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Abstract

Infection diagnosis and antibiotic sensitivity testing are important aspects of clinical microbiology that are in dire need of improvement
owing to the inadequate current standards in the early detection of bacterial response to antibiotics. The increasing antimicrobial resistance
is a serious global threat to human health. Current resistance-detecting methods, using the phenotypic antibiotic sensitivity test, which
measures bacterial growth as affected by antibiotics, have long analysis times. Therefore, new and rapid methods are needed to detect
antibiotic resistance. Here, we review the methods used to detect antibiotic resistance in bacteria, including that caused by biofilm

development, and we look at the development of rapid methods for evaluating antimicrobial resistance (AMR).
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1. Introduction

Currently, the world is faced with a rapid spread of
antimicrobial resistance (AMR). Yet, more and more drugs
become ineffective against nosocomial and community-
acquired infections. The emergence of resistance in mi-
croorganisms is a natural response to the widespread use
of antimicrobials in clinical practice. Diseases caused by
multidrug-resistant (MDR) bacteria are severe and most of-
ten require hospitalization. The lack of effective antibiotic
therapy is both a worldwide threat to all countries with-
out exception and a threat to each person who encounters
pathogens in one way or another [1,2].

Combating bacterial antibiotic resistance now in-
cludes the following directions: (1) Designing new drugs
able to effectively suppress pathogens. (2) Finding ways
to slow down the spread of resistance, in particular by re-
ducing antibiotic consumption. (3) Developing methods to
“turn off” the resistance. Unfortunately, it is next to im-
possible to transition to the rational use of antimicrobials.
Routinely informing health professionals and patients about
antibiotic resistance and its global consequences could be
the first step in curbing its spread [3]. Because efforts to
combat bacterial resistance by blocking its mechanisms are
ineffective, the development of new antibacterial agents is
a priority in the current war against drug resistance [4].

Antimicrobials are used to prevent and treat infections
in humans, animals, and plants. They generally include an-
tibiotic, antiviral, antifungal, and antiparasitic agents. The
overuse of antibiotics and their improper use give rise to
MDR strains. The increasing antibiotic resistance is re-
garded worldwide as a threat to national security. The
World Health Organization (WHO) considers it of the high-
est priority, as evidenced by WHO Global Strategy for Con-

tainment of Antimicrobial Resistance. A United Nations re-
port calls antibiotic resistance a “serious threat” to global
health [5—9]. The actual magnitude of worldwide antibiotic
resistance remains unknown [10]; therefore, the develop-
ment of methods to evaluate the sensitivity of bacteria to
antibacterial drugs is of great importance.

Here, we review the methods used currently to detect
antibiotic resistance in bacteria, including that caused by
biofilm development, and we look at the development of
rapid methods for evaluating AMR.

2. Antibiotics and the Main AMR Pathways

Antibiotics are a broad group of drugs of natu-
ral, synthetic, or semisynthetic origin that are selec-
tively toxic to bacteria or other single-celled microorgan-
isms. The main antibiotic groups are [-lactams (peni-
cillin and cephalosporins), chloramphenicols, tetracyclines,
macrolides, lincosamides, spectinomycin, sulfonamides,
nitrofurans, trimethoprim, nitroimidazoles, polymyxins,
quinolones, and macrocyclics (ansamycins, glycopeptides,
and aminoglycosides) [11]. The most popular are fluoro-
quinolones and sulfonamides, whose action against gram-
positive and gram-negative organisms is of a broad spec-
trum [12].

A major source of antibiotic entry into the environ-
ment is treated wastewater. Because antibiotics do not un-
dergo metabolic transformation, they pass through wastew-
ater treatment systems [ 13—15]. Soils are polluted by antibi-
otics coming from the use of manure, sludge, and wastewa-
ter [16], but some antibiotics are used directly on farmland
to control pathogens [17]. Sometimes antibiotic concen-
trations may be as high as or even greater than therapeu-
tic levels, which in turn increases bacterial resistance. The
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Fig. 1. Pathways for antibiotic entry into the environment. CAFOs, concentrated animal feeding operations; WWTP, wastewater

treatment plants [13].

recent widespread and often uncontrolled use of antimicro-
bials has resulted in a rapid spread of multidrug-resistant
microorganisms [18]. Fig. 1 (Ref. [13]) shows the main
pathways by which antibiotics enter the environment.

The worldwide consumption of antibiotics is hundreds
of thousands of tons per year. In 2013, for example, the to-
tal antibiotic consumption in the United Kingdom was 27.4
defined daily doses per 1000 inhabitants per day [14]. In
the United States, antibiotic resistance affects 2 million peo-
ple a year and causes at least 23,000 deaths [19]. A report
published by a panel assembled by the UK Department of
Health states that between 2014 and 2016, about 700,000
people worldwide die each year from infectious diseases
caused by antimicrobial-resistant pathogens [20]. Accord-
ing to the 2019 data, about 68,000 people per year in the
United States and Europe die cumulatively from diseases
caused by resistant bacteria [21,22]. If this trend continues
and antiresistance measures remain ineffective, that number
could rise to 10 million people per year by 2050 [20].

