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1. ABSTRACT 

 
DNA microarrays have gained wide use in 

biomedical research by simultaneously monitoring the 
expression levels of a large number of genes. The 
successful implementation of DNA microarray 
technologies requires the development of methods and 
techniques for the fabrication of microarrays, the selection 
of probes to represent genes, the quantification of 
hybridization, and data analysis. In this paper, we 
concentrate on probes that are either spotted or synthesized 
on the glass slides through several aspects: sources of 
probes, the criteria for selecting probes, tools available for 
probe selections, and probes used in commercial 
microarray chips. We then provide a detailed review of one 
type of DNA microarray: Affymetrix GeneChips, discuss 
the need to re-annotate probes, review different methods 
for regrouping probes into probe sets, and compare various 
redefinitions through public available datasets.  

 
 
 
 
 
 
2. INTRODUCTION 

 
DNA microarray technology has provided an opportunity 
to simultaneously monitor the expression levels of a large 
number of genes in response to intentional experiment 
perturbations such as gene disruptions and drug treatments. 
The patterns obtained from microarray experiments have 
helped researchers to understand genetic mechanisms and 
progress of diseases (1, 2), to predict molecular functions 
of genes (3, 4), to build functional pathways (5), and to 
identify novel genes or splice variants (6). The successful 
implementation of DNA microarray technologies requires 
the development of methods and techniques for the 
fabrication of microarrays, the selection of probes to spot, 
the quantification of hybridization, and data analysis (7-9). 
Currently, DNA microarrays are manufactured using either 
cDNA or oligonucletides as gene probes. cDNA 
microarrays are usually created by spotting amplified 
cDNA fragments in a high density pattern onto a
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solid surface such as a glass slide (10, 11). Probes for 
oligonucletides arrays are either spotted or synthesized 
directly onto a glass or silicon surface using various 
technologies including photolithography, ink-jets, and 
some other technologies (12-14). There are two schemes to 
detect differently expressed targets when comparing an 
experimental sample with a reference sample: one- and 
two-color schemes. In one-color case, images are obtained 
on a different chip for each sample using a single 
fluorescent label (for example, phycoerythrin). Different 
images are then compared to obtain differentially expressed 
targets. In two-color format, two RNA samples (reference 
and experimental) are labeled separately with different 
fluorescent tags (for example, cyanine 3 and cyanine 5 
(Cy3, Cy5)), then hybridized to a single microarray and 
scanned to generate fluorescent images from the two 
channels. A two-color graphical overlay can then be used to 
visualize targets that are up-regulated or down-regulated.  

 
Since the emerge of the technology in the mid 

1990s, both commercial and academic groups have 
developed a number of different microarray platforms but 
the validity of the results remains a subject of concern to 
the scientific community mainly due to the poor 
reproducibility among various platforms (15-22). A number 
of studies have been conducted to compare different 
platforms but there is no clear consensus. Some claim a 
significant divergence across platforms, while others 
believe the level of consensus is acceptable. With extensive 
attention being devoted to improving the statistical 
algorithms used to estimate expression levels and detect 
differential expressed targets, we believe that probe and 
probe set identity is also an important factor for the poor 
reproducibility. It is possible that the sequences 
immobilized to the microarray surface are not the intended 
ones possibly caused by unavoidable errors introduced 
during the manufacturing process (23, 24). For 
example,cDNA probes are usually obtained from cDNA 
libraries, and the clone misidentification rates within 
libraries have been estimated as high as 30% (25-27). 
Additionally, probes are designed to match particular 
mRNA transcripts, often based on deposited NCBI 
sequences such as ESTs, cDNAs, or mRNAs. However, 
those sequences might be incorrect because of sequencing 
errors such as including foreign vector sequences (28). 
Furthermore, annotations of probes might also be 
inaccurate or incomplete due to limited knowledge 
available at the probe design stage. Usually, probes are 
selected to represent genes while measures are obtained 
based on the hybridization with mRNAs. But one gene can 
have multiple splice variants and it is estimated that the 
number of genes which can be spliced is between 30% to 
99% (29, 30). Accurate quantitation requires knowledge of 
both the identity of the genes and the splice variants that 
are expressed. As our knowledge of genomic sequences 
(particularly for the human genome) increases, annotations 
for a substantial number of probes for existing microarray 
platforms need to be corrected. For example, a large 
portion of the Affymetrix probes (up to 30-40% depending 
on the actual chip) did not correspond to their intended 
mRNA reference sequences defined by the highly curated, 
publicly available RefSeq database (31-33).  

A large number of reviews on about DNA 
microarray technology prior to year 2002 were assembled 
by Michael Heller (34). Several reviews have been 
assembled recently mainly focusing on the similarities and 
differences among different technologies as well as efforts 
to integrate data from cross-platform comparative studies 
(9, 19, 21, 35, 36). Here, we address issues and studies 
related to probe sequence which include probe resources, 
probe selection during the design stage, and annotation 
correction by incorporating up-to-date genomic knowledge 
for data analysis.  

