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1. ABSTRACT 

Epithelial to mesenchymal transition (EMT) 

is a multistep biological process in which epithelial 

cells acquire characteristics of mesenchymal cells. 

Inappropriate activation of EMT contributes to the 

acquisition of pro-metastatic characteristics and 

cancer progression. EMT process involves the 

downregulation of epithelial markers (EpCAM, 

CDH1) and upregulation of mesenchymal markers 

(VIM, CDH2) and EMT-transcription factors (ZEB1/2, 

TWIST1/2, SNAI1, SLUG). MicroRNAs, a class of 

non-coding RNA post-transcriptionally govern gene 

expression by binding to the target mRNAs. A large 

proportion of miRNAs occur as miRNA clusters 

consisting of two or more miRNA coding genes. 

MiRNA clusters are reported to regulate diverse 

biological functions, including EMT. This 

comprehensive review discusses the role of miRNA 

clusters in EMT. 

2. INTRODUCTION 

An epithelial to mesenchymal transition 

(EMT) is a biological process in which epithelial cells 

lose their polarity and cell-cell adhesion properties, 

and gain migratory and invasive properties to 

become mesenchymal cells (1). Early changes in 

EMT include loss of cell to cell adhesion and the 

advanced stages are characterized by degraded 
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basement membrane and cellular delamination (2). 

EMT engages new transcriptional programs that lead 

to epithelial to mesenchymal transition. Thus, the 

completion of EMT is marked by the degradation of 

the underlined basement membrane, formation of 

mesenchymal cells and migration of these cells away 

from its origin (epithelial layers) (3). During EMT, 

polarized epithelial cells undergo several biochemical 

changes and acquire mesenchymal characters such 

as enhanced migration, invasiveness and increased 

extracellular matrix (ECM) production (4). 

EMT process was first observed by 

Elizabeth Hay in 1960 when working with chicken 

embryogenesis (1). Epithelial cells are characterized 

by the presence of adherent and tight junctions, 

desmosomes and apicobasal polarity (5). EMT is 

classified as type 1 (organ development and 

embryogenesis), type 2 (wound healing, tissue 

regeneration, and organ fibrosis) and type 3 (cancer 

invasion and metastasis) (6). From a clinical 

perspective, EMT is associated with self-renewal, 

resistance to chemotherapy and radiotherapy, 

enhanced migration and invasion, anoikis resistance, 

evasion of the immune system and metastasis of 

cancer cells. 

3. MOLECULAR PATHOGENESIS OF EMT 

EMT involves (i) dissolution of cell 

junctions including tight junctions, (ii) destabilization 

of adherence junction, and (iii) loss of apicobasal 

polarity. Cytoskeletal changes include the 

reorganization of cortical actin and the formation of 

actin-rich membrane projections (7). Formation of 

actin stress fiber is characterized by activation of 

Rho GTPases namely Ras homolog gene family, 

member A (RhoA) and the Rac family small 

GTPase1 (RAC1) and Cell division cycle 42 

(CDC42) (8). Directional cell polarity is important for 

cell migration and is achieved by the relocalization 

of proteins namely protein associated with tight 

junctions (PATJ) to the leading edge of the cells. 

RAC1 and CDC42 promote actin polymerization 

leading to the formation of membrane protrusions 

facilitating migration. Localization of RhoA to the 

rear end of the cells results in disassembly of 

adhesion complexes and cell retractions resulting in 

enhanced migration (8). 

The downregulation of CDH1, cytokeratins, 

claudins, γ-catenin, and ZO-1 are often observed 

during EMT. The most common upregulated proteins 

during EMT include N-cadherin (CDH2), vimentin 

(VIM), fibronectin, α smooth muscle actin (ACTA2), 

matrix metalloproteinases (MMPs) and integrins (5). 

