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1. ABSTRACT 
 

Natural killer (NK) cells are innate immune 
cells that have long been known to be involved in the 
recognition and lysis of tumor cells. Despite significant 
gains in our understanding of the mechanisms that regulate 
NK cell function, the development of successful NK cell-
based therapies has not yet been achieved. However, recent 
advances in our ability to modulate NK receptor signals 
and the sensitivity of tumor cells to NK cell-mediated lysis 
have led to a number of clinical trials testing novel methods 
to enhance NK cytotoxicity against cancer. Here, we 
present an overview of current therapies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. NATURAL KILLER CELLS  

 
Natural killer (NK) cells are essential 

lymphocytes of the innate immune system, which are 
located in peripheral blood, lymphatics and tissues (1-3). 
They provide a first line of defense against tumors, viruses, 
certain bacterial and parasitic infections (4). The 
recognition of infected and tumor cells is governed by 
inhibitory and activating receptor-mediated signals (5, 6). 
Recent genomic analysis identified NKp46 as a unique 
marker expressed on NK cells of different species including 
humans, mice and rats (7). Traditionally, however, mouse 
NK cells have been defined as CD3- lymphocytes that 
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ither express NK1.1 or DX5 depending on the mouse strain 
(8). In humans NK cells comprise a CD56+CD3- 
subpopulation of lymphocytes. Approximately 90% of 
peripheral human NK cells express low levels of CD56 
(CD56dim). The CD56dim population is characterized by 
highly effective cytotoxicity upon stimulation and their 
ability to mediate antibody-dependent cellular cytotoxicity 
due to their expression of the FcγR III (CD16) receptor. 
The remaining 10% of peripheral human NK cells express 
high levels of CD56 (CD56bright). In response to activation 
signals, CD56bright NK cells secrete high levels of cytokines 
such as interferon-γ (IFN-γ), tumor necrosis factor α (TNF-
α) and granulocyte-macrophage colony-stimulating factor 
(GM-CSF), but do not efficiently lyse target cells. Here, we 
review current strategies that are based on our improved 
understanding of tumor recognition by NK cells and 
discuss novel approaches for future NK cell based 
immunotherapies of cancer.  
 
2.1. Regulation of NK cell functions 

The qualitative and quantitative response of 
NK cells depends on cytokines and interactions with other 
immune cells, such as T cells, dendritic cells (DCs) and 
macrophages (9). Human NK cell effector function is 
regulated by cytokines such as interleukin-2 (IL-2), IL-12, 
IL-15, IL-18, IL-21, IFN-α, IFN-β, TGF-β and Toll-like 
receptor (TLR) ligands (10, 11). IL-2 has long been used in 
vitro and in vivo to promote proliferation, cytotoxicity, and 
partially the cytokine secretion of NK cells (lymphokine 
activated killer cells - LAK cells), which are capable of 
lysing tumor cell lines (see table 1 for a summary of 
clinical trials) (4, 12-16). Infusion of LAK cells with 
concomitant injection of recombinant IL-2, however, only 
showed a response in 10-20% of the renal cancer patients in 
a clinical trial (17). Further increase in number of LAK 
cells or IL-2 proved to be ineffective in part because IL-2 
promotes the expansion of regulatory T cells, which appear 
to suppress NK cell effector functions (18).  

 
Injection of recombinant human IL-12 

intratumorally resulted in measurable immunological 
response levels and tumor regression of human and murine 
melanoma (19-23). However, IL-12 showed dose-limiting 
toxicities at 500 ng/kg (24-26). Repeated administrations of 
IL-12 were also associated with persistently elevated 
plasma levels of IL-10, presumably due to IL-12-induced 
IL-10 production by T cells (19, 20, 27). Finally, 
administration of IL-12 transiently diminished NK cells 
numbers in the blood of patients, which may be caused by 
migration of NK cells from blood to lymph nodes, lungs, 
liver, and spleen (28).  

 
The effectiveness of several other cytokines 

that regulate NK cell function has been assessed in clinical 
trials. IL-15 plays an important role in the development, 
survival and probably activation of NK cells (29, 30). 
Treatment of NK cells with IL-15 increases the expression 
of cell survival genes such as BcI-2, BcI-xL, survivin and 
NK-related effector molecules like perforin and granzyme 
B in splenic NK cells (31, 32). Administration of IL-15 in 
combination with chemotherapeutic agents such as 
cyclophosphamide enhances anti-tumor response in tumor-

bearing mice (33, 34).  
 