 
3. MICROARRAY PROBES AND PROBE SETS 

 
Table 1 provides an overview of probes or probe 

sets used in several commercial platforms. Most of these 
platforms select probes using public resources such as 
GenBank or RefSeq. Some of them use in-house or 
commercial resources. For example, both Agilent and 
CodeLink use a commercial sequence resource, LifeSeq 
besides public resources.  

 
Probes or probe sets need to be chosen to provide 

sufficient sensitivity (i.e., the ability to detect the rarely 
expressed transcripts in a complex background), and 
specificity (i.e., the ability to distinguish measures among 
transcripts with high sequence similarity), as well as high 
coverage (i.e., the ability to include all relevant transcripts 
to the experiment) (37). It is desired to avoid sequences that 
are ambiguous (i.e., hybridize to multiple transcripts) or 
highly similar to non-target transcripts (i.e., cross-
hybridization). Additionally, redundancy (i.e., several 
probes or probe sets targeting the same transcripts) can 
increase the accuracy of measures but it can at the same 
time reduce the coverage. Furthermore, the successful 
application also requires correct and up-to-date annotation 
(i.e., the association of probes with target transcripts) of the 
probes or probe sets.  

 
3.1. cDNA microarrays 

Probes in cDNA microarrays are mostly cDNA 
clones provided by IMAGE (the Integrated Molecular 
Analysis of Genomes and their Expression) Consortium. 
The consortium was initiated in 1993 as a collaborative 
effort among several academic groups to share high-quality 
arrayed cDNA libraries and to place sequence, map, and 
expression data for use in the public domain (38). 
Researchers can purchase physical clones from authorized 
distributors, such as Research Genetics/Invitrogen 
(http://www.resgen.com), the American Type Culture 
Collection (http://www.atcc.org), and RZPD German 
Resource Center for Genome Research 
(http://www.rzpd.de). Most of these clones have the status 
of expressed sequence tags (ESTs), and their corresponding 
sequences are collected in the dbEST database (39).  

 
When dealing with EST or cDNA clones, a 

common problem is poor specificity caused by unreliable 
annotations of their sequence data. For example, Taylor et 
al. found that only 79% of the clones matched to the 
designated sequences when sequencing 2300 PCR products 
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Table 1. Probe resources and probe types for some commercial platforms 
Company Organisms Resources Probe Types 

Human 
Mouse 
Rat 

LifeSeq 
RefSeq 
Genbank 
NIEHS, TRC, PG, Refseq, Ensembl, 
RIKEN 
NIA Mouse Gene Index 

60-mer per target 

Agilent 

Human 
Mouse 
Rat 

LifeSeq 
UniGene Spotted cDNA 

Affmertix 
Human 
Mouse 
Rat 

UniGene 11 to 20 (PM, MM) pairs of 25-mers  
Per target  

CodeLink 
Human 
Mouse 
Rat 

UniGene  
RefSeq  
dbEST  
LifeSeq 

30-mer per target 
 

Applied Biosystems genome survey 
array 

Human 
Mouse 
Rat 

GenBank  
Refseq  
Celera Genomics 
In-house transcripts 
Mouse Genome Sequencing Consortium 
Genome Sequencing and Annotation 

60-mer per target 
 

MVG catalog array 
Human 
Mouse 
Rat 

GenBank 
RefSeq 
 

50-mer per target 
 

Stanford Functional Genomics 
Facility Arrays 

Human 
Mouse 

IMAGE CGAP clone set 
RIKEN full-length cDNA clones 
NIA 15K Clone set 

Spotted cDNA 

 
ordered from a human, sequence-verified cDNA clone 
library (25). They recommended sequence verification of 
clones at the final design stage before actually printing 
them on microarray slides. Halgren et al. documented that 
only 62.2% of the 1,189 cDNA sequences of clones 
ordered from the consortium had significant sequence 
identity to the published data for the ordered clones (26). 
The IMAGE Consortium is aware of this and does list 
problematic clones on its web site based on user feedbacks, 
however there is no consensus as to the actual error rate or 
the source of the errors.  

 
Redundancy is another problem when using EST 

or cDNA clones as probes. Highly expressed genes are 
often represented by multiple clones. There are two 
potential ways to reduce the redundancy. One is to use 
clones from a normalized clone library where the number 
of clones representing each gene has been equalized (40-
42). Another way to control the redundancy is the use of 
clustering data through either pair-wise or genome-based 
alignment clustering methods. NCBI's UniGene is the most 
widely used clustering data which was originally generated 
using pair-wise alignment and currently is based on 
genome-wide alignment. The TIGR Gene Indices (TGI) is 
another well known EST clustering data that uses a highly 
refined protocol to analyze EST sequences, clustered 
sequences, and identify genes represented by them.  