Additionally, there is also the upregulation of EMT-

transcription factors (EMT-TFs) such as Zinc finger 

E-box binding homeobox 1 (ZEBs), Snail Family 

Transcriptional Repressor 1 (SNAIL), Snail Family 

Transcriptional Repressor 2 (SLUG), and Twist 

Family BHLH Transcription Factor (TWIST) (9). EMT 

can be induced by cytokines, hypoxia, growth factors 

from tumor microenvironment, metabolic changes, 

and immune responses (innate and adaptive) via 

activation of signaling pathways (10, 11). EMT can 

also be induced by epigenetic modifications, 

alternative splicing and non-coding RNAs 

(microRNAs and long-non-coding RNAs) (1, 6, 10, 

12–14). 

Many signaling pathways activate EMT by 

inducing the expression of zinc finger proteins 

(SNAIL family), basic helix loop helix (TWIST family) 

and zinc finger E box binding proteins (ZEB family) 

(1). Transforming Growth Factor Beta (TGF-β), 

receptor tyrosine kinases (RTKs), integrin, WNT, 

NOTCH, Hedgehog, hypoxia-inducible factor 1α 

(HIF1α), and Janus kinase2/Signal Transducer and 

Activator of Transcription (JAK/STAT) pathways are 

reported to regulate EMT cascade (15). The EMT-

TFs recruit co-activators and co-repressors to target 

genes and alters the rate of transcription. Among 

the genes, the most commonly targeted include 

genes belonging to the cell to cell adhesion such as 

cadherins. The loss of CDH1 is an important and 

critical step in the induction of EMT. Downregulation 

of claudin and occluding (tight junctions), 

desmoplakin and plakophilin (desmosomes), 

cytokeratins and intermediate filaments were also 

reported to have occurred during EMT (15). Tumor 

necrosis factor (TNFα) bound to TNF receptor 

superfamily member 1A (TNFR) can activate 

nuclear factor kappa B subunit 11 (NFkB) via 

IkappaB (IkB) and induces the expression of 

SNAIL1/2, ZEB1/2, and TWIST1 (16). Interleukin 6 

(IL6), via binding to IL6R, induces the expression of 

TWIST1 (17). Epidermal growth factor (EGF) can 

induce EMT by upregulation of MMP3 via the 
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JAK/STAT pathway (18). Induction of HIF1α via 

Phosphoinositide-3-Kinase- AKT Serine/Threonine 

Kinase 1-Mammalian Target of Rapamycin (PI3K-

AKT-mTOR) can induce EMT (19). Pro-EMT nature 

of Rat sarcoma-mitogen-activated protein kinase 1 

(RAS-MAPK) and MAPK1-mitogen-activated 

protein kinase 1(MKK)-p38-SMAD is also reported 

(20, 21). TGF-β by binding to TGFβR can induce the 

expression of SNAIL, SLUG, ZEB1/2, and TWISTs 

promoting EMT. WNT1-Beta-catenin axis is 

reported to promote EMT via activating SNAIL 

expression. Notch signaling induces EMT through 

activation of SNAIL, SLUG, ZEB1/2 and TWIST 

(15). The induction of SNAIL1 and TWIST1 by HIFα 

also induces EMT (22). Similarly, extracellular 

matrix protein can also induce EMT. For example, 

collagen 1 via activation of SRC Proto-Oncogene 

(SRC) and MAPK1 can induce SNAIL1 expression 

(23). The induction of TWIST1 via Lysyl oxidase 

(LOX) by CD44 has also been reported (24) (Figure 

1). 

4. miRNA CLUSTER  

MicroRNAs (miRNAs) are a class of non-

coding RNAs used by cells for fine-tuning the 

expression of genes in a variety of cell and tissue 

types (25). miRNAs bind to the target mRNA via 

 
 

Figure 1. Schematic representation of characteristics of epithelial to mesenchymal. An EMT occurs through distinct cellular states from 

transition of polarized epithelial cells to mobile mesenchymal cells. Different epithelial and mesenchymal markers and transcriptional factors 

(TFs) are shown (14, 196). 
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complementary base-pairing and affect its 

expression by mRNA degradation or translational 

repression (25). Furthermore, it is clear that miRNAs 

often show deregulated expression leading to the 

acquisition of multiple cancer hallmarks (26). miRNA 

clusters consist of two or more miRNAs encoding 

genes transcribed together in the same orientation 

without having any miRNAs in the opposite direction 

(27). More than thirty percent of miRNAs occur in 

clusters. Chromosome 19 is the largest miRNA 

cluster in the human genome consisting of 46 

miRNAs located in chr19q13.42 (28). Since the 

miRNA cluster consists of many miRNA encoding 

genes, its dysregulation can affect multiple cellular 

functions as opposed to single miRNA alteration. 

