Five different isoforms of CD163 have been 
described, which differ in the structure of their cytoplasmic 
domains and putative phosporylation sites (29). 
Haptoglobin preserves the CD163 haemoglobin scavenger 
pathway by shielding haemoglobin from peroxidative 
modification (30). Hp-Hb binding to CD163 is the primary 
mechanism of plasma Hb clearance, while clearance of Hb 
by direct binding to CD163 is secondary to Hp depletion 
(31). 
 
 The striking presence of numerous macrophages 
in association with microcystic areas in PAs as 
demonstrated in the present study may help to shed light on 
the development of PAs. PAs present as space occupying 
lesions resulting from both tumour growth and the 
development of a cystic component. The latter may become 
much larger than the actual tumour which then assumes the 
appearance of a mural nodule adherent to the inner cyst 
wall. Thus, it is tempting to speculate that inhibition of 
macrophage activity in PAs might be of therapeutic benefit: 
if cyst growth depends on macrophages, the space 
occupying effect of the tumour might be mitigated by 
interfering with macrophage activity. 
Microglia/macrophages in PA share the M2 (CD163) 
immunophenotype with tumour-associated 
microglia/macrophages of malignant glioma. However, as 
shown here and in line with previous observations on 
microglia/macrophages in PAs, macrophage infiltration of 
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Figure 3. Biological interactions of CD163 in a schematised microglial cell/macrophage. The colours of the gene symbols 
indicate regulation by microglia/macrophages in PA vs. normal brain tissue. Proteins interacting with CD163 whose expression is 
co-upregulated are represented by red symbols. They represent candidates for future immunocytochemical studies.  Display style 
for regulation: by effect; colour codes: green, positive regulation; red, negative regulation; grey, exact effect unknown. 
Abbreviations: CSF-1, colony stimulating factor-1; HMOX1, heme oxygenase (decycling) 1; ICAM1, intercellular adhesion 
molecule 1; IFNG, interferon gamma; IL-4, 10, interleukin-4, 10; LRP1, low density lipoprotein-related protein 1 (alpha-2-
macroglobulin receptor); MAS1, MAS1 oncogene; NR3C1, nuclear receptor, subfamily 3, group C, member 1 (glucocorticoid); 
TGFB1, transforming growth factor, beta-1; TLX2, T-cell leukaemia homeobox 2; TNF, tumour necrosis factor; interactions 
between proteins are according to (25, 27, 56-71). 
 
a glioma per se is not associated with malignant tumour 
behaviour.  
 
 The results of our study leave very little doubt 
that microglia/macrophages in PAs represent at least in part 
BMDM that have arrived via the vasculature (18). 
Therefore, PAs might be used as a model for the study of 
macrophage invasion in gliomas. Comparative systems 
biological (high-throughput) analyses of PA versus diffuse 
astrocytoma should prove useful in identifying the 
molecular characteristics that are key to malignant glioma 
growth. Serendipitously, BMDM trafficking suggests a 
physiological route of entry into the CNS that might be 
exploited for the development of novel cell-based glioma 
therapies (32, 33).  
 
 The finding that TAMs contribute to tumour 
growth, invasion, and metastasis has been demonstrated for 
a number of cancers including experimental malignant 
peritoneal mesothelioma (34). Therefore, a better 
understanding of the factors that govern macrophage 
infiltration of gliomas is very important. Recently, 
glypican-3 was identified as a molecule involved in the 

recruitment of M2-polarized TAMs in hepatocellular 
carcinoma (36). New technologies allowing the efficient 
genetic modification and ideally re-programming of TAMs 
are also needed. Zinc-finger nucleases (35) may represent 
one such a technology.  
 
 Many observations indicate that TAMs express 
several M2-associated pro-tumoral functions, including 
promotion of angiogenesis, matrix remodelling and 
suppression of adaptive immunity (37).  M2-polarized 
TAMs in the invasive front of pancreatic cancer are 
associated with poor prognosis (38). Targeting TAM 
polarization may therefore become a complementary 
therapeutic strategy against cancer (39). Thus, detailed 
information on the mechanisms underlying M1/M2 
macrophage polarization is of great interest.  
 
 Macrophages adapt their behaviour to signals 
coming from their microenvironment. While Th1 cytokines 
promote pro-inflammatory M1 macrophages, Th2 
cytokines promote an "alternative" anti-inflammatory M2 
macrophage phenotype (40). Consequently, TAMs are a 
central component of pathways connecting inflammation 
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and cancer (41). Macrophages can be differentiated to M1- 
or M2-type cells with either granulocyte macrophage 
colony-stimulating factor (GM-CSF) or M-CSF, 
respectively (42).  M-CSF-driven monocyte-to-macrophage 
differentiation is associated with activation of cell cycle 
genes (43).  Interestingly, IL-10 or IL-4 differentiate 
microglia towards a M2-deactivated or M2-alternatively-
activated phenotype respectively (44), and during M-CSF-
mediated differentiation of monocytes into macrophages 
under conditions that promote an M2 alternatively activated 
macrophage phenotype, the expression of Sema3A 
receptors (neuropilin-1 (NRP-1), NRP-2, plexin A1, plexin 
A2, and plexin A3) increases significantly (45). Toll-like 
receptor (TLR) 2, 4, 7, and 9 agonists, together with 
adenosine A2A receptor (A2AR) agonists, switch 
macrophages from an inflammatory (M1) to an angiogenic 
(M2-like) phenotype (46). Similarly, PPARgamma 
activation skews human monocytes toward an anti-
inflammatory M2 phenotype (47). However, only native 
monocytes can be primed by PPARgamma activation to an 
enhanced M2 phenotype (47). PPAR agonists are 
potentially useful for inhibiting the early phases of 
tumorigenesis in inflammation-driven cancers through their 
antagonistic effect on M1. In more established tumours, the 
macrophage phenotype is more diverse, making it more 
difficult to predict the outcome of PPAR agonism (48).  
 
 Taken together, microglia/macrophages and 
glioma cells appear to have an intricate and symbiotic 
relationship (49-54). The results of the present study 
suggest that this also holds true for PAs. In addition, bone 
marrow-derived microglia exhibiting an M2 macrophage 
phenotype are suggested to enter PAs via the blood stream. 
Whether tenascin plays a role in regulating this cell 
trafficking remains to be determined (55). 
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