 
The use of complete cDNA sequence as probes 

usually imposes the danger of cross-hybridization. A 
fragment of the cDNA sequence can be used to spot on the 
array. cDNA fragments are usually chosen to reduce the 
danger of cross-hybridization caused by either sequence 
homology or other factors. Kane et al indicated that 
selected fragments need to be 75% less than similar to non-
target transcripts within the 50 mer region to prevent 
significant cross-hybridization (43). Besides cross-

 
hybridization caused by sequence similarity, there are some 
unspecific hybridization signals caused by repetitive 
elements such as Alu-repeats within the cDNA sequence. 
Utilizing repetitive element databases such as REPBASE 
(44), one can avoid the complication caused by repetitive 
elements. 
 
3.2. Oligonucleotide microarrays 

The use of oligonucleotides as probes has 
become popular because they usually have better 
specificity than cDNAs and also have the capacity to 
distinguish single-nucleotide polymorphisms (SNPs) and to 
discern splice variants (37). There are several issues to 
consider when selecting oligonucleotide probes. 

 
One is the probe length. Currently, probes used in 

major commercial platforms can be either short (20-30 
mers) or long (50-70 mers) oligonucleotides (see Table 1). 
It was expected that the length of the probes would be 
associated with sensitivity, signal strength, and specificity 
(45). For optimal intensity measure, Chou et al. suggested 
to use long probes (e.g., 150 mer) if no experimental 
validation is provided (see Figure 1). Accurate gene 
expression measurements can be achieved with multiple 
probes per gene, and fewer probes are needed if longer 
probes rather than shorter probes are used. Comparing to 
cDNA microarrays, long oligonucleotide microarrays have 
the advantages of i) distinguishing different transcripts for 
the same gene or genes from the same gene family, ii) 
higher specificity, and iii) requiring smaller quantities of 
mRNA (36, 43).   

 
The gene region from which a probe is selected 

can greatly affect specificity and cross hybridization. 
Coding regions are more conserved and show high degree 
of similarity with other closely related genes. Hence, 
probes selected from coding region are the most susceptible 
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Figure 1. (I) Effect of probe length on the coefficient of variation (CV) in the hybridization signal using different length probes 
for the same genes. (II) Effect of the number of probes per gene on measurement bias.  

 
to cross-hybridization events. Most probe collections focus 
on 3’ UTR, in part because of a presumption that oligo dT 
will be used to prime the RNA populations, and also in part 
because sequence divergence is typically greater in such 
regions. However, with more probes distributed in 3’ UTR 
and less distributed in coding region, it will provide less 
discrimination among splice variants.  

 
It is difficult to predict whether an 

oligonucleotide probe will bind efficiently to its target 
sequence and yield a good hybridization signal on the basis 
of sequence information alone. It was reported that very 
high sequence similarity can lead to cross-hybridization 
even when the sequences have been pre-screened for 
contiguous perfect match. For example, Hughes et al 
showed that 18 or more randomly placed mismatches per 
60-mer can reduce hybridization to background levels (13). 
They also suggested that the placement of distinguishing 
bases at positions relative to the surface has a dramatic 
impact on the stability of the duplex and therefore can be 
used to maximize specificity. 
 
3.3. Tools for probe selection 

As discussed by Tomiuk and Hofmann, the 
successful application of each DNA microarray application, 
depending on the objective of the application, imposes 
certain criteria for selecting appropriate probes (37). 
Software tools have been developed to allow users to select 
appropriate probes or probe sets. Table 2 provides an 
overview of those tools. Most tools address issues relevant 
to probe length, cross-hybridization, secondary structure, as 
well as probe melting temperature. 

 
Most software tools provide users with the 

freedom to select probe lengths to optimize the 
performance (46-52). For example, Array Designer (46) 
allows users to choose specific length for oligonucleotides 
or PCR primers. The sequence is broken down into small 
equal-sized fragments according to the size chosen by the 

user, and then a specific probe is designed for each target. 
Oligo Array 2.0 (47, 48) allows users to specify oligo 
length with a range. OligoPicker (49, 50) allows users to 
choose oligo length from 20 bases to 100 bases long, 
although it suggests 70 bases as the default. Oligodb (51, 
52) treats oligo length one of the required input parameters 
provided by users. Several tools try to select an optimal 
probe length given a range (53-56). For example, 
PROBEWIZ (53, 54), which can design both oligo and 
PCR primer, lets users input both the minimum and 
maximum length of the oligonucleotides or PCR primers, 
and tries to find the optimal length for the best 
performance. Sarani (55) lets users choose a range of probe 
length, and automatically make the decision. The Visual 
OMP (56) gives users flexibility to either choose a certain 
oligo length or let the system make decision. 
 