Similar to individual miRNAs, aberrant expression of 

the miRNA cluster is also reported in multiple cancer. 

In this review, we discuss the role of miRNA cluster 

in the multi-step EMT program during 

carcinogenesis. 

4.1. miRNA Cluster and EMT  

There are several miRNA clusters whose 

expression is altered contributing to the induction of 

EMT in different cancer conditions. For example, the 

miR-200c/141 cluster promotes EMT in breast 

cancer by targeting Homeodomain Interacting 

Protein Kinase 1 (HIPK1) and by activating CTNNB1 

(29). MiR-221/222 promotes EMT in breast cancer by 

targeting Phosphatase and Tensin Homolog (PTEN), 

Suppressor of Cytokine Signaling 1(SOCS1), Cyclin-

Dependent Kinase Inhibitor 1B (CDKN1B) and Notch 

Receptor 3 (NOTCH3) (30–32). Similarly, miR-

183/182 activates EMT in breast cancer by targeting 

Growth Hormone Receptor (GHR) (33). MiR-216/217 

induces EMT by targeting PTEN and SMAD Family 

Member 7 (SMAD7), resulting in the activation of 

PI3K/AKT signaling and sorafenib resistance in liver 

cancer (34). MiR-17/92 cluster modulates NF-kB 

signaling via targeting of TNF Receptor Associated 

Factor 3 (TRAF3) in gastric cancer to induce EMT 

(35) (Figure 2). 

Several studies have shown the inhibition 

of EMT by miRNA clusters. For instance, miR-

15a/16 inhibits EMT in prostate cancer by 

suppressing TGF-β (36). MiR-200c/141 inhibits 

EMT in colon and lung cancer by targeting 

Achaete-Scute Family BHLH Transcription Factor 

2 (ASCL2) and Forkhead Box F2 (FOXF2) 

respectively (37, 38). FOXF2 is also inhibited by 

the miR-183/182 cluster in colon cancer (37). MiR-

17/92 inhibited EMT by downregulation of 

CyclinD1 (CCND1), Slingshot Protein 

Phosphatase 1 (SSH1), LIM Domain Kinase 1 

 
 

Figure 2. miRNA Cluster regulates EMT pathway via targeting different genes and associated signaling pathways. 
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(LIMK1), Fibroblast Growth Factor 4 (FGFD4) and 

RhoGTPase (39) (Tables 1 - 2). 

4.2. SLUG and miRNA cluster 

Snail Family Transcriptional Repressor 2 

(SNAIL2), commonly known as the SLUG is 

located at 8q11.21. SLUG is overexpressed and 

amplified in numerous cancers is reported to 

promote cell migration, invasion, metastasis, cell 

cycle progression and resistance to apoptosis (52–

57). SLUG is a transcription factor belonging to the 

zinc finger family induces transcriptional 

repression of CDH1 and is anti-apoptotic in nature. 

Highly aggressive tumors show overexpression 

and enhanced activity of SLUG. Both SNAIL and 

SLUG promote invasion and metastasis by altering 

the expression of CDH1 and VIM (58). They inhibit 

CDH1 by binding to the E-box sequences present 

in its promoter region (59). Further, SLUG is also 

capable of downregulating Claudin‐1 (CLDN1) in 

Madin-Darby canine kidney (MDCK) cells (60). 

SLUG induces cell migration and invasion via TGF‐

β signaling (61). SLUG utilizes the SNAG domain 

to suppress target gene expression by recruiting 

histone deacetylases. Elevated SLUG expression 

is connected to CDH1 downregulation, induction of 

EMT, advanced tumor grade, lymph node 

metastasis and poor survival (62). 

