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1. ABSTRACT 

Transdermal drug-delivery systems 

(TDDS) offer an attractive alternative to the oral route 

for delivery of biotherapeutics. Technological 

advancements in the past few decades have 

revolutionized the fabrication of micro-structured 

devices including creation of microneedles (MC). 

These devices are used for delivering peptides, 

macromolecules such as proteins and DNA, and 

other therapeutics through the skin. Here, we review 

the current use of MCs as a cost effective method for 

the self-administration of therapeutics. We will then 

review the current and common use of MCs as an 

effective treatment strategy for a broad range of 

diseases and their utility in the generation of effective 

vaccination delivery platforms. Finally, we will 

summarize the currently FDA approved MCs and 

their applications, along with the ongoing clinical 

trials that use such devices.  

2. INTRODUCTION 

Transdermal drug-delivery systems 

(TDDS) have generated considerable interest in the 

administration of drugs via the skin, as an alternative 

to oral route for delivery of biotherapeutics. However, 

the skin has proven to be a formidable barrier due to 

its unique underlying structure. Passive diffusion of 

drugs is mostly limited to small and lipophilic 

molecules. Current scientific research is heavily 

focused on the development of large molecules, such 

as DNA, RNA, vaccines, or other kinds of 

biomacromolecules, which are nearly impossible to 

deliver via skin in an unassisted manner (1, 2). 

Physical and chemical methods have been studied to 

show an increase in the skin permeability of large 

molecules. However, chemical methods usually 

cannot deliver biotherapeutics in a clinically 

meaningful concentration across the spectrum of 

diseases, and physical methods use bulky and 

expensive sophisticated devices, which requires 

trained personnel to operate (3). To overcome this 

problem, many biotherapeutics are delivered 

subcutaneously (s.c.) or intramuscularly (i.m.) using 

a hypodermic needle. However, the use of injections 

is often associated with the patient's discomfort, pain, 

generation of sharp waste, and potential of abuse (4). 

Oral route has its disadvantages with a primary 

hurdle of significant first-pass metabolism and poor 

absorption in the gastrointestinal tract (5). 

As an alternative, MNs have emerged as an 

attractive option over the last decade which has 

demonstrated its usefulness and ability to overcome 

disadvantages associated with the use of oral and 

parenteral drug delivery. MNs are small enough that 

MNs can be self-administered while avoiding pain 

and discomfort, and still being able to deliver small 

and large molecules into and across the skin (6, 7). A 

plethora of scientific studies has demonstrated the 

successful application of MNs in the treatment, 

prevention, and management of a range of diseases, 

such as diabetes, obesity, and infectious diseases. 

This review article is an effort to highlight the impact 

of research studies focused on the application of MNs 

in disease management. This review article is not 

focused on the application of MNs in the treatment of 

cancer, since this body of work has already been 

accomplished, and readers are directed to a 

comprehensive review article (8). Duarah et al. have 

summarized the scientific literature for MNs 

applications in the pediatric population (9). 

3. SKIN STRUCTURE AND TRANSDERMAL 

DRUG DELIVERY → EDITED → AGREED 

THESE TEXT CHANGES 

Skin (cutis) is the largest human organ, 

which covers the entire body and has a surface area 

of around 2 m2. Its thickness varies from 0.5 mm on 
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eyelids to four mm or more on the palms of the hands 

and the soles of the feet. In total, skin accounts for 

around 16 percent of the body weight. Skin is closely 

integrated with blood-vessels (10), nerves (11), and 

lymphatic system (12). The skin is mainly comprised 

of three layers with varying degrees of specialization 

as follows.  

3.1. Epidermis (ED) 

The outermost layer of the epidermis is 

made of epithelial cells kertinocytes which are closely 

packed, making up the cornified skin layer or the 

stratum corneum (SC). ED is the primary barrier to 

drug delivery. Outer ED, is comprised of a a 5-layered 

assembly, composed of keratinocytes (95% of cells), 

which is generally 0.02–0.2 mm in thickness and 

typically is 50–150 μm in humans (13). The 

corneocytes provide suppleness and flexibility to the 

skin. ED represents the ‘bricks’ embedded in a 

‘mortar’ which is composed of multiple lipid bilayers 

of ceramides, fatty acids, cholesterol, and cholesterol 

esters (14, 15). The most inner layer of ED is 

comprised of basal cells which reside on a basal 

lamina.  

3.2. Dermis 

Dermis is the part of skin beneath the ED 

which provides an important barrier against 

pathogens (16). It provides mechanical strength to 

the skin (17). It is thicker than the ED (usually 2–4 

mm) and contains collagen (mostly type I and III), 

immunologically active dermal dendritic cells and 

Langerhans cells, connective tissues, blood, and 

lymphatic vessels, hair follicles, eccrine glands and 

nerve endings (18–20).  

3.3. Hypodermis 

Hypodermis is the layer underneath the 

dermis, and is comprised of fibroblasts, 

macrophages and adipose tissue made of 

adipocytes. The blood and lymphatic network in the 

dermis and hypodermis region re crucial for the 

systemic delivery of drugs. 

Although skin appears to be fragile, it is a 

formidable barrier to breach and it acts as the body’s 

first natural defense mechanism against exogenous 

pathogens. In the context of drug delivery, a drug 

needs to have a unique physicochemical profile to get 

past the skin and into the systemic reservoir, 

unassisted (passive diffusion). This profile includes 

an optimum logP of around 1-3, the molecular weight 

of less than 500 Da, unionized form, and a melting 

point (MP) below 150-200°C (2, 21). Therefore, large 

molecules such as proteins often have a difficult time 

in crossing skin, and it becomes a challenge to attain 

the therapeutically meaningful plasma 

concentrations. Fortunately, over the years, many 

strategies have been developed to breach the skin 

and deliver not only significantly higher concentration 

of drugs if needed in case of small molecules, but 

also deliver proteins and vaccines, which used to be 

an elusive dream during early days of transdermal 

drug development. These strategies involve both 

chemical and physical approaches, including the 

addition of chemical penetration enhancers, 

electroporation, iontophoresis, sonophoresis, 

thermal ablation, or the synergistic combinations of 

two or more mechanisms, to deliver, small and large 

molecules as well as polymeric carriers. However, 

this review article will focus on the application of MN 

as an emerging tool for transdermal drug delivery and 

its application in prevention and disease 

management. 