In a phase I clinical study, IL-18 infusion 

increased IFN-γ serum levels and FasL expression on NK 
cells (35). It remains to be determined if the unconfirmed 
partial antitumor responses observed in two patients 
correlated with NK cell activation. 

 
IL-21 was shown to enhance tumor rejection 

through NKG2D-dependent mechanisms in mice (36). 
Administration of IL-21 in melanoma patients in phase I 
trials induced a dose dependent transient decrease in 
circulating NK cells and T cells, but enhanced the ability of 
NK cells to kill sensitive targets ex vivo and increased the 
perforin and granzyme B mRNA levels (37, 38). 
 

Infusion of IFN-α resulted in 60 to 80% 
response in CML patients, which correlated with NK 
activity (39, 40). IFN-α and IFN-β (Type I interferons) 
have also been shown to be critical for tumor surveillance 
by NK cells in vivo (41). 3-methycholanthrene (MCA) 
treated type I IFN receptor deficient mice (IFNAR1-/- and 
IFNAR2-/-) show increased susceptibility to fibrosarcoma 
formation (42). In vivo, type I IFN expression is induced by 
pathogen associated molecular patterns (PAMPs), uniquely 
expressed by certain microbes (43). Many PAMPs bind to 
TLRs, the intracellular RIG-I like helicases or NOD 
molecules expressed by most cells types (44). Upon 
binding of their respective ligands these receptors induce a 
signal cascade that activates transcription factors such as 
NF-κB and interferon-regulated factor 3 (IRF3), leading to 
the expression of type I IFNs and IL-18 (45). Interestingly, 
TLR2, TLR3 and TLR9 agonists can directly activate 
human NK cells in the presence of cytokines (46-48). 
Hence, human NK cells may contribute to the adjuvant 
effects of TLR agonists, which appear to be safe in 
triggering NK and T cell function in phase I clinical trials 
of lymphoma patients (49-52). TLR3 agonists have also 
been used to treat patients with the chronic fatigue 
syndrome, a disease associated with defects in NK cell 
functions (53, 54). Bacillus Calmette-Guerin 
immunotherapy (containing TLR2, 4, and 9 agonists) for 
superficial bladder cancer also depends on NK cell 
functions in mice (55). In summary, TLR agonists may 
have great potential in NK cell based therapies by inducing 
type I IFN expression and activating NK cells directly. 
Combination with other cytokines may further improve 
their efficacy. 
 
2.2. Recognition of target cells by NK cells 

NK cell activation is regulated by a balance 
between a variety of activating receptors such as NKp46, 
NKp44, NKp30 (collectively called NCRs), DNAM-1 and 
NKG2D, as well as inhibitory NK cell receptors (5, 6). 
Inhibitory receptors include members of at least three 
families of proteins: the lectin-like Ly49 family present in 
mice and rats, but not in humans; the killer cell 
immunoglobulin-like receptor (KIR) found in humans and 
other primates, but not in mice; and the CD94/NKG2A 
receptor shared by all species so far examined. Many of 
these inhibitory receptors expressed by NK cells are 
specific for major histocompatibility complex (MHC) class 
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Table 1. Summary of clinical trials that modulate NK cell function 
Treatment Phase Patient 

# Exp. Design Cancer type Response Effect on NK cells Ref. 

Cytokines        
IL-21 1, 2 23 i.v.2 + BMT3 Breast cancer, NHL4 0% ND5 12 
IL-2 2, 3 270 i.v. Mel6 16% ND 14 
IL-2 1, 2, 3 1712 i.v. or s.c.7 RCC8 15% ND 15 
IL-2 1 19 s.c. Advanced cancer ND Expansion 16 
IL-12 1 26 s.c. RCC ND 9 in blood 19 

IL-12 2 10 i.t.10 HNSCC11 ND  in blood/ 12 in  LN13 
and tumors 20 

IL-12 1 40 i.v. Advanced cancer ND Cytotoxicity 22 
IL-12 1 28 i.v. + IL-2 RCC, Mel 1 partial ND 23 
IL-12 1 14 i.v. RCC, Mel 1 partial ND 24 