SLUG participates in TWIST1 induced EMT 

pathways by repressing the transcription of CDH1 

(52, 63). Many of the miRNA clusters downregulate 

SLUG expression and inhibit EMT. For instance, 

miR-17/92 cluster expression is correlated with 

inhibition of SLUG and induction of CDH1 with 

inhibitory effect on EMT (39). MiR-34, a member of 

the miR-34b/c cluster acts as a tumor suppressor and 

inhibitor of EMT by targeting SLUG (64). MiR-96/183 

promotes the expression of key EMT inducers such 

as ZEB1, ZEB2, SNAIL2, MMP2, and MMP9 by 

suppressing the breast cancer metastasis 

suppressor 1-like (BRMS1L) (33). MiR-183/182 is 

another miRNA cluster that promotes EMT by 

promoting the expression of mesenchymal genes 

and EMT-TFs such as SNAIL, and SLUG (49, 65). In 

colorectal cancer, miR-182 targets FOXF2 and 

induces growth and migration of cancer cells (66). 

MiR-182, along with miR-203, acts as an inducer of 

EMT by targeting SLUG expression in prostate 

cancer (67). MiR-183 and miR-96 are a suppressor 

of EMT by targeting ZEB1, SLUG, Integrin beta 1 

(ITGB1), and Kruppel-like factor 4 (KLF4) (49). Taken 

together, SLUG is an important inducer of EMT 

whose expression is upregulated in cancer via 

altered expression of miRNA clusters. 

Table 1. miRNA cluster promoting EMT 

miRNA Cluster Cancer Signaling/Gene Reference 

miR-200c/141 Breast Cancer Targets HIPK1 and activated β-catenin (29) 

miR-17/92 Gastric Cancer Targets TRAF3 and modulates NF-kB (35) 

miR-221/222 Breast Cancer Targets PTEN and activating Akt/NF-kB/Cox-2 pathway (30) 

miR-183/182 Breast cancer Targets BRMS1L (33) 

miR-224/452 Melanoma Targets TXNIP  (40) 

miR-221/222 Breast Cancer Targets SOCS1 and CDKN1B (31) 

miR-106b/25 Breast Cancer Targets EP300 (41) 

miR-379/656 Lung Adenocarcinoma Targets MAGI2  (42) 

miR-200b/429 Breast Cancer - (43) 

miR-216/217 Liver Cancer Targets PTEN and SMAD7 (34) 

miR-106b/25 Breast Cancer Targets SMAD7 and activates TGF-1 alpha (44) 

miR-221/222 Breast Cancer Notch3 (32) 

Abbreviations: HIPK1, homeodomain interacting protein kinase; TRAF3, TNF receptor associated factor 3; PTEN, phosphatase and tensin 

homolog; BRMS1L, BRMS1 Like Transcriptional Repressor; TXNIP, Thioredoxin Interacting protein; SOCS1, Suppressor of Cytokine 

Signaling 1; CDKN1B, Cyclin Dependent Kinase Inhibitor 1B; EP300, E1A binding protein 300; MAGI2, Membrane Associated Guanylate 

Kinase; SMAD7, SMAD Family Member 7. 
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4.3. SNAIL and miRNA cluster 

Snail Family Transcriptional Repressor 1 

(SNAIL1) is a pro-EMT gene overexpressed in many 

metastatic cancers promoting cell survival and 

migration. SNAIL, via its N-terminal SNAG domain, 

interacts with and recruits co-repressors and 

repressors to the promoter region of CDH1 thereby 

promoting EMT. Pro-EMT signaling pathways [RTKs, 

TGF-β, Notch, Wnt, TNF-α, and bone morphogenetic 

protein 2 (BMP)] along with tumor microenvironment 

are reported to promote EMT by inducing SNAIL 

expression. From the clinical perspective, SNAIL 

expression levels are correlated with tumor grade, 

metastasis to lymph node and clinical outcome in 

metastatic cancer. Moreover, SNAIL overexpression is 

reported to induce metabolic reprogramming and to 

promote drug resistance, recurrence, and metastasis 

(68–70). 