Many oligonucleotide probe design tools take 
gene regions into consideration. For example, Array 
Designer (46) allows users to choose their desired 
oligonucleotide location, such as 3’UTR, 5’UTR, or 
anywhere else in the sequence. In OligoArray 2.0 (47, 48), 
normally, the input sequence reads backwards from the 3' 
UTR using a moving window according to the 
oligonucleotide length. The Oligodb (51, 52) lets users 
choose their desired oligonucleotide probe location from 
the 5’ UTR to the 3’ UTR. The OligoPicker (49, 50) makes 
its oligo probes lie as close to the 5’ UTR of the RNA as 
possible. The Visual OMP (56) can let users choose the 
oligo probe location visually, and based on the choice, 
decides the right probe. 
 

To avoid cross-hybridization, all probe design 
tools utilize BLAST to make sure the chosen 
oligonucleotide probe or probe sets have the lowest 
similarity to the whole genome comparing to other 
sequence fragments in the target sequence. For example, 
OligoPicker (49, 50) uses contiguous base match and at the 
same time, to reduce the contribution to cross-hybridization
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Table 2. Features of some probe design tools with respect to oligo length, location, specificity, accessibility, and Tm uniform. 
 Probe length Location Specificity Accessibility Tm Uniform 
Array Designer User defined  User can choose  

3’ UTR, 5’ UTR, or 
coding region 

BLAST N/A  N/A 

Oligo Array 2.0 Optimal probe length selection within 
from a user defined range 

Backward 3’ UTR end BLAST Mfold Nearest neighbor 
model 

Oligodb User defined From 5’ UTR to 3’ 
UTR direction 

BLAST Mfold Nearest neighbor 
model based program: 
melting 

OligoPicker User defined within the range between 20 
and 100  

Close to 5’ UTR end BLAST Self-
complementary 
likelihood 

Schildkraut formula 

PROBEWIZ Optimal probe length selection within 
from a user defined range 

N/A BLAST Unknown N/A 

Sarani Optimal probe length selection within 
from a user defined range 

N/A BLAST Unrevealed 
algorithm 

Nearest neighbor 
model 

Visual OMP User defined or 
Optimal probe length selection 

Let user choose 
visually 

BLAST Shows structure 
visually 

N-stage model 

 
by the global similarity, oligonucleotides whose BLAST 
scores higher than a pre-defined threshold value (around 
96%) comparing to all sequences in the same universe are 
rejected.  
 

Most probe design tools try to avoid secondary 
structures so that the chosen probes have higher sensitivity. 
Both OligoArray (47) and Oligodb (51, 52) use program 
mfold, developed by Zuker et. al. (57), to predict and 
eliminate secondary structures. The Visual OMP (56) can 
visually show the structure of each candidate probe so that 
users can easily reject probes with secondary structures. 
OligoPicker (49) uses a self-complementary likelihood 
method to predict secondary structures, and probe 
candidates are tested for homology to the complementary 
strand of their cognate sequence using BLAST, but this 
approach does not take into account the local concentration 
of the complementary sequence.  
 

To ensure quantitative comparison of gene 
expressions, microarray hybridization conditions should be 
similar for all genes in the study, therefore the melting 
temperature (Tm) of probes should fall in a narrow range. 
Several tools consider the oligonucleotide melting 
temperature as an important criteria to choose probes. 
Oligo Array 2.0 (47, 48) and Sarani (55) apply the Nearest-
Neighbor model using DNA parameters develop by 
SantaLucia et. al.(58) to compute the Tm, and the 
following formula is used: Tm = (DH°/(DS° + R ln(DNA 
/4)) -273.15, where R is the gas constant (1.9872 
cal/K.mol) and DNA is the DNA concentration. Oligodb 
(51, 52) uses a program called melting developed by Le 
Novère et. al. (59), which is also based on nearest neighbor 
method, to calculate the Tm. The Oligodb (51, 52) does not 
choose Tm to be an inclusion/exclusion criterion at the Tm 
computing stage, since the G/C content, which mainly 
determines Tms, typically varies at scales longer than the 
transcript length. The user may choose those specific oligos 
from the output list that fit best the individual respect to Tm 
and the position in the transcript. OligoPicker (49, 50)  first 
calculates the melting temperature of all sequence using the 
formula: 64.9 + 41 ×gcCount / oligoLength – 600 / 
oligoLength where gcCount is the number of all Gs and Cs 
in an oligo and the molar sodium concentration is taken to 
be 0.1 M (60), and then choose those candidates whose Tm 
is with 5°C of the median Tm. Visual OMP (56) utilizes a

 
N-Stage model to predict the Tm of a duplex within 2ºC on 
average. 