IL-12 1 40 i.v. RCC, Mel, CC14, PC15, CerC16, 
ACC17 2 partial ND 26 

IL-18 1 28 i.v. RCC, Mel, HL18 2 partial  in blood 35 
IL-21 1 29 i.v. Mel 1 CR19 Cytotoxicity 36 
IL-21 1 72 i.v. RCC, Mel ND  in blood, Cytotoxicity 38 
IFN-alpha20  26 i.v. CML21 60–80% Cytotoxicity 39 
IFN-alpha  26 i.v. CML 58% remission Cytotoxicity 40 
TLR Agonists22        
CpG 1 23 i.v. NHL 2 Cytotoxicity 50 
Cell Therapy        
LAK cells23 1, 2 34 i.v. + IL-2 + BMT Lymphoma, Breast cancer 0% Cytotoxicity 12 
HSC24 (KIR 
mismatched)  120 IR25, Thiotepa, Flu26 or 

Cy27, ATG28 AML 34% (6% Ctrl) Alloreactivity, 
Cytotoxicity 77 

HCT29 (KIR 
mismatched)  130  ALL30, AML31, CML, MDS32, 

NHL, HD33, MM34 
Survival 87% 

(48% Ctrl35) ND 78 

HCT (KIR 
mismatched)  2026  AML, CML, MDS 0.54 relative risk ND 79 

HCT (KIR 
mismatched)  175  ALL, AML, CML, SAA36, 

Leukemia, MD37 No response ND 80 

HCT (KIR 
mismatched)  1571  AML, CML, MDS No response ND 81 

Haploidentical NK 
cells  43 Cy + Flu AML, Mel, RCC, HD 5 CR (AML) Expansion 82 

NK-92 1 12 i.v. RCC 1 minor ND 83 
Antibody 
Therapeutics        

Rituximab 1 43 + IL-2 s.c. B-cell NHL 53% ADCC38 93 
Rituximab 2 57 + IL-2 s.c. Indolent NHL 8.80% ND 95 
Rituximab 1 10 + IL-2 i.v.+ LAK B-cell NHL 1 partial, 4 SD39 ADCC 94 
CD16/CD30 specific 
Ab40 1, 2 15 i.v. HD 25% Cytotoxicity 96 

CD16/CD30 specific 
Ab 2 16 IL-2 + GM-CSF41 HD 29% ADCC 97 

Chemotherapy        
Ara-C42 3 320 s.c. + Histamine + IL-2 AML 40% (Ctrl 26%) ND 13 
Daunorubicin + Ara-
C 1 32 i.v. + IL-2 AML 55% relapse free Cytotoxicity 119 

Flu 2 40 i.v. + Rituximab Low-Grade or Follicular 
Lymphoma 80% complete Transient, modest  121 

 

Abbreviations: IL, Interleukin1; i.v., Intravenous2; BMT, Bone Marrow Transplantation3; NHL, Non-Hodgkin’s Lymphoma4; ND, Not 
Determined5; Mel., Melanoma6; s.c., Subcutaneous7; RCC, Renal Cell Carcinoma8; ↓, Decrease9; i.t., Intratumoral10; HNSCC, Head and Neck 
Squamous Cell Carcinoma11; ↑, Increase12; LN, Lymph node13; CC, Colon Cancer14; PC, Parotid Cancer15; CerC, Cervical Cancer16; ACC, 
Adenoid Cystic Cancer17; HL, Hodgkin’s Lymphoma18; CR, Complete Response19; IFN, Interferon20; CML, Chronic Myeloid Leukemia21; TLR, 
Toll-like receptor22; LAK, Lymphokine Activated Killer23; HSC, Hematopoietic Stem Cell24; IR, Irradation25; Flu, Fludarabine26; Cy, 
Cyclophosphamide27; ATG, Antithymocyte Globulin28; HCT, Hematopoietic Cell Transplantation29; ALL, Acute Lymphoblastic Leukemia30; 
AML, Acute Myeloid Leukemia31; MDS, Myelodysplastic Syndrome32; HD, Hodgkin’s Disease33; MM, Multiple Myeloma34; Ctrl, Control35; 
SAA, Severe aplastic anemias36; MD, Metabolic Disorder37; ADCC, Antibody-dependent Cell-mediated Cytotoxicity38; SD, Stable Disease39; Ab, 
Antibody40; GM-CSF, Granulocyte Macrophage-Colony Stimulating Factor41; Ara-C, Cytosine Arabinoside42. 
 