Emerging evidence suggests crosstalk 

between miRNA cluster and SNAIL during EMT 

program. MiR-23a/24/27a located at 19p13.12 is 

regulated through MAPK and TGF-β signaling. MiR-

23a-3p inhibits EMT via TGF-β/Akt/MAPK/Snail axis 

(71). In bladder cancer, miR-323a-3p/MET proto-

oncogene (MET)/SMAD3/SNAIL axis is reported to 

regulate EMT (72). MiR-106b/25 cluster enhances 

non-small cell lung cancer (H1299) cell migration and 

invasion via targeting of F-box and WD repeat domain 

containing 11 (β-TRCP2) by enhancing the expression 

of SNAIL (73). MiR-206 of miR-206/133b cluster 

targets MET and PI3k/Akt/mTOR pathways and 

suppresses EMT (74). MiR-183 cluster consists of 

miRs-183, -96 and -182, and is overexpressed in 

numerous cancers. MiR-182 directly targets 

metastasis suppressor 1 (MTSS1) and induces the 

proliferation of breast cancer cells (75). As a member 

of the miR-181 family, miR-181a is associated with cell 

proliferation and invasion in multiple cancer. MiR-181a 

is reported as an inducer of EMT in prostate cancer by 

targeting TGF-β induced factor homeobox (TGIF2) 

(76). In breast cancer, miR-181b-3p acts as a 

Table 2. miRNA cluster inhibiting EMT 

miRNA 

Cluster Cancer Signaling/Gene References 

miR-15/16 Prostate Cancer Target SMAD3and ACVR2A (36) 

miR-

302b/302d Endometrial carcinoma Target ZEB1, Bcl-2 and promoted expression of BAX (45) 

miR-302b/367 Colon cancer Inhibiting TGFBR2 and activating RHOC (46) 

miR-302b/367 Melanoma Inhibiting TGFBR2 and activating RHOC (46) 

miR-132/212 Prostate Cancer Target SOX4 and inhibits TGF-beta (47) 

miR-17/92 Prostate Cancer 

Decreased expression of cyclin D1, SSH1 LIMK1 and 

FGD4 (39) 

miR-212/132 Cervical Cancer Downregulate SMAD2 and suppresses G1/S transition (48) 

miR-200c/141 Lung cancer Target FOXf2 (37) 

miR-183/182 Lung cancer Target FOXf2 (37) 

miR-200c/141 Colon cancer Target ASCL2 (38) 

miR-183/182 

Overexpressed p21 colon and breast cancer 

cell lines Target SLUG, ZEB1,ITGB1, KLF4 (49) 

miR-200a/429 Mammary carcinoma Target ZEB1 and ZEB2 (50) 

miR-200c/141 Biliary tract cancer 

Positively correlated with CDH1 and negatively correlated 

with VIM (51) 

Abbreviations: SMAD3, SMAD family member 3; ACVR2A, Activin A Receptor Type 2A; ZEB1, Zinc finger E-box binding homeobox1; 

TGFBR2, transforming growth factor beta receptor 2; RHOC, Ras homolog family member C; SOX4, SRY-Box 4; TGF-β1, transforming 

growth factor beta 1; SSH1, Slingshot protein phosphatase 1; LINK1, LIM domain kinase 1; FGD4, FYVE, RhoGEF And PH Domain 

Containing 4; FOXF2, forkhead box F2; SLUG, Snail Family Transcriptional Repressor 2; ZEB, Zinc Finger E-Box Binding Homeobox; 

ITGB1, Integrin Subunit Beta 1; KLF4, Kruppel Like Factor 4; ASCL2, Achaete-Scute Family BHLH Transcription Factor 2; CDH1, E-

cadherin, VIM, Vimentin. 
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promoter of EMT via SNAIL stabilization by targeting 

Tyrosine 3-Monooxygenase/Tryptophan 5-

Monooxygenase Activation Protein Gamma (77). The 

role of Smad2/3/4-dependent pathway in EMT is 

reported in gastric cancer. Smad2/3/4 pathway 

induces the expression of miRNA-181b and targets 

TIMP metallopeptidase inhibitor 3 (TIMP3) to promote 

EMT and metastasis (78). MiR-200 family consists of 

anti-EMT miRNAs their expression is important to 

determine the epithelial phenotypes in cancer. MiR-

200 family activates CDH1 expression by targeting 

ZEB1 and ZEB2 (65). The down-regulation of miR-200 

is reported to enhance the expression of SNAIL and 

SLUG (79). Studies have shown that miR-

34/SNAIL/miR-200/ZEB1 can regulate EMT dynamics 

(80). Inhibition of miR-200c/141 results in the 

upregulation of VIM and SNAIL in breast cancer stem 

cells (29). MiR-424/503 is another miRNA cluster with 

tumor suppressive function, the downregulation of 

which is correlated with resistance to chemotherapy in 

breast cancer (81). Thus, taken together, miRNA 

clusters are important regulators of SNAIL expression. 