4. MICRONEEDLES (MNs) 

MNs are micron-sized needles, which are 

large enough to deliver macromolecules, proteins, 

and vaccines into the different layers of (or across) 

the skin but are short enough to avoid any pain 

experienced as traditionally seen with the parenteral 

drug delivery. It offers several unique advantages: 

localization of small or large molecules in the skin by 

overcoming the SC barrier, placement of drug in the 

proximity to the blood vessels near dermis for faster 

absorption and onset of action during systemic 

delivery, targeting dendritic or Langerhans cells of 

immune system present in the ED/dermis region 

which can be leveraged to develop vaccines; and 

eliminating pain (22, 23). The use of MN lowers the 

health hazard and potential abuse associated with 

hypodermic needles during parenteral administration 

and has the potential to reduce the cost of vaccines 

because of its dose sparing effect and elimination of 
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cold storage. Most importantly MNs are designed to 

self-administer the vaccine/biotherapeutics with 

minimum training, consequently improving 

vaccination coverage in the pediatric population 

where parents can potentially vaccinate their kids 

without having to visit doctors, as well as in first world 

countries, where scarcity of well-trained nurses and 

doctors usually result in low vaccination coverage 

(24). The level of MNs entry in the skin layer is 

illustrated in Figure 1. 

4.1. Microneedle types 

Numerous studies have been conducted so 

far in the development of MNs. MNs have been 

fabricated in a variety of ways, each bringing its own 

set of advantages, and can be categorized into four 

different types: 

4.1.1. Hollow MN 

These MNs are used for rapid bolus 

injection or slow infusion of the liquid formulation. 

Robust mechanical strength of micron-sized needles 

is necessary along with the adequate and constant 

flow rate. Dense dermal tissue might compress 

against the tip of the needle affecting the drug 

delivery rate and potentially targeting the wrong layer 

(24). Silicon is typically used for its high mechanical 

strength, but its high cost offsets its use in large-scale 

production (25). Hollow MN can directly place a drug 

in the ED-dermis region depending upon the length 

of the MN used making it possible to deliver 

macromolecules like proteins and vaccines. Insulin 

was delivered in the porcine skin using AdminPatch 

technology which uses hollow MNs (26). Hollow MNs 

can also be potentially useful in gene therapy as Luo 

et al. have demonstrated that localized delivery of 

oligonucleotides using hollow MN could be achieved 

in the 3D tissue model (27). 

4.1.2. Solid MN 

Solid MNs are used to breach the SC layer 

of the skin to create micro-channels followed by the 

application of a drug-loaded patch to deliver drugs via 

passive diffusion. Solid MNs can be mounted on a 

roller that can pierce the skin with a rolling application 

of the device. This approach was used by Kaur et al., 

where the 5-fold increase in verapamil flux and 11-

fold increase in amlodipine flux was observed in the 

porcine skin (28). Verapamil regulates blood 

pressure whereas captopril is used for the 

management of hypertension and ischemia. 

Similarly, the transdermal flux of captopril and 

metoprolol was increased 75-fold and 4-fold 

 
 

Figure 1. Effect of dermal application of MNs depth in drug delivery process. The lower level of MNs penetration does not produce any pain 

or adverse effects upto 1000 µm. Further, the volume is also one of the factors to cause the pain. Paradoxically, at higher volume i.e., >0.8 ml 

can induces the pain at 750 µm depth of MNs penetration with moderate constant flow rate. Even, the lower flow rate i.e., <0.1 ml/min is not 

shown any painful reactions. 
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respectively following the application of solid MN 

rollers (29). Conventionally, small molecules of up to 

500 Da and molecules with logP of 1-3 are most 

suitable for topical administration. However, once 

micropores have been generated using solid MNs, 

large molecules, including proteins and more 

hydrophilic drugs can slowly diffuse across MN 

generated micro-conduits. In one proof-of-concept 

study, siRNA was delivered using this approach for 

localized effects in the skin (30). Localization of 

siRNA can have significant implications in the 

potential development of treatments for skin 

conditions such as alopecia, skin cancer, and 

hyperpigmentation. 

4.1.3. Dissolving MN 

Biodegradable, non-toxic polymers or 

water-soluble material is used to form MN tips 

encapsulating the drug in the matrix. Once inserted 

into the skin, tips are dissolved by the presence of 

water, releasing the encapsulated drug. This 

technique has a unique advantage of leaving no 

sharp waste behind, thus addressing needle abuse 

and proper disposal of bio-hazardous sharp waste 

(31). Ito et al. prepared insulin loaded in 

dextran/polypropylene dextran/polypropylene matrix. 

Insulin was found to be stable in the matrix for one 

month and when delivered into mice, all the loaded 

insulin was delivered within one hour, which 

correlated with the lowest plasma glucose level 

achieved (32). When the dissolving MN approach 

was combined with iontophoresis by Kumar et al., 

MNs demonstrated that it was possible to deliver 

significantly large quantities of small (calcein) and 

macromolecules (human growth hormone) in-vitro in 

the porcine skin than either of the methods alone 

(33). In a unique approach, Lee et al. fabricated 

dissolving MNs from carboxymethylcellulose or 

amylopectin as a base containing sulforhodamine B 

and bovine serum in the backing layer of MNs. This 

approach allowed the controlled release of drug from 

the reservoir after the formation of micro-conduits 

upon dissolving of MN tips (34). This approach can 

be pivotal in achieving the constant release of drug 

administration for prolonged pharmacological action, 

hallmarks for any medication intended to use in 

chronic disease management in the elderly 

population. 

4.1.4. Coated MN 

Drug containing matrix can be used to coat 

stainless steel or silicone MNs. Once inserted, a 

formulation containing the drug is dissolved off into 

the skin. In-vitro porcine skin studies showed that a 

higher amount of lidocaine delivered within three 

minutes compared to the one-hour topical application 

of its branded counterpart (35). The disadvantage of 

using coated MN is that only a limited amount of drug 

can be coated depending upon the number of MNs in 

the array and potential of leaving sharp waste behind. 