I molecules, which are expressed by most vertebrate cells 
and may protect normal cells from NK cell attacks. In 
addition, several inhibitory receptors exist that are specific 
for non-MHC class I ligands such as the NKR-P1B and 
NKR-P1D receptors, which bind to Clr-b/Ocil, a member 
of a distinct family of lectin-like cell surface glycoproteins 
(56, 57). Inhibitory receptors play a central role in 'missing 
self-recognition' by NK cells; the capacity of NK cells to 
attack cells that lose or downregulate expression of MHC 

class I molecules (58, 59). Lowered or absent MHC class I 
expression often occurs in tumor cells and infected cells, 
presumably as a means for these cells to evade an adaptive 
immune response. However, the ability of NK cells to lyse 
cells does not always correlate with MHC class I 
expression. These findings suggested the existence of 
activating receptors on NK cells whose engagement by 
tumor cell ligands is necessary to trigger NK-mediated 
cytotoxicity. 



Role of NK cells in cancer therapy 

383 

One of the best-characterized NK cell-
activating receptor in the context of cancer is NKG2D (60-
62). All NK cells constitutively express NKG2D. In 
humans its surface expression requires association with the 
adaptor protein DAP10. Engagement of NKG2D leads to 
cytokine secretion and cytotoxicity that is mediated via 
phosphatidylinositol-3-kinase and phospholipase C (63). 
NKG2D recognizes MHC class I chain-related (MIC) A 
and B proteins and UL16 binding proteins (ULBP) in 
humans and Rae1, H60 and Mult1 molecules in mice (60). 
NKG2D ligand expression has been observed on tumors of 
many origins, in particular in solid tumors, lymphomas and 
myeloid leukemia (64, 65). Although cellular ligands of 
NCRs on target cells have not yet been identified, blocking 
experiments suggest an important role for NCRs in the NK 
cell recognition of tumor cells (66). Recently DNAM-1 was 
shown to be critical for the ability of NK cells to recognize 
and lyse MCA and 7,12-dimethylbenzanthracene (DMBA) 
induced tumors (67). In vitro studies further suggest that 
DNAM-1 is also required for NK cell-mediated killing of 
tumor cells, such as neuroblastoma and myelomas, 
expressing the DNAM-1 ligands CD155 and CD112 (68, 
69). 

2.3. Blocking of inhibitory signals in NK cell therapy 
A novel concept to enhance NK cell function 

is to block inhibitory NK receptors. Antibodies that block 
inhibitory receptors have been shown to enhance tumor 
rejection in preclinical models of leukemia and melanoma 
(70). Phase I clinical trials are currently investigating the 
effects of a humanized monoclonal antibody that blocks the 
interactions between KIR2DL1, 2, 3 inhibitory receptors and 
HLA-C ligands in patients with AML and multiple myeloma 
in remission after chemotherapy (71). Furthermore, blocking 
of KIRs enhances the NK cell-mediated lysis of B cell tumors 
by rituximab, an anti-CD20 antibody (72). Other attempts at 
reducing inhibitory signaling rely on proteosome inhibitors (f. 
e. Bortezomib), which reduce MHC expression on target cells 
(73). Proteosome inhibitors also sensitize tumor cells to NK 
cell-mediated lysis via upregulation of the TRAIL receptor and 
NKG2D ligands (73-75).  

 
Another promising approach is to exploit NK 

alloreactivity in allogeneic transplantations. NK cell 
alloreactivity derives from a mismatch between inhibitory 
receptors for self-MHC class I molecules on donor NK cell 
subsets and the MHC class I ligands on recipient cells resulting 
in lack of KIR-mediated inhibition. Results from murine 
models and patients showed that NK cell alloreactivity could 
eliminate leukemic cells and reduce graft-versus-host disease 
(GVHD) thereby improving survival (76-79). Alloreactive NK 
cells also eradicated recipient DCs and T cells improving 
hematopoietic engraftment (76). However, some subsequent 
studies were not able to confirm the beneficial effects of 
allogeneic transplantation (80, 81). The discrepancies between 
these studies may partially be explained by differences in the 
degree of KIR mismatches, number of stem cell in the graft 
and the degree of T cell removal from the grafts.  

 
The potential contribution of allogeneic NK 

cells to mediate graft versus leukemia effects has prompted 
clinical studies of adoptive allogeneic NK cell 

immunotherapy. Previous studies using autologous NK 
cells found no consistent efficacy in cancer patients when 
compared with cohorts of matched controls (12). Adoptive 
transfer of haploidentical NK cells in AML patients 
induced complete remission in 5 out of 19 patients (82). 
Remission depended on high dose chemotherapy prior to 
NK cell infusion. High-dose immunosuppressive regimen 
allowed for transient NK engraftment and in vivo 
expansion, which correlated with increased systemic levels 
of IL-15. Infusion of a human NK cell line NK-92, which 
lacks KIR receptors, in patients with advanced refractory 
renal cell cancer and melanoma has been shown to be safe 
in a phase I trial (83). The possibility of large-scale 
expansion and relative safety of administering allogeneic 
NK cells or NK cells that lack KIR receptors may enable 
NK cell-based therapy although their antitumor activity 
against different cancers remains to be determined. 
 