According to the European Center for Disease Pre-
vention and Control, about 25,000 people die annually in
Europe directly from drug-resistant infections. However,
anecdotal evidence suggests that the actual death rate is
much higher, possibly 500,000 people per year [13].

Antibiotic resistance also greatly affects the global
economy, with the United States alone spending about $35

billion annually to treat resistant infections [23]. Impor-
tantly, the rate of antibiotic discovery has declined in re-
cent decades because of technical and economic problems,
which has led to the so-called antibiotic crisis [24].

3. Resistance to Antimicrobial Agents

Increasing antibiotic concentrations in the environ-
ment may give rise to resistant bacteria and may potentially
contribute to the emergence of new resistance determinants
[25]. Aquatic microbial consortia are foci of the horizontal
transfer of the AMR genes. In addition, antibiotic resistance
genes that persist in the environment may be recruited by
human bacterial pathogens through horizontal gene trans-
fer, which causes human health risks [26,27]. Resistance
of nonhospital microorganisms to antimicrobials is a grow-
ing concern in the scientific community owing to the public
health crisis, and antibiotic resistance genes are considered
new environmental contaminants [28].

Antimicrobial agents inhibit bacterial cell wall con-
struction, disrupt cell membrane structure and function, and
block the synthesis of vital biopolymers, including RNA
and DNA [29,30]. Antibiotics are called bactericidal if they
cause cell death, for example, by disrupting cell wall con-
struction. Bacteriostatic antibiotics are those that only in-
hibit bacterial growth, disrupting the synthesis of proteins
and nucleic acids. Some antibacterials are effective against
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a narrow range of bacteria; for example, glycopeptides are
active only against gram-positive strains. Other antibiotics,
such as [-lactams, target processes common to different
bacterial species and are classified as being of a broad spec-
trum [30,31].

Evolution has led bacteria to develop a number of
defense mechanisms to inactivate antibiotics, and this has
led to the emergence of multidrug-resistant microorganisms
[29]. Bacterial resistance to antibiotics can be natural or ac-
quired. Natural resistance is characterized by the absence
in bacteria of appropriate targets of antibiotic action, low
permeability of the cell wall, or the possibility of enzy-
matic inactivation of the antibiotic. This type of resistance
is species-specific [31]. Acquired resistance may arise as
a result of the selection of antibiotic-exposed bacteria, ei-
ther through mutations in chromosomal or plasmid DNA or
through horizontal transfer of resistance genes via plasmids
or transposons [29,32].

The main MDR mechanisms include:

e Modification of the target antimicrobial agent [33].

e Active elimination of antimicrobial drugs from cells
(efflux) and impairment of cell wall permeability [34,35].

e Enzymatic degradation or modification of the struc-
ture and properties of antimicrobials [36,37].

Antibiotic resistance can be transmitted through dif-
ferent mechanisms [38,39]. Human bacterial pathogens,
too, undergo evolutionary changes in human-changed envi-
ronments, which affects their antibiotic resistance [32,40—
44].

Obviously, bacteria combat antibiotic effects by ac-
quiring preexisting resistance determinants. De novo mu-
tations play a part in the acquisition of drug resistance by
microorganisms, but horizontal gene transfer through trans-
duction, transformation, and conjugation is of primary im-
portance in the spread of antibiotic resistance determinants
[45]. This is achieved through the coordinated action of
mobile genetic elements capable of moving within or be-
tween DNA molecules, which include transposons, gene
cassettes/integrons, and plasmids. Together, these elements
are central for the acquisition and spread of resistance genes
[46]. This process encompasses not only nosocomial strains
but also microorganisms in natural settings. For example,
subinhibitory antibiotic concentrations promote the spread
of antibiotic resistance determinants in a bacterial popula-
tion through horizontal transfer of genetic material [47,48].
Nonhospital antibiotic-resistant bacteria pose a potential
threat, because they can act as reservoirs for the mainte-
nance and spread of resistance genes [49].

One mechanism that allows bacteria to survive in the
presence of antibiotics is specialized transport systems lo-
cated in the bacterial cell membrane. These efflux sys-
tems are protein complexes involved in the secretion of
toxic substances from the cell [50]. Bacterial efflux sys-
tems are divided into five families: the ABC transporter
(ATP-binding cassette) family, the major facilitator super-
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family (MFS), the multidrug and toxic compound extrusion
(MATE) family, the small multidrug resistance (SMR) fam-
ily, and the resistance nodulation division (RND) family
[51]. The most clinically relevant family is the RND one.
These efflux systems are widespread among bacteria, and
their genes are almost always present on the chromosome
[52]. The MacA—MacB-TolC efflux system of Escherichia
coli BL21 (DE3) protects cells against macrolide antibi-
otics and is involved in the secretion of heat-stable entero-
toxin II [53]. The MacAB efflux system protects cells of
Salmonella enterica serovar Typhimurium American Type
Culture Collection (ATCC) 14028 from macrolide antibi-
otics [54]. In Klebsiella pneumoniae, the MacAB efflux
system protects cells from the synthetic tetracycline erava-
cycline [55].

The genes coding for efflux systems are not newly ac-
quired as a result of horizontal transfer; rather, they are part
ofthe core genome [56]. Considering that active human use
of antibiotics began less than a century ago, one can see that
the function of efflux systems is not limited to the removal
of antibiotics from the cell.