4.4. TWIST and miRNA cluster 

TWIST1 and TWIST2 belong to the basic 

helix-loop-helix (bHLH) transcription factor family. 

They promote EMT and enhance the motility and 

dissemination of cancer cells (82). In benign tumors 

activation of TWISTs favors malignant transformation 

via inhibition of apoptosis and senescence pathways. 

TWIST proteins with their bHLH motif recognize E-

box and can act as an activator or repressor of target 

gene expression (83). TWIST overexpression is 

correlated with aggressive cancer, poor prognosis, 

metastasis, and poor survival. Pathways such as 

Wnt, IGF, EGF, TNF-α, IL-17 either induce TWIST 

expression or stabilize via their target genes (NF-κB, 

STAT3, and c-MYC) (16, 84–87). Cytokines, 

chemokines (IL6, EGF) and hypoxia are reported to 

induce the expression of TWISTs to promote EMT 

(17, 86, 88). 

Many miRNA clusters participate in the 

TWIST induced EMT program. MiR-15a-3p and miR-

16-1-3p belonging to the miR-15 cluster, are reported 

to inhibit invasion and metastasis of gastric cancer 

cells by TWIST1 repression (89). TWIST1 is also 

reported to regulate the expression of miRNA 

clusters. An example includes the regulation of miR-

199a/214 cluster expression by TWIST1 during 

development (90). In breast cancer, it induces EMT 

via the miR-373-TXNIP-HIF1α-TWIST signaling axis 

(91). Both up and down-regulation of the members of 

the miR-199a/214 cluster are reported to contribute 

to EMT in cancer (92). Transcription of miR-214 is 

regulated by TWIST1 and ZEB1 (93). MiR-

424(322)/503 is another miRNA cluster linked with 

TWIST. The upregulation of miR-424 in TWIST1 or 

SNAI1-induced EMT is reported (94). MiR-106b/25 is 

Table 3. miRNA cluster and signaling pathway 

miRNA Cancer Target gene/Signaling Pathway  Reference 

miR-221/222 Breast Cancer Tyrosine kinase  (110) 

miR-143/145 Breast Cancer ERBB3/tyrosine kinase (111) 

miR-17/92 large B-cell lymphoma ITIM/tyrosine kinase (112) 

miR-15/16a Ovarian Cancer Integrin-linked Kinase pathway (113) 

miR-143/145 Breast Cancer PTEN/RAS Pathway (114) 

miR-221/222 Breast Cancer TRPS1/ RAS Pathway (115, 116) 

miR-106b/25 Breast Cancer  NEDD4L/NOTCH signaling (117) 

miR-200c/429 Pancreatic Cancer Notch (118) 

miR-17/92 Lung Cancer p38α kinase/wnt signalling (119) 

miR-200a/429 Hepatocellular carcinoma Wnt signaling (120) 

miR-17/92 Medulloblastoma Hedgehog signaling (121) 

Abbreviations: ERBB3, Erb-B2 Receptor Tyrosine Kinase 3; ITIM, immunoreceptor tyrosine inhibitory motifs; PTEN, phosphatase and 

tensin homolog; TRPS1, Transcriptional Repressor GATA Binding 1; NEDD4L, Neural Precursor Cell Expressed, Developmentally Down-

Regulated 4-Like, E3 Ubiquitin Protein Ligase 
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an oncogenic cluster in many cancers and has two 

paralogs in humans namely miR-106b/25 and miR-

17/92. MiR-106b is a pro-metastatic miRNA cluster in 

hepatocellular carcinoma cells (95). Hypoxia is 

reported to induce EMT via controlling miRNA cluster 

expression. For instance, Twist/miR-214/CDH1 

interaction is promoted by hypoxia in the induction of 

renal tubular EMT (96). MiR-524-5p is a member of 

the chromosome19 miRNA cluster (C19MC) which 

directly targets TWIST1 to inhibit EMT (97). Taken 

together, miRNA clusters and the TWIST axis could 

be a potential target in cancer therapy. 