 
4. REDEFINITION OF AFFYMETRIX GENECHIPS 
 

In order to accomplish high sensitivity and 
specificity in the presence of a complex background, 
Affymetrix introduced a system that entails the use of a 
series of specific and non-specific gene probe sets that are 
intended to result in a more accurate discrimination 
between true signal and random hybridization. Each probe 
set usually consists of 8 to 16 pairs of probes (PM, MM)s 
where PM probes are perfect matching 25-mer oligos to the 
target transcripts and MM probes contain sequences with 
the 13th position of the corresponding PM sequence being 
modified to the complement nucleotide. Affymetrix claims 
that probes of approximately 25 nucletoides long provide a 
very effective balance between signal intensity and related 
sequence discrimination which allows expression 
monitoring of thousands of targets. The use of (PM,MM) 
pairs and multiple pairs for a target transcript allows both 
absolute and comparative analysis and compensates for 
variations and noises in the complex background. 
Affymetrix uses one-color method for obtaining expression 
measures. 

 
4.1. Issues related to the Affymetrix probes 

Probe sets in Affymetrix arrays were either 
selected based on a set of heuristic rules or on some 
thermodynamic models (61, 62). For example, candidate 
probes of the first generation of arrays were chosen from 
600 bases at 3’UTR region of each target sequence and 
rules were used to ensure probes to be unique and have 
relatively good hybridization performance (61). Mei et al 
proposed a probe selection method based on  the influence 
of empirical factors on the effective fitting parameters of a 
thermodynamic model. Probe sets were selected to 
optimize with respect to probe sensitivity, independence 

(degree to which probe sequences are non-overlapping), 
and uniqueness (lack of similarity to sequences in the 
expressed genomic background) (62). 

 
Table 3 shows examples of the two major 

problems that necessitate redefining probe sets in the 
Affymetrix U133A chips for experiments identifying 
differently expressed transcripts.  
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Table 3. Example of ambiguous and mismatched probes and probe sets in the original assignment of Affymetrix HG-U133A 
chip 

 CLEC2D NPM1 
Probe set NM_013269 NM_001004419 NM_001004420 NM_002520 NM_199185 NM_001037738 
220132_s_at 1-11 1-11 1-11 - - - 
221691_x_at 1,3,4,7,8 1,3,4,7,8 1,3,4,7,8 1-9 1-6,9 1-11 
200063_s_at - - - 1-11 1-11 - 
221923_s_at - - - - - 1-11 

 
Table 4. An overview of tools, resources, and studies that utilize Affymetrix probe sequence data 

 Purpose  Matching method  Affymetrix chip 
considered  Software Resources 

Gautier Tools for redefining probe 
sets 

R function: matchprobes 
(using C library string) 

Hgu95Av2, 
Hgu133A Altcdfenvs RefSeq 

Dai Resources for redefining 
probe sets NA All human, mouse, 

and rat GeneChips  NA UniGene, RegSeq, DoTS, 
ENSEMNL, Exon 

Kong 
Software for integrating 
different generations of 
Affymetrix chips 

Blat Some human and 
mouse hcips  Crosschip 

Human genome assembly was 
used to filter out absent 
probes or ambiguous probes 

Harbig Sequence-based correction for 
Hgu133Plus Blast Hgu133Plus NA Resource for Hgu133Plus 

Liu  Tools and resources for 
redefining probe sets Blat All GeneChips AffyProbeMiner 

Complete CDS from 
GenBank 
Refseq 

 
A probe set containing some probes that match 

multiple transcripts - Probes within a probe set do not all 
target the same set of transcripts. The expression levels 
measured by those probes will introduce an inconsistency 
in the quantitation algorithms. 

o Affymetrix had originally represented the human 
genes CLEC2D by one probe set 220132_s_at and NPM1 
by two probe sets, 221691_x_at and 200063_s_at. 

o Currently, three RefSeqs represent CLEC2D and 
three RefSeqs represent NPM1. 

o The table entries for each probe set (row) 
identify the probes that match the RefSeqs (columns). For 
example, all 11 probes in probe set 220132_s_at match 
NM_013269. 

o The level of hybridization to probe set 
200063_s_at provides a consistent estimate of the 
composite expression for RefSeqs NM_002520 and 
NM_199185 of NPM1. The expression of RefSeq 
NM_001037738 is completely 'transparent' to this probe 
set. However, the expression of RefSeq NM_001037738 is 
reflected in the hybridization of probe set 221923_s_at. 

o In contrast, if we are using probe set 
221691_x_at to measure the expression of transcripts of 
NPM1, the level of hybridization to the probe set could 
reflect cross-hybridization with RefSeqs of CLEC2D. 

Some probes in a probe set do not match the 
target transcripts – Several probes within a probe 
set may not match any of the transcripts for the 
gene that Affymetrix had originally designated 
for the probe set. The expression levels measured 
by those probes do not reflect the composite 
expression of the transcripts of the intended gene 
and will introduce an inconsistency in the 
quantitation algorithms. 

o Probes 7 and 8 of 221691_x_at do not target 
NM_199185 that represents NPM1, but they do target all 
three transcripts for CLEC2D. 

o Therefore, the expression levels measured by 
221691_x_at do not consistently reflect the composite 
expression of the RefSeqs of the intended gene. 