Evidence for the role of efflux systems in biofilm for-
mation came from a study on the biofilm-forming ability of
deletion mutants of S. enterica serovar Typhimurium [57].
The authors showed that the deletion of the efflux system
genes acrB, acrD, acrEF, emrAB, macAB, mdfA4, mdsABC,
mdtABC, mdtK, and tolC results in reduced biofilm forma-
tion, as compared with that in the wild-type strain.

Almost every bacterial genome has several efflux sys-
tems involved in the elimination of the same antibiotics
from the cells. Moreover, many of them are also capable of
removing nonantibiotic compounds, such as dyes and de-
tergents. For example, there are at least 11 efflux systems
with overlapping functions in the genome of Sa/monella ty-
phimurium. By using one of these systems, S. typhimurium
MasAb, involved in the efflux of macrolide antibiotics [58],
it has been shown that this system is necessary to protect
bacteria from oxidative stress [59,60].

In2017, WHO published a list of “priority pathogens”,
whose antibiotic resistance requires the immediate develop-
ment of new antibacterials. This list includes Serratia spp.
In many hospitalized patients, S. marcescens causes cen-
tral nervous system diseases (meningitis), urinary tract in-
fections, respiratory diseases, endocarditis, and sepsis. Be-
cause antibiotic resistance decreases bacteria’s drug poten-
tial, a list was compiled of the currently most dangerous
pathogens, which was designated by the acronym ESKAPE
(Enterococcus faecium, Staphylococcus aureus, K. pneu-
moniae, Acinetobacter baumannii, Pseudomonas aerugi-
nosa, and Enterobacter spp.). Importantly, P. aeruginosa,
an opportunistic human pathogen and a causative agent of
severe nosocomial infections, is on the WHO list of “critical
priority” microorganisms [61], whose spread has to be con-
tained with new antimicrobials [62]. Moreover, recent stud-
ies have shown that nonpathogenic Pseudomonas strains,
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Fig. 2. Antimicrobial sensitivity (AMS) testing. Sample processing and AMS testing in the clinical laboratory [72].

despite their low virulence, can cause bacteremia in humans
with compromised immune systems [63]. Different bac-
terial species isolated from infected wounds have shown
one or more mechanisms of resistance to each of the ma-
jor classes of antimicrobials [64,65]. The wound surface
provides a favorable environment for microbial coloniza-
tion, proliferation, and infection [66,67]. Major bacterial
pathogens associated with wound infection and possessing
MDR properties include S. aureus, E. coli, K. pneumoniae,
Streptococcus pyogenes, P. aeruginosa, A. baumannii, Pro-
teus species, Streptococcus, and Enterococcus [32,68—71].

In this context, one topical area is the development of
methods to monitor the sensitivity of bacteria to antibiotics.
Antibiotic resistance monitoring systems are designed to
develop methods for evaluating the sensitivity of bacteria
within a short time to provide timely care to patients and
predict the spread of resistance among microorganisms and
the emergence of new resistance mechanisms.

4. Methods to Evaluate Bacterial AMS

The main goal of antibiotic therapy is to determine the
antimicrobial sensitivity (AMS) of bacteria. Standard mi-
crobiological methods, such as determination of the min-

imum inhibitory concentration (MIC) of an antibiotic in
beef-extract broth or on solid nutrient media, are most com-
monly used to evaluate antibiotic effects on bacteria. The
determination of the antimicrobial activity of antibiotics is
based on their ability to inhibit the growth of microorgan-
isms and is expressed as a logarithmic dependence of the
size of the growth inhibition zones of the test bacteria on the
antibiotic concentration. This dependence should be linear.

Methods for determining the AMS of microbes can be
divided as follows [72]:

Manual systems in clinical microbiology

e Successive dilutions in a liquid nutrient medium or
on nutrient agar.

e Agar diffusion (method of antibiotic-saturated
disks).

e E-test.

Automated systems in clinical microbiology

e VITEK® system.

o BD Phoenix™ automated identification and suscep-
tibility testing system.

o Sensititre™.

e Micro-scan walk away®.

Emerging technologies
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e BacterioScan™ FLLS.

o Smarticles™ Technology.

o Accelerate Pheno™ system.

o LifeScale® system.

The MIC is defined as the minimum antibiotic con-
centration that prevents visible microbial growth on agar or
in a broth dilution test [73]. Antibiotic sensitivity results
are evaluated with a special ready-made table that contains
borderline values of the bacteriostasis zone diameters for re-
sistant, moderately resistant, and sensitive strains and also
MIC values for resistant and sensitive strains.

Sensitive strains are those whose growth is inhib-
ited by drug concentrations detectable in the sera of pa-
tients receiving usual doses of antibiotics. Moderately re-
sistant strains are those whose growth is suppressed by
concentrations that are detected in the sera of patients re-
ceiving maximum drug doses. Resistant microorganisms
are those whose growth is not inhibited by the concentra-
tions produced in the body when maximum doses are used
[74,75]. The data obtained for each bacterium—antibiotic
pair are predetermined according to the recommendations
of the Clinical Laboratory Standards Institute (CLSI) in the
United States and the European Committee for Antibiotic
Sensitivity Testing (EUCAST) in Europe [72]. These val-
ues provide clinicians with the necessary information to se-
lect the appropriate antibacterial agent.