Also, the long-term stability of the drug in the matrix 

(e.g. PVP or PEG) while it is exposed to the 

environment, needs to be demonstrated to translate 

this approach to commercial success (36). Further, 

stainless steel coated MNs have potential ophthalmic 

drug delivery with safe and without irritation/edema in 

ocular regions. Experimentally, it is proved that, 

coated MNs possess the irritation free potential 

action for resealing of ophthalmic tissues with 

absence of allergic reactions, bleeding or infections 

(37, 38). Mainly corneal electrode used for the retinal 

drug delivery for the management of diabetic 

complication like retinopathy.  

Hollow and solid MNs typically use metal 

e.g. silicon, which can have biocompatible problems 

and can result in the potential abuse of these 

needles. To overcome this problem and to enhance 

patient safety, hydrogel-forming MNs are also 

currently under investigation. This approach 

circumvents the problem of a limited amount of doses 

that can be delivered with other MNs (39). In one 

study, Donelly et al. created super swelling polymers 

that imbibed the water present in the skin creating 

micro-conduits between dermal circulations and 

attached lyophilized drug reservoir (40). Other 

advantages include easy sterilization and intact 

removal of hydrogel from skin post application (39).  

The material used to form hydrogel should 

be sufficiently hard in the dry state to pierce the skin 

but should be capable of rapid swelling upon 

insertion. Once swollen, MNs should be able to 

maintain structural integrity. Sivaraman et al. 

delivered up to 11 µg/cm2 of methotrexate, an anti-

cancer drug, from poloxamer hydrogels in human 

dermatomed skin (41). In another proof of concept 
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study, this approach was used as a diagnostic tool to 

monitor lithium levels in rats (42). 

A recent investigation into the use of MN for 

the delivery of poorly permeable proteins, e.g. insulin, 

has shown to be promising. Lee et al. demonstrated 

that insulin loaded into dissolving polymeric MNs 

rapidly decreased the glucose level in mice within two 

hours and to the same extent as s.c. the injection did, 

with a relatively lower amount of insulin delivered 

illustrating the dose sparing potential (43). Traditional 

s.c. injection for diabetes management has one key 

constraint, i.e. lack of glycemic control resulting in 

overtreatment with insulin, which can lead to brain 

damage (44). Ye et al. showed that MN patch 

integrated with exogenous pancreatic β cells coupled 

with glucose signal amplifiers released insulin in 

accordance with the glucose levels in mouse dorsum 

skin where the normal glucose level was maintained 

within the therapeutic window for six hours post 

treatment (45). Similar results were demonstrated in 

several other studies emphasizing the potential of 

MN in the management of diabetes (46–49).  

5. MN ADVANTAGES IN VACCINE 

DEVELOPMENT 

MNs have been repeatedly shown in 

various studies to elicit a superior immune response, 

capable of providing greater protection against virus 

challenge, sustained immunity, and dose sparing 

effect. Due to the micron-size structure of needles, 

these devices have proven to be far more effective in 

targeting immunological rich layers of ED and dermis, 

demonstrating their usefulness in the development of 

next-generation vaccines. In the context of vaccine 

development, MNs provide the following key 

advantages over traditional vaccination routes: 

5.1. Superior immune response 

MNs can place drugs closer to blood 

capillaries resulting in shorter lag time and faster 

therapeutic response. It has been demonstrated that 

ID vaccination enhances the immune response in 

equivalent doses as compared to s.c. or i.m. 

injections. Phase 2 study with BD Soluvia™ (FDA 

approved) microinjection system showed that 15 µg 

of trivalent inactivated influenza vaccine in elderly 

patients above 60, induced 1.7-fold higher GMT 

response compared with the same amount of i.m. 

dose. Furthermore, a 40% seroconversion rate 

(proportion of vaccinated individuals receiving a four-

fold antibody titer increase) was achieved (50). 

These results were confirmed in Phase 3 study where 

ID delivery of an equivalent dose of 1µg HA/strain 

elicited superior GMT and seroprotection rates at 21-

d post vaccination (51). Virus-like particles (VLPs), 

stabilized in the presence of trehalose and coated on 

MNs, produced 100% protection against the lethal 

viral challenge, a preventative immune response 

superior to i.m. administration (52). 

5.2. Dose sparing effect 

MNs can be used for vaccination where 

their potential has been realized in several studies 

due to their ability to effectively target key immune 

cells in generating a robust immune response. An 

ED-dermal layer of skin has a rich population of 

antigen-presenting cells (APCs) called Langerhans 

cells, subclass of dendritic cells, which uptake foreign 

antigens, migrates to lymph node and initiates Th1 

and Th2 dependent immune response. ID 

vaccination in this region has been shown to 

generate an equivalent antibody response at a much 

lower dose. This dose sparing, and increased 

potency, has been documented in several studies 

and is useful in not only reducing the cost of the 

vaccine but also in pandemics when a large 

population is at high risk of infections, and therefore, 

relatively lower mass production of vaccine is needed 

(53). In one study, ID vaccination with 1/5th of the 

dose of the conventional live attenuated yellow fever 

vaccine was able to achieve full protective immune 

response (54). Similar results were observed in 

another study where participants injected ID with 

1/5th dose of inactivated polio vaccine achieved 

100% seroconversion rate similar to the participants 

receiving the full dose of the same vaccine i.m. (55). 

Similarly, ID delivery of 20% dose of three different 

strains of influenza virus (H1N1, H3N2, and Malaysia 

B) achieved similar seroconversion rates, 

seroprotection rate, and GMT as compare to i.m. 

delivery (56). A similar dose sparing effect was 

observed for the trivalent inactivated influenza virus 

(Fluzone) (57), human diploid cell rabies vaccine (58, 

59), and purified chick embryo cell rabies vaccine 
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(PCECV) (60). However, it cannot be safely 

interpreted that the dose sparing effect will be seen 

in all vaccines as each vaccine has a different 

immunological benefit for ID delivery. Also, long-

lasting antibody response for several years remains 

to be established for ID delivered vaccines. In one 

retrospective study, ID delivered rabies vaccine could 

elicit an effective antibody response for 10 years (61).  