2.4. Modification of positive signals in NK cell activation 

A number of different approaches are used to 
enhance activating receptor signals. The low affinity Fcγ 
receptor IIIa, CD16, is unique among the activating 
receptors as engagement of CD16 is sufficient for lysis of 
target cells by both resting and IL-2-activated NK cells (84, 
85). Thus CD16 allows NK cells to recognize and lyse 
antibody-coated tumor cells (86). This antibody-dependent 
cellular cytotoxicity (ADCC) has been suggested as a 
mechanism that may contribute at least in part to the 
efficacy of monoclonal antibody therapies against tumors, 
such as rituximab (anti-CD20) and trastuzumab (anti-
Her2/Neu) (87-91). Responsiveness to rituximab in patients 
with non-Hodgkin’s lymphoma correlates with 
polymorphisms in CD16 and CD32 (88, 92). Furthermore, 
it was shown that blocking the inhibitory receptor 
KIR3DL1 with an antibody enhanced the ADCC response 
of NK cells against a lymphoma cell line (72). Phase I 
clinical trials combining monoclonal antibody therapy with 
IL-2 or infusion of activated NK cell appeared to increase 
their efficiency (93, 94). However, some phase 2 trials have 
shown no beneficial effects (95-97). Different approaches 
are being tested to render ADCC by NK cells more 
efficient. The affinity of the Fc region for CD16 can be 
enhanced using protein-engineering approaches (89). A 
related therapeutic approach is the use of bispecific 
antibodies specific for CD16 on NK cells and tumor 
antigens such as CD20, CD19 or ERB2 (97-99). Hodgkin’s 
lymphoma patients that were treated with bispecific 
antibodies against CD16 and CD30 showed some antitumor 
response (97). Finally, soluble proteins in which the 
constant region of human IgG1 was fused to the 
extracellular portion of an activating receptor, NKp30 have 
been shown to inhibit the growth of two different human 
prostate cancer cell lines in vivo (100). 

 
Recent advances to genetically modify NK 

cells have been used to introduce transgenes for activating 
chimeric receptors into human NK cells. Human NK-92 
cells which ectopically express a chimeric receptor 
consisting of a CD20-specific single-chain variable 
antibody fragment connected to the intracellular CD3ζ 
chain display markedly enhanced cytotoxicity against 
CD20 positive target cells, when compared to CD20 
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negative cells (101). Similarly, the transduction of ex vivo 
expanded NK cells with a chimeric anti-CD19-CD3ζ-4-
1BB receptor dramatically enhanced their ability to kill 
CD19-expressing malignant B cells (102). This study also 
highlights the importance of the choice of the intracellular 
domain, as DAP10, an adaptor associated with several 
activating receptors, was less efficient in stimulating NK 
cells (102, 103). Careful testing of different intracellular 
domains may allow to further increase the effector 
functions of NK cells.  
 