Conventional microbiological methods, though highly
sensitive, are time-consuming [76]. Conventional AMS
testing is essentially limited to observations of cell colony
growth, which may last for several days (Fig. 2, Ref. [72]).
It is important to note that while waiting for AMS test re-
sults, patients continue to receive broad-spectrum antibi-
otics, which increase the likelihood of antibiotic resistance.
This can be avoided by prescribing antibiotics early in in-
fection, thereby decreasing the use of broad-spectrum an-
tibiotics [72]. Every hour of delay in prescribing the right
antibiotic in patients with septic shock reduces their chances
of survival by 7.6% [77].

Therefore, it is vital to design rapid methods to analyze
the AMS of bacteria. In this direction, sensory systems are
being developed that are based on electrophysical analysis.

Sensor-Based Methods to Test Bacterial AMS

Electrophysical analysis of microbial cells is very
promising for the rapid testing of AMS, because it gener-
ates information about metabolically active cells within a
short time. For example, Johnson et al. [78] used a quartz
resonator, nonmotile E. coli, and antibiotics (polymyxin B
and ampicillin) to record the mechanical vibrations of bac-
teria before and after their exposure to the antibiotics. In
conjunction with cell imaging before and after exposure to
the antibiotics and with postexperiment counting of colony-
forming units (CFU), the results showed that AMS can be
tested within 7—15 min.
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Guliy et al. [79] used a lithium niobate—based piezo-
electric resonator with a lateral electric field to evaluate the
effects of amoxicillin and polymyxin on microbial cells.
The analysis was done directly in the liquid phase. It was
shown that when an antibiotic is added, the frequency de-
pendences of the real and imaginary parts of the electrical
impedance of the resonator loaded with a suspension of sen-
sitive cells differ strongly from the dependences for the res-
onator loaded with a no-antibiotic control cell suspension.
The analysis time was not greater than 10 min.

Kaittanis ef al. [80] showed that iron oxide nanosen-
sors, either coated with dextran supplemented with con-
canavalin A or coated with silica conjugated directly to con-
canavalin A, can be useful for the fast (1) measurement of
polysaccharides, (2) evaluation of metabolic activity, and
(3) determination of AMS in blood (Fig. 3, Ref. [80]). It
is expected that these polysaccharide nanosensors will be
used in AMS determination in the clinic or in the field and
also in pharmaceutical research and development.

Competition Assay

7
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K nanosenor @ conA 4% Polysaccharide g Bacterium

Fig. 3. AMS determination with dextran-coated polysaccha-
ride [80].

Nanomechanical biosensors belong to the subfamily
of microelectromechanical systems (MEMSs), which can
convert biological processes into measurable mechanical
motion. For example, nanomechanical sensors are advan-
tageous for the detection of bacteria and their AMS [81].
Pathogens (and their growth and metabolic activities) are
detected on the sensor surface, which causes sensor defor-
mation (static response) and/or a change in the frequency
resonance (dynamic response; Fig. 4 (Ref. [81])). Three
components were combined into a single nanomechanical
device to detect bacteria in real time and measure their AMS
(Fig. 5A-E) [81].

A gold-coated silicon nitride microcantilever contain-
ing an integrated microfluidic channel trapped the bacteria
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Fig. 5. Detection of bacteria with multimodal nanomechanical sensors. (A) Microfluidic gold-coated cantilever. (B) Cross-sectional
SEM image of the inlet channel. (C) Cross-section of the functionalized microchannel with adsorbed bacteria. (D) Fluorescent image
and (E) SEM image of the tip of the microfluidic cantilever containing bacteria. (F) Temporal changes in cantilever deflection, as caused
by the trapped bacteria. (G) Temporal changes in the resonance frequency, as caused by the trapped bacteria. (H) Infrared absorption
spectra of the trapped bacteria, obtained by measuring the cantilever deflection induced by illumination with infrared light [81].

and measured deflection changes (owing to the surface ten-
sion changes caused by cell binding; Fig. 5F) and changes in
the resonance frequency (owing to the cell mass; Fig. 5G).
In addition, infrared spectra of the trapped bacteria were
measured by excitation with infrared radiation, which in-

duced cantilever deflection proportional to the infrared ab-
sorption of the cell (Fig. 5H). This multivariate analysis al-
lows the detection and identification of bacterial strains in
situ and the accurate differentiation between damaged and
nondamaged cells.
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reflection coefficient in the absence and presence of the test sample. Effect of variation in (e) permittivity and (f) loss tangent of the

sample on the resonator’s resonant amplitude and frequency [85].