5.3. Self-vaccination 

The minimally invasive approach of MN 

vaccination can help people to vaccinate children 

with minimum training. This also increases the 

chances of more children getting vaccinated as often 

it might be physically difficult for parents to schedule 

a clinic visit for vaccination. In one study, intent to 

vaccinate increased to 65% when participants were 

given a self-administered placebo MN patch with 

instructions (62). In another study, MN array with a 

leaflet containing instructions could be applied 

effectively and reproducibly by volunteers without the 

aid of a MN applicator device demonstrating the self-

administering vaccination potential of MN (63). 

6. MICRONEEDLE APPLICATIONS 

6.1. Diabetes 

There have been various studies involving 

the use of MNs for diabetes management in humans 

and animal models. Biodegradable polymers in 

conjunction with dissolving MNs were used in 

diabetic rats, where a hypoglycemic effect was seen 

in a dose-dependent manner. Subcutaneous 

injection dropped blood-glucose levels below the 

hypoglycemic threshold, whereas the same dose of 

insulin delivered via MNs kept blood-glucose levels 

above the hypoglycaemic threshold and maintained 

it at normal levels for longer periods, demonstrating 

the potential of MNs to deliver insulin in a controlled 

manner (64). This was further substantiated in a 

different study by Resnik et al., where sustained 

plasma insulin concentration was achieved after the 

application of hollow MNs as compared to the same 

dose delivered by s.c. infusion (65, 66). Thus, in 

diabetes management, where often multiple doses 

are required; steady-state concentration of insulin 

can mimic multiple dosing regimens. In an innovative 

approach by Yanqi et al., biodegradable MN arrays 

were integrated with pancreatic β cells and glucose 

signal amplifiers. The presence of amplifiers 

triggered the release of insulin in a hyperglycemic 

state in type-1 diabetic mice and stabilized blood 

glucose levels over 10 hours (67). Potential of MN 

was also demonstrated in the pediatric population, 

where 16 children and adolescents received insulin 

via hollow MNs. MN insertion pain was significantly 

lower and the onset of action was significantly faster 

as compared to s.c. treated arm indicating potentially 

greater patient compliance in children for the 

treatment of diabetes, as they are often afraid of 

needles (68). From the diagnostic point of view, MNs 

have been studied as the means of continuous 

glucose monitoring systems (CGMS). MNs are 

functionalized either to act as a sensing probe or a 

biological fluid collector. Both approaches have their 

unique challenges as it is quite difficult to develop 

functionalized MNs in a miniature form (66, 69). 

6.2. Obesity 

MNs have found their application in the 

management of obesity, although it's still in the 

exploratory stage and relatively fewer studies have 

been conducted. In a study by Dangol et al., 

dissolving MN loaded with caffeine, resulted in 

significant weight loss as compared to obese mice. 

Triglyceride, total cholesterol, and lipoprotein-

cholesterol levels also reduced within six weeks of 

treatment after dissolving MNs containing caffeine 

were applied in obese mice (70). Zhang et al. 

prepared rosiglitazone-loaded dextran nanoparticles 

embedded into polymeric MN-array patch for local 

delivery of browning agents, which facilitates 

browning of white adipose tissue resulting in 

dissipation of energy through the production of heat 

via non-shivering thermogenesis, thus, reducing 

obesity. In in-vivo mice studies, the application of MN 

loaded browning agents resulted in sustained release 

of rosiglitazone for three days and an increase in 

energy expenditure, fatty acid oxidation, and 

reduced-fat padding locally where MN was applied 

(71). An et al. fabricated gelatinized polymers where 

gelatin itself acted as a therapeutic agent. Gelatin 

was shown to reduce the suppression of lipogenesis-

related genes in gene-expression studies. 

Furthermore, local application of gelatin MN in high-



Applications of microneedles in disease management 

165 © 1996-2021 
 

fat diet-induced obese rats decreased the amount of 

subcutaneous adipose tissue at the site of application 

(72). The same authors further extended the 

application of gelatin MNs in reducing the 

accumulation of adipose tissue where gelation 

derived from fish and swine were used in preparing 

MNs. Four-week treatment of either of the gelatin 

MNs to high-fat diet-induced obese rats resulted in 

smaller adipocytes in the region of application as well 

as a reduction in expression of fat metabolism-

associated gene levels (73).  

6.3. Alzheimer’s disease 

MN potential has also been realized in the 

management of chronic diseases, e.g. Alzheimer’s. 

Transcutaneous immunization (TCI) in mice with 

amyloid β-1 (Aβ-1) peptide seemed to recover 

cognitive function to some extent and higher anti-Aβ-

1 IgG levels (74). However, this approach wasn’t 

effective as it didn’t produce epitopes or isotypes of 

anti-Aβ-1 IgG which are equally important in the 

complete restoration of cognitive function (75, 76). 

This suggests that future studies will require TCI to 

specifically elicit isotypes of anti-Aβ-1 IgG implicated 

in the treatment of Alzheimer’s disease. Similarly, 

donepezil HCL containing film integrated with 

hydrogel-forming MNs was used to achieve an 

optimum skin concentration level in-vivo in rats for 24 

hours (77). 

6.4. Vaccine development 

MNs can overcome disadvantages that are 

associated with the traditional vaccination method 

using hypodermic needles. Traditional vaccinations 

cause pain, generate sharp waste, require cold 

storage, and bypass the immune system of the skin. 

In contrast, several studies have demonstrated that 

MNs cause indiscernible pain (78–80), minimize the 

generation of sharp waste and associated hazard, 

stabilize proteins at room temperature eliminating the 

need of cold storage (81–85), and produce a superior 

robust immune response by targeting ED and dermis 

region of skin rich with immune cells (6, 86–90). In a 

study evaluating the cost-effectiveness of MN 

patches, Adhikari et al. demonstrated that the first 

dose of MN vaccination would cost US$0.95 

compared to US$1.65 for the dose administered via 

SC (91). Rodgers et al. have provided a 

comprehensive review solely focused on combining 

nanoparticle delivery with MNs in vaccine 

development (92) as well as on the use of dissolving 

MN in the vaccine development (93). 