 
4.2. Tools, resources, and studies using Affymetrix 
probe sequence data 

After the probe sequence information was made 
public by Affymetrix, several recent papers made use of it 
for improving accuracy and cross-platform consistency (17, 
18, 31-33, 63, 64). Table 4 provides an overview of tools, 
resources, and studies on incorporating probe sequence data 
into microarray data analysis.  

 
The first tool available to use for redefining chip 

definition files (CDFs) is by Gautier et al. (64) Recognizing 
the need to incorporate the latest genomic knowledge into 
microarray data analysis, they developed an open-source 
tool, an R package “altcdfenvs” which was integrated into 
the microarray data analysis flow through Bioconductor, an 
R software system for computational biology and 
bioinformatics (65). Only sequences in RefSeq were used 
and the mapping was done using “matchprobes”, a method 
in altcdfenvs utilizing the standard C library string. The 
package has been used by DeCook et al. to generate 
alternative chip definition files (CDFs) to remove unwanted 
probe pairs (66). Carter et al. (18) also utilized the tool to 
redefine Affymetrix probe sets by sequence overlap with 
cDNA microarray probes for the purpose of reducing cross-
platform inconsistencies in cancer-associated gene 
expression measurements. In Carter’s study, probes 
targeting identical transcript sequence regions were shown 
to give substantially stronger concordance than probes that 
target identical contiguous transcript molecules at different 
sequence regions. The study suggests that discrepancies 
between different platforms are caused by improper cross-
platform probe matching. Recently, a web resource, 
AffyProbeMiner, was developed by Liu et al. to provide 
pre-computed redefined CDFs as well as software for 
generating redefinitions (67). Additionally, a web interface 
is also available. In AffyProbeMiner, probes are grouped 
into a set if they are mapped to a consistent set of 
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Figure 2. The mapping results of four Affymetrix human chips to the human genome build (March 2006).  
 

transcripts or genes based on a collection of complete 
CDSs (CCDSs) obtained from GenBank and RefSeq. 

 
Besides these tools, there are several resources 

distributing redefined CDFs. One is the work of Dai et al. 
which provides extensive resources for re-analyzing 
GeneChip data based on redefining CDFs (33). They 

reorganized probes on more than a dozen popular 
GeneChips into gene-, transcript- and exon-specific probe 
sets utilizing up-to-date genome, cDNA/EST clustering, 
and single nucleotide polymorphism information. The 
redefined CDFs were originally available for human, 
mouse, and rat chips. Recently, several other chips were 
added. Another resource is by Harbig et al. that used 
BLAST to match probes with documented and postulated 
human transcripts and redefined about 37% of the probes 
on the "U133 plus 2.0" array (31). They found that the 
original Affymetrix annotation was compromised because 
of the potential for cross-hybridization with splice variants 
or transcripts of other genes containing matching 
sequences. More than 5,000 probe sets were shown to 
hybridize with multiple transcripts. They proposed a 
sequence-based identification method and redefined probes 
to the most closely-related RefSeq sequences. Another 
resource distributing redefined CDFs is AffyProbeMiner 
(67), redefined CDFs according to Entrez genes and 
complete CDSs (CCDSs) are downloadable from its 
website.  

 
Several other studies aimed to improve the 

consistency among different generations of GeneChips (17, 
63). For example, utilizing the probe sequence information, 
Elo et al. verified probes according to NCBI mRNA 
sequences by searching all PM probes against the mRNA 
sequences using BLAT v. 26 (68). Probes mapped to the 
same gene according to Entrez GENE were grouped as an 
alternative probe set. Then they compared a method called 
probe-level expression change averaging (PECA) to RMA 
and MAS5 and found that PECA provided better agreement 

of differentially expressed genes between different 
generations of GeneChips. Kong et al. used sequence 
information to increase the compatibility between different 
generations of GeneChips by filtering probes that were not 
consistent with their annotations according to the human 
genome build (17).  

 
4.3. Some statistics of Affymetrix probes 

We downloaded all probe sequence information 
as well as CDFs for each gene expression Affymetrix chip. 
We obtained the mapping results of several human chips 
with the current human genome build. We then verified that 
probes in Affymetrix chips were designed towards 3’UTR 
end.  