Longo et al. [82] found that bacterial metabolism can
be measured by observing static-mode fluctuations of a can-
tilever coated with bacteria in an aqueous environment. The
detection is based on temporal changes in the fluctuation
(background noise) of the transducer, rather than on clas-
sical static deviation or on changes in the resonance fre-
quency. Using viable S. aureus, Longo et al. [82] showed
that in the presence of ampicillin and kanamycin, the fluctu-
ation deviation is strongly reduced, because the antibiotics
cause the bacteria to die. The MIC data were consistent with
those obtained by standard methods of AMS determination.
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Antibiotics affect bacterial physiology on many lev-
els. Rather than simply compensating for direct cellular de-
fects, bacteria respond to antibiotics by altering their mor-
phology, macromolecular composition, metabolism, and so
on [83]. Inevitably, all these processes influence each other,
resulting in a complex response. The cell-surface damage
is accompanied by the redistribution of ions and charges,
which can be recorded with an electro-optical sensor. An
optical method was applied to the determination of bacte-
rial sensitivity to ampicillin and kanamycin, with the anal-
ysis time being not greater than 20 min [84]. The method
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obtain the resonant profile for the bacteria [86].

is based on recording changes in the electro-optical charac-
teristics of microbial cells exposed to antibiotics.

Jain et al. [85] put forward a unique method of AMS
determination that combines the disk-diffusion method with
microwave radiation for noncontact and noninvasive prob-
ing and monitoring. Their study described the use of a split-
ring microwave resonator to monitor the effect of different
erythromycin concentrations on E. coli grown on a solid
agar medium (Fig. 6, Ref. [85]).

The change in the amplitude decreased to low values,
indicating a delay in bacterial growth at high antibiotic con-
centrations. The sensor showed convincing AMS results in
less than 6 h and is, therefore, promising for the expansion
of work process automation in clinical settings.

The same team of authors [86] described a microwave
and microfluidic biosensor for the rapid, noncontact, and
noninvasive testing of E. coli concentration and growth in
media of different pH to improve efficacy in clinical micro-
biology. The thin interface layer between the microfluidic
channel and the microwave resonator greatly increased the

detection sensitivity. The presence of different concentra-
tions of bacteria in solutions of different pH was determined
by screening for changes in the resonance amplitude and
frequency characteristics of the microwave system. The
sensor showed an almost immediate response to changes
in the bacterial concentration and a maximum sensitivity
of 3.4 MHz, as compared with the logarithmic value of the
bacterial concentration. The changes in the sensor’s vari-
ables (resonance frequency and amplitude) were used to
monitor the growth of antibiotic-exposed bacteria for 500
min (Fig. 7, Ref. [86]).

Bennett ef al. [87] described an alternative method
that detects the phenotypic resistance of bacteria to antibi-
otics within 45 min. It uses a laser and detector system to
detect in media single bacterial cells as they pass through
the laser focus (Fig. 8, Ref. [87]). This provides a simple
readout of AMS by detecting the growth (resistant) or death
(sensitive) of bacteria much faster than standard methods.
The method was applied in both laboratory and clinical set-
tings, with E. coli as an example.

&% IMR Press


https://www.imrpress.com

Signal
e}

0 200 400 600 800
Time (s)

Signal
[\

0 200 400 600 800
Time (s)

Signal
he]

0 200 400 600 800
Time (s)
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reflecting off the cantilever surface onto a photodiode detector. Bacteria in solution move through the laser beam (observed as peaks in
the photodiode signal). The photodiode signal, measured from the media solution, decreases after the antibiotic is added for sensitive

strains. (b—d) Photodiode signal (b) without bacterial inoculant, (c) with bacteria in solution, and (d) 45 min after addition of the antibiotic
[87].
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5. Role of Bacterial Biofilm in the
Development of Infection and Methods to
Determine the AMS of Bacterial Biofilm