6.4.1. Polio vaccine 

Kolluru et al. developed dissolving MN 

containing inactivated polio vaccine (IPV) 

demonstrating stability in all three vaccine serotypes 

with > 70% activity maintained after 2 months and > 

50% activity maintained after one-year storage at 5-

25°C (94). In a study by Schipper et al., repeated 

fractional intradermal dosing of IPV serotype-1 using 

hollow MN in rats resulted in the 10-fold increase in 

IPV-specific IgG response as compared to i.m. bolus 

dosing (95). IPV was alternatively coated on MNs 

with N-trimethyl chitosan chloride (TMC) for efficient 

release during a pH-shift after in-vivo application in 

rats (96). In a human study involving 231 adults, ID 

vaccination with 40% of the standard dose, resulted 

in an increase of antibody titers by 64-fold (97). 

6.4.2. Rabies vaccine 

Vescoco et al. conducted a study involving 

66 healthy volunteers and injected rabies vaccine 

using DebioJect ID device containing 1/5th the dose 

delivered intramuscularly. Although, no difference in 

humoral response was observed between ID and i.m. 

routes, ID vaccination resulted in a significant 

decrease in pain associated with injections (96). 

Another study involving vaccination of dogs 

demonstrated that dissolving MN patch containing 

rabies vaccine can be at least as immunogenic as 

i.m. injection at the same dose (98). Laurent et al. 

delivered rabies vaccine using Beckton Dickinson's 

pre-filled ID delivery system. At 1/4th of the dose 

delivered i.m., protective seroconversion rate was 

achieved in healthy volunteers (99). 

6.4.3. Measles and rubella  

Edens et al. used coated MNs to immunize 

cotton rats with Edmonston-Zagreb measles vaccine 

strain. Full human dose or 20% of the dose was 

delivered, which generated virus-neutralizing 

antibodies at levels equivalent to the same dose 

delivered i.m. (100). Joyce et al. used dissolving MNs 

to immunize infant rhesus macaques. Higher, but not 

significant, neutralizing antibody titers were observed 
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after MN application when compared to s.c. injection. 

On day 42 after vaccination, 100% of infant 

macaques achieved protective titers in MN treated 

group, whereas only 50% of infant macaques were 

able to achieve protective titers in s.c. group (101). 

The measles vaccine has also been demonstrated to 

be stable at elevated temperatures of up to 40°C 

when formulated with dissolving MN patch (102).  

6.4.4. Hepatitis vaccine 

Nguyen et al. coated hepatitis B surface 

antigen, with Trehalose for stability, on MNs. In-vivo 

studies involving mice showed that antibody titers 

were significantly higher compared to vaccine 

delivered i.m., with alum as an adjuvant. In MN 

treated group, Th2 type immune response was 

predominant (103). In a study involving 16 rhesus 

macaques, dissolving MN patch, containing the 

hepatitis B vaccine, elicited seroprotective levels that 

could be correlated to seroprotection levels needed 

in humans. Induction of antigen-specific IFN-γ and IL-

4 were higher, but not significant, in MN group than 

in i.m. group (87). A quadrivalent vaccine of hepatitis 

C, which is coded for four genotypes, was delivered 

with a MN device (Flugen) in Landrace pigs. At day 

42 and 56 post-vaccination, antibody responses were 

significantly higher in the ID group (without adjuvant) 

compared to i.m. group, along with balanced Th-1 

and Th-2 cytokines, strong T-cell, and granzyme B 

responses (104). Similar results were observed in 

several other studies involving different animal 

models and hepatitis B vaccines (7, 105–108). 

Coated MNs were coated with interferon-α, used in 

the treatment of hepatitis C, and achieved a similar 

reduction in tumor weight of mice when compared to 

s.c. administration (109). Wang et al. developed an 

oral mucosal vaccine of Hepatitis B antigen. When 

administered s.c. along with alum as an adjuvant, it 

produced Th2-biased immune response. However, 

dissolving MN arrays filled with mannose-PEG-

cholesterol/lipid A-liposomes (MLLs) were applied to 

the oral mucosal region which produced Th-1 

predominant, although balanced immune response. 

Moreover, IgA levels were significantly higher during 

oral mucosa immunization with MNs, and mucosal 

immunity in mice lasted nine months longer than the 

same vaccine delivered by vaccines. Levels of IFN-γ 

were significantly increased after MN treatment. 

Thus, robust cellular and humoral immunity were 

developed forming multiple lines of defense. MLLs 

delivered alone without MN resulted in poor immuno-

protection (110). 

6.4.5. Tetanus vaccine 

Dissolving MN, fabricated from PVA and 

PVP, containing tetanus toxoids were applied on 

albino mice, which resulted in similar levels of IgG, 

IgG1, and IgG2α antibody titers when compared to i.m. 

group (88). Similar results were obtained when 

tetanus toxoid and diphtheria toxoid subunit vaccines 

were co-loaded in ceramic nano-porous dissolving 

MN arrays (111). Tetanus toxoid was loaded into 

chitosan nanoparticles and delivered via either solid 

or hollow MNs, which produced comparable IgG1 and 

IgG2α, compared with MN assisted traditional tetanus 

vaccine (without nanoparticles). However, Th1 

cytokine levels i.e. IL-2, IL-6, were significantly higher 

in MN assisted tetanus-containing NP group, in 

comparison to IM administration of commercial 

tetanus vaccine. In contrast, Th2 cytokines, i.e. IFN-

γ and IL-4 were comparable in i.m. and MN assisted 

groups. The higher cellular immune response 

observed after MN assisted vaccination of tetanus-

containing NPs, might be due to the ability of MNs to 

deliver the vaccine in the skin layers where APCs 

mainly DCs, macrophages, and LCs are residing 

(112). Esser et al. prepared unadjuvanted tetanus 

toxoids containing dissolving MN fabricated from 

PVP and sucrose. MN treated pregnant mice 

conferred complete protection and 100% survival of 

all the mice born to vaccinated mothers when 

newborns were challenged with tetanus toxin at six 

weeks of age. Tetanus-specific antibodies were 

detectable up to 12-weeks of age. In contrast, mice 

born to i.m. vaccinated mothers could not survive the 

tetanus challenge (113). This illustrates the potential 

of vaccinating neonates while simultaneously 

vaccinating pregnant women (114). 