2.5. Induction of ligands for activating receptors 

A similar approach is to specifically induce or 
increase the expression of ligands for activating receptors 
and thereby rendering tumor cells more susceptible to NK 
cell-mediated lysis. An attractive target for enhancing the 
therapeutic activity of NK cells against cancer is the 
NKG2D ligand system. A number of reports suggest that 
ectopic expression of NKG2D ligands in rare tumor cell 
lines that lack endogenous NKG2D ligands renders the 
cells sensitive to NK cell lysis in vitro and increases their 
immunogenicity in vivo. In some cases long-lasting T cell-
mediated immunity against the tumor cells was observed 
(61, 104). In addition, administration of a DNA-vaccine 
encoding NKG2D ligands and tumor antigens, but not tumor 
antigens by themselves, induced immune responses that were 
able to eradicate established tumors (105). NKG2D has also 
been implicated in recent studies to be important in controlling 
the incidence and progression of cutaneous carcinogenesis and 
in surveillance of carcinogen-induced tumors (62, 106). In 
summary, a large body of evidence suggests a role for 
NKG2D-mediated immune activation in tumor rejection, but 
more experimental evidence is needed. Recent studies have 
provided a number of candidate approaches for optimizing 
NKG2D-dependent killing in vivo. Chemotherapeutic agents, 
radiation and histone deacetylase inhibitors have been reported 
to induce NKG2D ligand up-regulation on tumors, sensitizing 
them to NKG2D-dependent NK cell cytolysis in vitro (107-
111). In addition, chemotherapy also upregulated the 
expression of PVR, a ligand for the activating receptor 
DNAM-1 on multiple myeloma cells (112). Our data indicate 
that in vitro NKG2D ligand and PVR induction is independent 
of p53, which is required for self-intrinsic apoptosis in 
response to chemotherapeutic agents (107, 113 and our 
unpublished observations). As p53 function is often disrupted 
in cancer, it is possible that increased sensitivity of treated cells 
to NK cell-mediated lysis accounts for some of the efficacy of 
chemotherapeutic drugs. A number of studies using mouse 
models have shown that low doses of some chemotherapeutic 
agents enhance anti-tumor immunity (114, 115). In a few cases 
it correlated with an increased NK cell activity (16, 116-118). 
In AML patients chemotherapy in combination with injection 
of low dose IL-2 increased NK cells and T cells numbers and 
enhanced cytolytic activity against leukemia cells (119). 
Studies using low dose chemotherapy suggest that it may be 
equal or even superior to high-dose chemotherapy, which is 
frequently immunosuppressive (120). Furthermore, 
chemotherapy may help antibody-based therapies although the 
role of NK cells has not been explored (121-123). It remains 
to be shown if the efficacy of chemotherapeutic agents 
partially relies on NK cells in vivo. 
 

3. CONCLUSION AND PROSPECTS 
 

The anti-tumor activity of NK cells has long 
been observed in vitro and in vivo. The molecular 
characterization of the inhibitory and activating receptor-
ligand systems has allowed novel NK-cell based 
immunotherapeutic strategies against human cancer. A 
promising idea is to reduce inhibitory signals in NK cells 
by using haploidentical NK cells in adoptive transfer 
therapies, which suggest clinical anti-tumor effects without 
adverse side effects. Current efforts are focused on 
understanding which factors allow the survival, expansion 
and activation of adoptively transferred NK cells in vivo. 
Such strategies may also be used in combination with other 
treatments such anti-tumor antibodies, potentially leading 
to synergistic anti-tumor activities.  

 
In tumors that express insufficient amounts of 

activating ligands combination therapies using antibodies 
targeting tumor antigens that bind with high affinity to 
FcγRIII, together with NK cell adjuvants are worthwhile 
options to be validated in clinical trials. Direct 
manipulation of activating ligand levels on tumor cells by 
chemotherapeutic agents may offer a new exciting 
possibility to render tumor cells more susceptible to NK 
cell-mediated killing. It will be important to carefully 
evaluate the different chemotherapy agents and the optimal 
dose to achieve ligand upregulation without negatively 
affecting NK cell activation. Combination of chemotherapy 
with subsequent adoptive transfer of NK cells may in part 
circumvent toxic effects of the chemotherapy on the 
patient’s NK cells. It will be important to minimize the use 
of immunosuppressants, such as chemotherapeutic agents 
and steroids. The development of biomarkers to check the 
different NK cell functions and tumor susceptibility to NK 
cell throughout clinical trials will be an important issue that 
needs to be investigated to a greater extent in the future.  

 
Finally, the development of immune evasion 

mechanisms during treatment needs to be taken into 
account and monitored. Recent reports suggest that tumors 
can evade immune attacks by controlling the NKG2D 
ligand expression. The activation of metalloproteinases 
leads to proteolytic shedding of the human NKG2D ligands 
MICA, MICB and ULBP2 by tumor cells, which correlates 
with a markedly reduced susceptibility to NKG2D-
mediated cytotoxicity (124-128). Similarly, shedding of Fas 
by matrix metalloproteinases correlates with tumor 
progression in cancer patients (129-131). Tumor cells may 
also evade cytotoxic effector function of NK cells by 
upregulating the expression of proteinase inhibitor 9 (PI-9, 
SerpinB9), an intracellular granzyme B inhibitor (132, 
133). In summary NK cells have great potential to play an 
important role in future therapies against certain human 
cancers, both alone and in combination with other 
therapies, however more efforts to translate our basic 
understanding of NK cell biology to the clinic are required. 
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