The fact of microbial cells being sensitive to a partic-
ular antibiotic does not guarantee its effectiveness in treat-
ment. Lack of antibiotic efficacy is often associated with
the formation of bacterial biofilms, which are difficult for
antibiotics to penetrate [88,89]. Biofilm-associated bacte-
ria differ in many ways from their planktonic counterparts;
a typical property of biofilms is their reduced sensitivity
to antimicrobial agents [90]. Because biofilm infections
and problems with their treatment seriously threaten human
health, more and more recent research has addressed the
formation of biofilms and the strategies to combat them.
The International Center for Disease Control and Preven-
tion and the American National Institutes of Health (NIH)
estimated that biofilms are implicated in 65% of bacte-
rial infections and in more than 80% of chronic infections
[91]. Atleast 80% of biofilm-forming pathogens are associ-
ated with persistent infections [92,93]. The most common
exogenous microorganisms are staphylococci and strepto-
cocci [94]. It is now understood that about 40—80% of bac-
teria on Earth can form biofilms [95]. Biofilms may contain
bacteria of one or more species. Most bacteria and fungi can
form biofilms [96], such as P. aeruginosa [97,98], Staphy-
lococcus epidermidis [99], Candida albicans [100], 4. bau-
mannii [101], Helicobacter pylori [102], S. aureus [103],
Listeria monocytogenes [104,105], Vibrio cholerae [106],
and S. enterica [107]. According to the European Antimi-
crobial Resistance Surveillance Network (EARS-Net) pro-
tocol, pathogens subject to infection control surveillance in-
clude E. coli, K. pneumoniae, P. aeruginosa, Acinetobacter
spp., S. aureus, S. pneumoniae, E. faecalis, and E. faecium.
These pathogens have been chosen because they often cause
invasive infections, and if resistance develops, treatment
options may be severely limited. Also, these pathogens can
spread in nonhospital settings and in health care facilities.
In 2016, Salmonella spp. were listed as subject to Central
Asian and Eastern European Surveillance of Antimicrobial
Resistance (CAESAR) surveillance [108]. Of note, approx-
imately 80% of the wound infections reported in the United
States may be associated with biofilms [91,109]. Bacte-
ria growing in a biofilm are thought to be between 10 and
1000 times more tolerant to antibiotics than their plank-
tonic counterparts [110,111]. The biofilm acts as a physical
barrier that reduces the rate of penetration of antibiotics,
antibodies, and granulocytic cell populations. In addition,
low doses of antibiotics may promote biofilm formation and
may be responsible for biofilm-specific AMR [112]. In the
largest and most comprehensive study to date on the global
burden of AMR, an international team of researchers esti-
mated that in 2019, more than 1.2 million people died from
drug-resistant infections. Of the 1.27 million deaths [uncer-
tainty interval (UI), 95%; 0.911 million to 1.71 million) di-
rectly attributable to AMR, 929,000 (73%) were caused by
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six pathogens: E. coli, S. aureus, K. pneumoniae, S. pneu-
moniae, A. baumannii, and P. aeruginosa. These same
pathogens were responsible for 3.57 million (72%) of the
4.95 million deaths (UI, 95%; 3.62 million to 6.57 million)
that were associated with AMR [113]. The first compre-
hensive analysis of the global impact of AMR estimated
that in 2019, resistance itself caused 1.27 million deaths—
more deaths than HIV/AIDS or malaria—and that AMR in-
fections were implicated in 4.95 million deaths. Overall,
the investigators obtained 471 million individual records to
estimate, through statistical modeling, the disease burden
associated with and attributable to AMR for 12 major in-
fectious syndromes for all regions of the world, including
countries with no data [114].

Biofilm research is one of the most challenging areas
of modern medicine, because the results of classical antibi-
otic susceptibility tests cannot be used to predict therapeutic
success with biofilms.

AMS of Bacterial Biofilms

The MICs of antibiotics are usually determined by us-
ing planktonic bacteria, and the values obtained do not cor-
respond to the concentrations necessary to prevent, sup-
press, or destroy biofilms [115]. A major challenge in
the treatment of biofilm-associated infections is to develop
an appropriate standardized method to test the AMS of
biofilms [116,117]. Because the existing antibiotics have
been developed against free-floating (planktonic) bacteria,
the treatment of biofilm-related infections fails quite often.

Because AMS differs substantially between plank-
tonic and biofilm bacteria, additional parameters have been
introduced to evaluate antibiotic efficacy. These include (a)
minimal biofilm inhibitory concentration (MBIC; [118]),
(b) minimal biofilm eradication concentration (MBEC;
[118]), (c) biofilm bactericidal concentration (BBC; [115]),
and (d) biofilm-prevention concentration (BPC; [115]).
Some researchers define the MBEC as the lowest antimi-
crobial concentration that kills 99.9% of the bacteria in
biofilms, as compared with the control [119]. Other re-
search groups consider the MBEC to be similar to the BBC
and compare it to the minimum bactericidal concentration
(MBC) for planktonic cultures [115,120]. The inhibitory ef-
fect of antimicrobials on biofilm formation is usually eval-
uated by using the MBIC, i.e., the lowest concentration at
which there is no time-dependent increase in the average
number of viable cells within biofilms [115]. By contrast,
the BPC is defined as the concentration at which the initial
culture density decreases so much that biofilms do not form
[115].

Many laboratory methods are used to evaluate the
AMS of biofilm bacteria, such as microtiter plate assays,
the Calgary biofilm device, substrate suspension reactors,
and flow cell systems. These are commonly used to eval-
uate the AMS of biofilms in vitro [115,118,120,121]. The
MBEC of biofilms is tested with kits such as Assay® (for-
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Fig. 9. Microfluidic redox-reactive nanoFET biosensor for extracellular bacterial metabolic analysis. (a) Silicon wafer chip has a
600-nm thermal oxide layer, which contains 200 potential redox-reactive silicon nanowire field-effect-transistor (FET) devices sharing a
common gate. The nanoFETs are covered with a polydimethylsiloxane microfluidic channel connected via tubing to an Eppendorf tube
with a small bacterial medium sample mixed with an oxidase. The forming Bacillus subtilis biofilms are shown in the left panel. Inset:
scanning electron microscope image of a single redox-reactive nanoFET consisting of 20-nm p-type silicon nanowire connected to the
source and drain electrodes. The nanoFETs chip is wire-bonded to the PCB holder, which is connected to the electrical recording system.
(b) Operation mechanism of the redox-reactive nanoFET biosensor. The redox-reactive nanoFET biosensor is reversely reduced or
oxidized in the presence of N, N-diethylhydroxylamine or water, respectively. When the redox reactive device is oxidized, the conductivity
of the device increases, and 9,10-anthraquinone moieties are formed on the nanoFET surface (right panel). On the other hand, when the
redox reactive device is reduced, the conductivity of the device decreases and 9,10-dihydroxyanthracene moieties are formed on the

nanoFET surface (left panel) [124].

merly the Calgary biofilm device (Innovotech, Edmonton,
Canada; [122]), which have several limitations for use in
clinical practice. Nonetheless, the determination and inter-
pretation of the biofilm eradication concentration vary be-
tween publications. Furthermore, none of the official agen-
cies, such as EUCAST or CLSI, have yet provided standard-
ized parameters for determining the AMS of biofilm bacte-
ria. Finally, methods to determine the AMS of biofilms are
available only for some clinically relevant microorganisms.
Therefore, research efforts are currently focused on the de-
sign of test systems to analyze the AMS of biofilm bacteria.