6.4.6. Influenza vaccine 

Chitosan-based dissolving MNs elicited 

significantly higher influenza-specific antibody levels 

as compared to i.m. delivery. During the H1N1 viral 

challenge, MN immunized mice showed 100% 

survival as compared to 40% survival of i.m. treated 

mice (115). In a separate study, MN patch containing 

human influenza split vaccine and virus-like particles 

provided effective protection against heterosubtypic 
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influenza (116). To explore the use of solid MNs, 

recombinant hemagglutinin (HA) was loaded into 

solid nanoporous MNs. After vaccination, mice 

showed complete protection when challenged with 

the mouse-adapted pH1N1 virus (117). Since the 

influenza virus has several subtypes, a universal 

vaccine against all flu subtypes is often desirable. 

Zhu et al. encapsulated inactivated influenza virus 

vaccines (H1N1 and H3N2) in dissolving MN patch. 

Mice immunized with this patch showed enhanced 

cross-protection against heterologous reassortant 

A/Shanghai/2013 H7N9 (rSH) influenza virus 

infection and antiviral efficacy against reassortant 

A/Vietnam/1203/2004 H5N1 (rVet) and 

A/Shanghai/2013 H7N9 (rSH) virus challenges (118). 

In a phase one study involving 370 healthy subjects, 

MicronJet600™ MN device was used to deliver 7.5, 

15, and 45μg HA antigen/strain, and immunogenicity 

results were compared with Inflexal V™ (Janssen). 

MicronJet600™ MN demonstrated significantly 

higher immunogenicity than Inflexal at an equivalent 

dose (119). 

6.4.7. Other applications of vaccine 

Li et al. developed a long-lasting 

contraceptive MN biodegradable patch made out of 

PLGA polymer which maintained levonorgestrel 

concentration above the human contraceptive 

threshold for one month by slowly releasing the 

hormone over longer over a month (120). Prausnitz 

et al. discussed the application of “oral” MNs using 

the technology called luminal unfolding MN injector 

(LUMI) with the potential of delivering proteins and 

other biomolecules by bypassing harsh physiologic 

conditions of the gastrointestinal tract and releasing 

the drug in the intestinal wall for uptake into the 

bloodstream (121). Kolluru et al. developed a MN 

with plasmonic paper on the backing. Upon MN 

application, interstitial fluid (ISF) was collected on the 

plasmonic paper which can be later quantified for 

molecules in ISF using Raman scattering technique. 

This is an extremely useful approach for therapeutic 

monitoring and diagnostic purposes (122). ISF can 

be used as an alternative to blood, for the 

identification of biomarkers, as ISF do not clot and do 

not contains red blood cells. Indeed, anti-polio IgG 

levels were similar in ISF and serum when rats were 

immunized with polio vaccine (123). In an interesting 

study, snake-fang inspired MNs were constructed, 

with specialized design of multiple open groove 

architectures mimicking the grooved fangs of rear-

fanged snakes. During hydrodynamic simulations of 

such specialized microstructures, MNs were shown 

to instantly (<15 s) deliver various liquids with a 

gentle thumb pressure circumventing the need of 

sophisticated and complex pumping system (124). 

7. US-FDA APPROVED MN SYSTEM 

Over the years, several MN devices have 

been approved by the FDA. Furthermore, there have 

been various ongoing clinical trials listed in Table 1. 

Below is the summary of FDA approved MN devices 

as well as current clinical trials exploring various 

applications of MNs. The detail of MNs manufactures 

and their features are expressed in Table 2. 

7.1. 3M-hollow Microstructured 

Transdermal System (3hMTS) 

3M’s hMTS technology is designed to 

improve ID delivery of biologics. It delivers a wide 

range of viscous formulations in quantities up to two 

ml within minutes depending upon the formulation 

and drug used. This self-administered patient-friendly 

system is designed for faster absorption and to 

achieve higher bioavailability of drugs. In a study, 

human growth hormone (hGH) showed higher Cmax 

when delivered using 3hMTS in Guinea pigs as 

compared to s.c. delivered hGH, although it was not 

statistically different. Peak concentration was 

achieved within 30-60 minutes for ID delivered dose 

as compared to 150 minutes for s.c delivery. This was 

attributed to faster absorption through highly 

vascularized ID tissue as compared to dense s.c. 

tissue. It comes with elderly patient-friendly features 

such as textured grip, audible click indicating 

actuation of drug and real-time status indicator (125). 

7.2. MicroCor® MN system 

Corium Inc. was issued a patent for 

dissolving MNs containing a matrix of biodegradable 

polymer containing drugs, vaccines, and biologics 

designed for rapid uptake, increase in skin 

concentration, and excellent skin tolerability. 

Aqueous nature of the skin rapidly dissolves the 

microstructures releasing the drug payload. Their  
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Table 1. List of ongoing clinical trials involving the use of MNs and their applications 

MN Condition Study Type Study Description Primary Outcome Sponsor 

MN device Psoriasis 

Vulgaris 

Observational 

(n=11) 

To collect skin biopsies and non-

invasive MN device samples to use 

for transcriptomics profiling 

Measurement of 

Expression by RNA-

sequencing (RNAseq) of 

Extracted RNA Using 

Punch Biopsy Method 

Versus MN Device 

Sampling Method  

Janssen R&D 

MN patch Healthy  Interventional 

(n=180) 

To explore the rate of skin barrier 

recovery following MN treatment in 

healthy subjects of differing 

racial/ethnic backgrounds 

Micropore closure kinetics  University of Iowa 

Fractional MN 

Radiofrequency 

(FMR) 

Skin Aging Interventional 

(n=26) 

Irradiate the high frequency by 

entering the dermis. The generated 

radiofrequency transfers heat 

energy and induce thermal 

denaturation in the surrounding 

tissue 

Skin roughness and 

wrinkle 

Yonsei University 

Zolmitriptan-

coated titanium 

MN array 

Cluster 

Headache 

Interventional 

(n=120) 