 
Since Affymetrix human arrays were designed 

using previous version of human genome build, some of the 
probes may fail to be matched to the current human 
genome build. Additionally, some of the probes may 
correspond to multiple locations in the genome. We 
mapped all sequences in four of the human arrays 
(U95Av2, U133A, U133B, U133Plus2) to the current 
human genome build (March, 2006) and then categorized 
the mapping results into four categories: no exact matching 
(i.e., 0), unique exact matching (i.e., 1), matching to two 
locations (i.e., 2), and matching to more than two locations 
(i.e., >2). Figure 2 shows the results of mapping probes in 
several Affymetrix human arrays to the current human 
genome build (March 2006 release). For all chips, the 
number of probes which can be mapped uniquely to the 
current genome build is around 80% (March, 2006). 
However, around 7-10% of the probes failed to be mapped 
to the current genome and the remaining 7-10% probes 
were mapped to multiple segments in the genome.  

 
Probes in traditional Affymetrix chips are skewed 

towards the 3’ UTR end. Figure 3 shows the distribution of 
probes for 51 gene expression Affymetrix chips. The X-
axis denotes the distance to the 3’UTR end and the Y-axis 
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Figure 3. The distribution of probes regarding to the distance to the 3’UTR end for 51 Affymetrix gene expression chips when 
mapping to complete CDS sequences. 

 
denotes the percentage of probes. From Figure 3, we can 
see that probes in all chips were skewed towards the 3’ 
UTR end. Such skewed distribution makes it very difficult 
to disambiguate differential expression of different splice 
forms of the same gene.  

 
5. COMPARISON ANALYSIS OF DIFFERENT 
REMAPPING METHODS 

 
Probes in Affymetrix were selected based on the 

most up-to-date genomic knowledge available at the time 
of fabrication. As accuracy and completeness in our 
knowledge of genomic sequences increase, the sequence 
knowledge used to select those probes may be incorrect 
now and annotations for them need to be corrected. As we 
have shown, probes can be regrouped according to different 
conditions such as genes, transcripts, UniGene clusters, or 
complete CCDSs. Using two chip types, U95Av2 and 
U133A, we performed a study to compare different types of 
redefined CDFs with respect to overlapping among 
different generations and cross-generation consistency.  

 
5.1. Redefinition used  

We downloaded a recent version (version 7) of 
three types of redefined CDFs of U95Av2 and U133A from 
the resource website developed by Dai et al.(33), namely 
UniGene-based, ENTREZ GENE-based, and RefSeq-
based. All redefined probe sets in Dai’s redefined CDFs 
contain at least three probe pairs. For UniGene-based 
redefinition, all PM probes in a probe set must match 
continuously on the genomic sequence in the same 
direction with only one perfect match for each probe in the 
most current genome assembly and all PM probes in the 
probe set must also correspond to the same UniGene 

Cluster. Probes with more than one perfect hit on the 
corresponding genomic sequence were removed. In 
ENTREZ GENE-based and RefSeq-based redefined CDFs, 
one probe can appear in multiple probe sets. We also 
assembled redefined CDFs through AffyProbeMiner web 
site (August 4, 2006) where probes were grouped based on 
CCDSs (CCDS) (67). To be consistent, we required all 
probe sets in the redefined CDFs according to CCDSs 
contain at least three probe pairs. However, probes mapped 
to multiple CCDSs were kept in CCDS-based redefinition.  

 
We calculated percentages of probes included in 

the redefined CDFs as well as percentages of probe sets 
overlapping between U95Av2 and U133A. 

 
5.2. Data set 

For the cross-generation consistency, we used the 
public data sets from the microarray studies of Yeoh et al. 
and Ross et al. (69, 70). The data set contained expression 
data from patients with different leukemia subtypes A total 
of 360 patient samples were hybridized to U95Av2 arrays 
and 132 of the same samples were also hybridized to 
U133A arrays. We selected 40 samples for our analyses, 
which were hybridized to both array types and and 
represented two genetically distinct leukemia subtypes: 20 
TEL-MEL1 samples and 20 MLL samples.  
 
5.3. Consistency assessment 

The comparison study of assessing the 
consistency across U95Av2 and U133A was conducted in 
two different ways. One way is to look at the correlation of 
the gene expression values after redefinition within each 
pair. A high correlation indicates good consistency between 
the two platforms. For each of the leukemia subtype, we 
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Figure 4. Statitistics of four three redefined CDFs for two array chips: U95Av2 and U133A: UniGene-based redefinition, Entrez-
Gene redefinition, CDSs-based, and RefSeq redefinition: (a) Venn-diagram of overlapping between two chips, and (b) percentage 
of probes included in the redefined probe sets. 

 
used RMA to obtain the gene expression values and 
computed the correlation of the gene expression values for 
genes that appear in both platforms (U95Av2 and U133A) 
(71). Another way is to assess the agreement between 
different platforms when selecting differentially expressed 
genes between two different subtypes. We computed the 
proportion of common selected genes among the top K 
differentially expressed from the two platforms. A high 
proportion of common genes indicate good agreement 
between the platforms. We used SAM to select 
differentially expressed genes (72). We implemented the 
data analysis using a microarray analysis platform, 
Bioconductor (http://www.bioconductor.org)(65).  
 