Sensor-based methods are being developed as well.
For example, Hendolin et al. [123] described the real-
time monitoring of the state of bacterial biofilms (includ-
ing that after exposure of cells to antibiotics) on the surface
of a piezoelectric resonator by measuring its resonance fre-
quency. However, the weak point of this technique is that
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the detection system is influenced by temperature, whose
fluctuations may also change the resonance frequency and,
consequently, distort the analysis results.

A microfluidic redox-reactive nanoFET (field-effect-
transistor) biosensor for extracellular bacterial metabolic
analysis was described in [124]. A piezoelectric quartz
tuning fork ring-down system was used to determine the
ciprofloxacin activity against P. aeruginosa biofilm in situ
[125].

Yeor-Davidi et al. [124] monitored the metabolic
activity of biofilms by using a nanosensor and by ana-
lyzing glucose metabolites in solutions with high ionic
strength, such as bacterial media, without sample pretreat-
ment (Fig. 9, Ref. [124]). Biofilms were treated with antibi-
otics varying in their mechanism of action and were com-
pared with untreated samples. Further study of biofilms
during antibiotic treatment with silicon nanowire—FET de-
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vices clarified the process occurring in biofilms. In ad-
dition, the search for appropriate treatment to eliminate
biofilms could be tested with the new nanosensor to moni-
tor the formation of microbial communities after treatment
with antibiotics differing in their mechanism of action. For
such antibiotics (tetracycline and ampicillin), the biofilm
response was different in each case. Treatment with ampi-
cillin reduced glucose uptake early in treatment; a short
treatment period did not harm biomass to the point at which
glucose uptake ceased. Prolonged incubation with ampi-
cillin led to partial lysis of biomass, and therefore only
60% of the glucose was consumed. In the case of tetracy-
cline, short-term treatment started with a slow increase in
glucose consumption until the metabolite was completely
consumed; long-term incubation damaged the biofilm and
caused a change in metabolic activity, but it did not elimi-
nate the bacteria completely [124].

Blanco-Cabra et al. [126] presented a microfluidic
platform with an integrated counter-pin probe (Biofilm-
Chip) for the attachment of bacteria of clinical origin,
even directly from clinical samples. The grown biofilms
can be monitored by confocal microscopy or by electrical
impedance spectroscopy. The device is suitable for study-
ing polymicrobial communities and measuring the effect of
antimicrobials on biofilms without disruption owing to ma-
nipulation, which better simulates actual clinical situations.

Despite the considerable variety of existing methods
for evaluating the AMS of biofilm bacteria, further devel-
opment in this direction is needed. Analysis of modern
technologies shows that the main problems with these meth-
ods are the collection and preparation of samples, the dura-
tion of analysis, and the elimination of false positive results.
Therefore, new methods to determine the AMS of bacteria
are needed in microbiology and medicine.

6. Current Situation in the Fight against
Drug-Resistant Bacteria

Since 2010, through a trilateral alliance, the World
Organization for Animal Health, WHO, and the Food and
Agriculture Organization of the United Nations have been
increasing awareness of AMR among countries. It is recog-
nized that the underlying principle of addressing AMR lies
within the One Health approach. The Trilateral Alliance
is committed to taking steps to ensure that national action
plans against AMR include the development and strength-
ening of effective surveillance, monitoring, and regulation
of the storage, use, and sale of antimicrobials for humans
and animals in accordance with the national context and the
international commitments. This requires comprehensive
multisectoral action linking human, animal, and environ-
mental health. Increasing awareness and knowledge about
AMR is necessary to seek cooperation from national rep-
resentatives of the health, agriculture, and animal health
sectors and to encourage behavioral change. Because the
AMR driving forces are deeply rooted in human and animal
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health care and in the food and agriculture systems, reform
is needed that requires sustainable funding for all activities
outlined in the national action plans.

A Global Steering Group (GSG) on AMR was orga-
nized at the recommendation of the Inter-Agency Coordina-
tion Group on AMR to activate global political forces and
strengthen leadership in the fight against AMR. The GSG
includes representatives of member states, civil society and
the private sector.

The mission of the GSG is to work globally with gov-
ernments, institutions, civil society, and the private sector
in a One Health approach to provide guidance and advocate
for priority policy actions to prevent drug-resistant infec-
tions by ensuring responsible and sustainable access to and
use of antimicrobials.

The goal of the agreed global action plan against AMR
is to “to ensure, for as long as possible, continuity of suc-
cessful treatment and prevention of infectious diseases with
effective and safe medicines that are quality-assured.”