Self-administration of patches for 

the treatment of cluster headache 

The proportion of subjects 

who achieve sustained 

pain relief 

Zosano Pharma 

Corporation 

MN array-

Doxorubicin 

Cutaneous T-

cell Lymphoma  

Interventional 

(n=54); dose-

finding study 

In-situ MNA-directed chemo-

immunotherapy using doxorubicin to 

kill tumor cells locally and alter the 

tumor microenvironment to induce 

durable systemic tumor-specific 

immunity 

Evaluate the safety by 

confirming vital signs, 

hematology, 

comprehensive metabolic 

panel, assessment for 

skin toxicity, and adverse 

event evaluation 

University of 

Pittsburgh 

Dissolving MN 

containing 

doxorubicin (25-

200 µg) 

Basal cell 

carcinoma 

Interventional 

(n=31); dose-

finding study 

To assess dose-limiting toxicity 

(DLT) and maximum tolerated dose 

(MTD), efficacy, safety, and 

tolerability  

To evaluate DLT and 

MTD 

Presence or absence of 

cutaneous reactions  

SkinJect, Inc 

The solid 

microstructured 

transdermal 

system 

containing 

abaloparatide 

(300 µg) 

Postmenopausal 

Osteoporosis 

Interventional 

(n=474) 

12-month study to compare the 

efficacy and safety of abaloparatide-

sMTS with abaloparatide-s.c. 

Percent change from 

baseline in lumbar spine 

bone mineral density at 

12 months 

Radius Health, Inc. 

Solid MN 

followed by 

application of 

penicillin (1200-

2400 mg) 

Healthy 

volunteers 

Interventional 

(n=20) 

In-house feasibility study of 

penicillin biosensor technology 

linked with closed-loop control for 

the automated delivery of penicillin 

antibiotics 

Assessment of the 

biosensor's ability to track 

benzylpenicillin 

concentrations compared 

to observations made by 

microdialysis and blood 

sampling. 

Compare PK-PD target 

attainment between visits 

Imperial College 

London 

Radio-frequency 

MNs 

Photoaged skin 

and actinic 

keratoses. 

Interventional 

(n=24) 

To investigate a non-ablative 

fractional thulium laser and a radio-

frequency MN device as pre-

treatment for combination 

photodynamic therapy 

The 5-point categorical 

scale of photodamage 

severity, measuring 

changes in skin texture, 

pigmentation, 

telangiectasia, and 

wrinkles. 

Merete Haedersdal, 

Bispebjerg Hospital 

contd... 
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Table 1. Contd... 

MN Condition Study Type Study Description Primary Outcome Sponsor 

FMR Periorbital 

Edema 

Interventional 

(n=30) 

To establish clinical efficacy, safety 

and patient satisfaction of reducing 

lower eyelid convexities or "bags" 

and/or malar crescents 

Change in lower eyelid 

convexity scale 

Change in Festoonage 

scale 

Subject assessment of 

satisfaction 

InMode MD Ltd. 

Dermaroller Vitiligo Interventional 

(n=36) 

A comparative study between 

recipient site preparation using 

dermabrasion, liquid nitrogen 

induced blister and derma rolling 

system in autologous non-cultured 

epidermal cell suspension 

procedure  

Comparison of extent of 

re-pigmentation in the 

vitiligo patches following 

dermabrasion, 

dermaroller system, and 

liquid nitrogen induced 

blister followed by 

autologous non-cultured 

epidermal cell suspension 

Davinder Parsad, 

Postgraduate 

Institute of Medical 

Education and 

Research 

 

 

technology includes the benefits of customizable 

release profiles, one-step administration, and 

negligible sharp wastage. Phase 2a clinical study in 

women aged 50-85, was completed for MicroCor® 

PTH containing teriparatide indicated in the treatment 

of osteoporosis, which is a common unmet medical 

need in the aging population. Traditionally, s.c. 

injection is required once daily, which needs 

refrigeration and produces sharp waste. However, 

MicroCor demonstrated comparable teriparatide 

exposure without leaving any sharp wastage behind 

and eliminating the need for cold storage, ultimately 

solving needle abuse and reducing cost. A recent 

preclinical proof-of-concept study with this 

technology was demonstrated in E-6 (GLP-1 agonist) 

which is used in diabetic patients, another common 

chronic disease in the elderly. E-6 is an engineering 

peptide manufactured to increase protein stability, 

potency, and serum half-life. In-vitro porcine skin 

study showed that MicroCor® technology allowed 

sustained blood concentration of E-6 for 96 hours 

after a 5-minute application, comparable to s.c. 

injection. This also opens up the possibility to extend 

this technology to other peptide hormones such as 

insulin, growth hormones, and oxytocin (126). 

7.3. MicronJet MN system 

MicronJet (NanoPass Technologies Ltd) 

MN device has four 450 um needles, each 0.45 mm 

in length, compatible with any standard syringe to 

deliver liquid formulation of vaccines, drugs, and 

proteins. One-third equivalent dose of varicella-

zoster virus administered in adults aged 50 years and 

older induced significantly higher GMT titers than s.c. 

dose, which persisted over 18 months (127). In 

another study, the dose sparing effect was 

demonstrated in healthy adults aged 18-40, where 

similar GMT levels were achieved using this device 

for ID delivery of 1/5th equivalent dose of H1N1 and 

B strain of influenza virus (56). The efficacy and 

safety of this device were also demonstrated to be 

comparable to traditional injection. However, pain 

experienced by subjects with Micronjet was much 

less than hypodermic needles, as expected (128, 

129). Thus, MNs can be an effective tool in 

vaccinating the aging population, which is a critical 

unmet medical need. More than 90% of influenza-

related deaths and hospitalizations have been seen 

in elderly people. Current vaccines are effective only 

in younger adults whereas their efficiency reduces 

considerably in the elderly due to weakened immune 

response (130). 