5.4. Comparison outcome 

Figure 4 shows the comparison of the four types 
of redefined CDFs between U95Av2 and U133A 
according. For each of the three types of Dai, over 95% of 
probe sets in U95Av2 were overlapped with around 65% of 
those in U133A. Around 70% of probes were included in 
the redefined CDFs in both chips of Dai’s redefined CDFs. 
For CCDS-based CDFs, 81.7% in U95Av2 were 
overlapped with 53.9% in U133A. Around 80% of probes 
were included in the redefined CDFs.  

 
The cross-generation consistency results are 

presented in Figure 5 and Figure 6. Figure 5 shows the 
boxplot of the correlation. As one can see, using the 
correlation as a measure of consistency, the REFSEQ and 
CCDS annotations give better results than ENTREZ Gene 
and UniGene. From Figure 6a, ENTREZ Gene has better 
performance if the number of top selected genes is less than 
100 when using the proportion of common selected genes 
among the top K differentially expressed genes as the 
measure of consistency. However, when the number of top 

selected genes was over 100, ENTREZG, UniGene, and 
REFSEQ tended to exhibit similar performance. 
Comparing to ENTREZG, UniGene, and REFSEQ, the 
redefinition according to CCDs tends to have poor 
consistency between different platforms.  

 
The biology behind DNA microarray suggests 

that expression levels measured from experiments are on 
transcript level, not gene level. With the estimation of 30-
99% genes exhibiting alternative splicing, DNA 
microarrays should be designed to permit delineation of 
differential expression of different transcripts representing 
alternative splice variants. However, probes in the 
traditional Affymetrix chips are skewed towards the 3’ 
UTR end. Such distribution makes it hard to differentiate 
splice variants. Luckily, the new generation of microarrays 
has been designed to have such power. For example, the 
probes in ExonHit microarrays are uniformly distributed 
along the entire lengths of genes (73). Among the four 
redefinition methods, UniGene and ENTREZ Gene 
represent gene-level analysis while REFSEQ and 
CCDSrepresent transcript-level analysis. REFSEQ and 
CCDS have better consistency when using the correlation 
of common targets between different generation as the 
consistency measure. CCDS are more comprehensive but 
less accurate comparing to REFSEQ with respect to splice 
variants since it contains complete coding sequences from 
GenBank without expert curation.  

 
Most microarray experiments were conducted to 

identify differentially expressed transcripts. When using the 
proportion of common selected targets among the top K 
differentially expressed targets as the measure of 
consistency, percentages of common targets in different 
generations tended to be highly related to the results. For 
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Figure 5. The RMA intensity correlation between technical replicates for two data sets (TEL-AML1 and MLL) on two array 
generations: U95Av2 and U133A.  
 

 
 
Figure 6. The agreement of U95Av2 and U133A assessed using the proportion of the common top differentially expressed genes 
between two subtypes (TEL-AML1 and MLL). The bottom figure is the result after removing the difference caused by the 
different percentages of number of common genes in different redefined CDFs. UG stands for UniGene and ENTREZG 
represents ENTREZ GENE. 
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example, according to UniGene, ENTREZG, and REFSEQ, 
about two thirds of the redefined probe sets in redefined 
CDFs for U133A are paired with redefined probe sets for 
U95Av2. They tend to have similar results when K, the 
number of top selected genes considered, is at least 100. 
However, only half of the probe sets in CCDS-based CDFs 
for U133A are paired with those for U95Av2. 
Consequently, the proportion of common top selected 
genes tends to be smaller. The correlation between the 
proportion of common top selected genes and the 
percentage of common genes for redefined CDFs for 
U133A is over 95% when K is at least 100. Figure 6b 
shows the results when taking the percentage of common 
targets for redefined U133A CDFs into consideration. We 
can see that different redefinition methods tend to have 
similar agreement between U95Av2 and U133A when the 
number of top selected genes considered is at least 100.  

 
6. CONCLUSION 
 

In this paper, we have reviewed probes and probe 
sets used in DNA microarrays. Successful microarray 
applications begin with selecting proper probes that have 
high specificity and sensitivity. For cDNA spotted 
microarray, sequence-verification of clones before spotting 
is also important. Currently, various probe design tools can 
be used to select high quality probes based on our current 
genomic knowledge.  
 

Our review and study suggest that the original 
Affymetrix probe set definition is problematic in many 
aspects according to the current genomic knowledge. The 
probe set definition issue is of critical importance, as it can 
dramatically influence the interpretation and understanding 
of expression data derived from microarray experiments 
when using Affymetrix. With several resources available, it 
is possible to re-analyze microarray data using redefined 
probe sets and enhance the accuracy of microarray data 
analysis. Therefore, we recommend to re-interpret existing 
microarray data with more accurate an dup-to-date genomic 
knowledge.  
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