Its five strategic objectives are:

Objective 1: Improve awareness and understanding
of AMR through effective communication, education and
training.

Objective 2: Strengthen the knowledge and evidence
base through surveillance and research.

Objective 3: Reduce the incidence of infection
through effective sanitation, hygiene and infection preven-
tion measures.

Objective 4: Optimize the use of antimicrobial
medicines in human and animal health.

Objective 5: Develop the economic case for sustain-
able investment that takes account of the needs of all coun-
tries, and increase investment in new medicines, diagnostic
tools, vaccines and other interventions [10]. In addition, a
special place in the fight against AMR is occupied by the
development of methods for the rapid analysis of the AMR
of both planktonic and biofilm bacteria. Ideally, this prob-
lem can be solved by using comprehensive systems that al-
low the monitoring of both planktonic and biofilm bacteria
within a short period. Such systems will avoid false assay
results.

7. Concluding Remarks

Antibiotics are used widely to prevent and treat bacte-
rial infections. In veterinary medicine, they are also com-
monly used to promote animal growth. Nontransformed an-
tibiotic residues are excreted by humans and animals into
the environment, which leads to adverse environmental ef-
fects [127,128].

Contamination of terrestrial and aquatic ecosystems
by pharmaceutical waste is ubiquitous, with antibiotic con-
centrations in the environment sometimes exceeding their
therapeutic levels [129—-131].

Rivers are important links between urban and rural
ecosystems [55]. Antimicrobials enter aquatic environ-
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ments through the direct discharge of wastewater treatment
plants into surface or ground water; through leachate from
landfills and leakages from sewer pipes, manure storage
tanks, or lagoons; and through stormwater from manure-
fertilized farmland [128]. The presence in the environment
of medical antibiotics is mainly due to the discharge of
treated wastewater from wastewater treatment plants, be-
cause conventional wastewater treatment is insufficiently
effective at removing these compounds [132]. The entry of
antibiotics into aquatic environments is also a result of their
use in aquaculture [133].

High resistance to antibiotics used to treat common
bacterial infections such as urinary tract infections, sep-
sis, sexually transmitted diseases, and some forms of diar-
rhea has been observed worldwide, indicating that the cur-
rent arsenal of effective antibiotics is depleted. For exam-
ple, in countries reporting data to the WHO Global Antimi-
crobial Resistance and Use Surveillance System (GLASS),
the incidence of resistance to ciprofloxacin, an antibiotic
commonly used to treat urinary tract infections, is between
8.4% and 92.9% for E. coli and between 4.1% and 79.4%
for K. pneumoniae. Three major circumstances currently
threaten the treatment of bacterial infections:

o Increasing resistance to antimicrobial drugs.

o Increasing number of chronic biofilm-associated in-
fections.

e Lack of a suitable approach to infection treatment.

Among the various global challenges facing human-
ity, the greatest concern is the growing bacterial AMR and
the need to design accelerated methods for its evaluation.
Traditional test systems for analyzing the AMS of bacte-
ria are considered the “gold standard”, because they are
fairly proven and reliable and because they have been used
for decades. But these methods have important drawbacks:
they are based on recording changes in bacterial metabolism
and require pure clinical isolates. Because of these draw-
backs, they are time-consuming. Since a large number of
antibiotics are currently in use, it is not rational to evalu-
ate the AMS of isolates to all antimicrobials used in prac-
tice. The choice of the antibiotic being analyzed depends
on the isolated microorganism, the focus and type of in-
fection, the presence of concomitant diseases, and so on.
Interpretation of the test results is based on the most com-
monly used CLSI and EUCAST standards [134]. A deci-
sive point in the choice of antibiotics is the accurate iden-
tification of the bacteria. Although many brilliant reviews
have been published on the evaluation of antibacterial sen-
sitivity [134—139], research continues to develop and val-
idate new methods, including screening methods, for the
analysis of AMS. In recent decades, several innovative ap-
proaches to the determination of AMS have been devel-
oped, including MALDI-TOF, flow cytometry, and isother-
mal microcalorimetry [134,140]. Separate mention should
be made of molecular genetic and “omics” methods of AMS
analysis [141-148]. The main focus of future research in
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this area will be on the standardization of these methods
and the simultaneous testing of the sensitivity of microbes
to various classes of antimicrobials.

In summary, most studies are shifting toward the de-
sign of rapid AMS evaluation systems, which do not re-
quire pure clinical isolates. These new systems can be used
either directly or through simple sample pretreatment for
the direct determination of AMS [72]. One promising area
in the development of rapid AMS evaluation methods is
biosensor technologies [81,149,150]. Unfortunately, there
is still no single standard for the use of sensor technologies
in AMS analysis. Nevertheless, through the efforts of many
research groups, systems have already been developed that
potentially can compete with traditional methods. But in
terms of application of sensors in AMS analysis, a limiting
point is the validation of these systems and repeated testing
with clinical isolates.

The development of methods for accelerated AMS
testing in bacteria, especially in their biofilms, is an urgent
area for further research. Particular attention should be paid
to sensor-based analysis systems that allow research to be
conducted without sample pretreatment and results to be ob-
tained within a short time.
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