7.4. AdminPen MN system 

AdminPen consists of a plastic syringe 

attached to the back of the MN array intended to 

deliver liquid formulation over 1cm2 area of skin. It 

can also be customized to attach to any standard 

syringe. In-vivo study in rats where vaccination 

containing whole-cell lysates of ID8 cell was 

delivered with AdminPen showed marked reduction 

in tumor growth and an increase in IgG1 and IgG2 
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titers (protective immunity) when delivered ID in 

addition to simultaneous being administered orally 

(131). Vismodegib, an anti-cancer small drug 

molecule, was delivered in superior concentration in 

excised porcine ear skin and there was a positive 

correlation between length of the needle and 

vismodegib concentration in the skin (132). Similarly, 

a 44-fold increase in flux was observed after six hours 

in rat skin in AdminPen delivered iron compared to its 

passive flux (133). 

7.5. AdminPatch® MN system 

AdminPatch® MN arrays are 300-1500 

um length that can be used either for diagnostic 

purposes or early detection of cancer biomarkers. 

It can also be used in conjunction with the drug-in-

adhesive transdermal patch. About a two-fold 

increase in the skin concentration of insulin was 

achieved using 1500 µm length AdminPatch® array 

as compared to its passive flux (134). In-vitro study 

in porcine ear skin demonstrated a 9-fold increase 

in the flux of levodopa using AdminPatch® 

compared to passive permeation. Levodopa is 

used in the treatment of Parkinson’s, a chronic 

disease present in a large number of the aging 

population. However, therapeutically relevant flux 

was not achieved suggesting future use of larger 

arrays to deliver a higher dose resulting in clinically 

significant plasma concentration (135). 

7.6. Tyndall National Institute (TNI) MN 

system 

TNI’s wet etch technology allows 

fabricating silicon MNs of any height, density, and 

sharpness with a smooth surface and excellent 

structural robustness. These MNs are currently under 

investigation for their wide range of applications. 

Birchall et al. showed that pDNA could be localized 

in the ex-vivo human skin for cellular internalization 

and gene expression demonstrating the potential of 

MNs in cutaneous gene therapy (136). Genetic 

vaccination introduces DNA into cells, which is 

recognized as a foreign antigen resulting in the 

initiation of an immune response (137, 138). This 

approach takes advantage of excellent antigen-

presenting cells located in the skin (139). TNIs wet 

etch MNs are currently being investigated for their 

use in monitoring ECG and treatment of skin tumors. 

8. CONCLUSION AND FUTURE 

PERSPECTIVES 

MNs are emerging as an important tool to 

revolutionize the field of transdermal drug delivery 

Table 2. MNs Manufactures and their features 

Manufacturers MNs Devices Features 

3M Hollow micro-structured transdermal system Delivers the viscous formulations. 

[> 2 ml in 1 cm2 MN array, Needle length – 1500 

μm] 

Corium Inc MicroCor® MN system Delivers the smaller peptides, proteins, 

monoclonal antibodies, and vaccines.  

[Dissolving type MN patches with varying 

lengths] 

NanoPass Technologies Ltd MicronJet MN system Delivers the vaccine for the improvement of 

immunogenicity. 

[Silicon crystal type, Needle length – 0.6 mm] 

AdminMed AdminPen MN Delivers the vaccines. 

[Stainless steel coated liquid injection system, 

Needle length - 500-1500 μm] 

AdminMed AdminPatch® MN system Delivery of vaccines and liquid medicines. 

[Stainless steel solid type of MNs, poke holes in 

the skin] 

Tyndall National Institute (TNI) Micro transdermal interface platform (MicroTIPs) Delivers the vaccines, viscous & liquid 

medicines. 

[Biodegradable and hollow type of MNs] 
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and broaden the applications of drugs for the treatment 

of different diseases. The major advantages of MNs 

are painless, non-invasive, and convenient to 

administer. Further, it doesn’t require cold storage and 

it is useful for developing and low-income countries. It 

will open Pandora’s Box for a newer dimension of the 

drug delivery process for vaccination, bio-peptides, 

and a large size of molecules. Since MNs are relatively 

easy to manufacture and it can significantly bring down 

the cost of medicine and therapy. Besides, it can be 

self-applicable compared to traditional hypodermic 

needles. Most important of MNs are the least wastage 

of medicine and easy to handle. Despite the dramatic 

progress of MNs manufacturing can differ depending 

upon the type of drug, dimensions of MNs array 

preparations, and purpose of MN device used. Hence, 

in the future; based on the guidance and support of 

technical expertise from the microelectronics industry; 

it can translate this MNs application from laboratory-

scale to industrial-scale production. Furthermore, MNs 

can bring the hope to make the next generation of 

vaccination devices with the most convenient and 

efficient drug therapy by avoiding the first-pass 

metabolism, problems of conventional hypodermic 

needles, and drug delivery processes including 

multiple adverse drug reactions. Thus, MNs 

concepts are expected to make a potential impact 

on clinical therapy for a wide range of chronic 

disorders in near future. 
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APCs, antigen-presenting cells; Aβ-1, amyloid 

β-1 peptide; BD, becton dickinson; DNA, 

deoxyribonucleic acid; DLT, dose limited 

toxicity; ED, epidermis; FMR, fractional 

microneedle radiofrequency; GLP-1, glucagon-

like peptide-1; GMT, geometric mean titer; 

H1N1, influenza A virus subtype; hGH, human 

growth hormone; i.m., intramuscularly; IFN-

γ,interferon gamma; IgG, immunoglobulin G; IL-

4, interleukin; IPV, inactivated polio vaccine; 

ISF, interstitial fluid; LCs, Langerhans cells; 

MLLs, mannose-PEG-cholesterol/lipid A-

liposomes; MNs, microneedles; MTD, 

maximum tolerated dose; n, sample size; 

PCECV, purified chick embryo cell rabies 

vaccine; PVA, polyvinyl alcohol; PVP, polyvinyl 

pyrrolidone; RNA, ribonucleic acid; rSH, 

reassortant A/Shanghai/2013 H7N9; s.c., 

subcutaneously; SC, stratum corneum; TCI, 

transcutaneous immunization; TDDS, 

transdermal drug-delivery systems; TMC, N-

trimethyl chitosan chloride; TNI, Tyndall 

National Institute. 
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