4.5. ZEB and miRNA cluster 

ZEB1 and ZEB2 are located in short arm 

of chromosome 10 and 2 belonging to zinc finger 

E-box binding homeobox (ZEB) family. ZEB family 

induces EMT most often through activating genes 

such as CDH2, Vitronectin (VTN) and MMPs. ZEB 

induced EMT also shows the downregulation of 

CDH1, Claudins, ZO-1, and plakophilins. ZEBs are 

commonly known as Smad interacting protein 1 

(SIP1) consisting of two zinc finger clusters and a 

central homeodomain (98). ZEB induced EMT also 

involves miRNA clusters. MiR-200c/miR-141 

targets ZEB1 and ZEB2 thereby inhibiting 

migration and EMT in head and neck cancer cells 

(99). Loss of miR-200c/miR-141cluster is 

important for lymph endothelial invasiveness in 5-

fluorouracil resistant cells (100). By targeting 

members of C terminal binding protein (CtBP)/ZEB 

complex, miR-141-200c cluster regulates EMT 

(101). MiR-143/145 is downregulated in multiple 

cancers and is an EMT and metastatic suppressor. 

In response to stress, serum starvation or anti-

cancer agents, p53 can activate this cluster. This 

miRNA cluster is suppressed by activated Ras via 

binding to Ras-responsive element-binding protein 

(RREB1) (102). MiR-132 suppresses lung cancer 

cell migration by targeting ZEB2 (103). MiRNA-

23b/27b/24 is an oncogenic miRNA cluster that 

promotes metastasis of breast cancer by 

suppressing Prosaposin (PSAP) (104). MiR-23b 

targets Protein Tyrosine Kinase 2 Beta (PYK2β) 

and suppresses EMT and metastasis in 

hepatocellular carcinoma (105). MiR23b targets 

ZEB1, and acts as a tumor suppressor preventing 

migration and invasion of bladder cancer cells 

(106). MicroRNA-200/ZEB/CDH1 and miR-

200/ZEB/TGF-β axis are also reported in cancer 

(107, 108). MiR-544 is a member of the miR-

379/miR-544 cluster and highly expressed in 

neonatal muscle. MIR-544’s role as an oncogene 

is established in gastric cancer. It promotes 

invasion of lung cancer cells by targeting CDH1 

and upregulation of VIM. MiR-544a induces EMT 

by activation of WNT signaling in gastric cancer 

and immune escape in hepatoma cells. Reduction 

of CDH1 and upregulation of VIM, SNAI1, and 

ZEB1 by miR-544a induces EMT (109). MiR-544a 

directly targets CDH1 and AXIN2 leading to 

nuclear translocation and stabilization of CTNNB1. 

These data collectively suggest that the 

expression of ZEB is regulated by miRNA cluster 

and that ZEB along with other EMT-TFs induces 

EMT and metastasis in multiple cancer. Thus, 

targeting the ZEB-miRNA cluster axis could be 

used for the management of cancer. 

Taken together, a wide array of 

transcription factors is associated and required to 

drive the multistep EMT program and are being 

regulated by a variety of EMT-TFs and signaling 

pathways. The EMT-TFs acting exclusively or 

synergistically, and target common pathways to 

induce EMT. MiRNA clusters reported to regulate 

multiple signaling pathways associated with EMT 

are discussed below. 

5. miRNA CLUSTERS AND SIGNALING 

PATHWAYS 

Major signaling pathways responsible for 

the induction of EMT include tyrosine kinases, 

integrin-linked kinase, RAS, Wnt, Notch, and 

Hedgehog. miRNA clusters and target signaling 

pathways are listed in Table 3. 

5.1. Tyrosine kinases pathway 

Receptor tyrosine kinases (RTKs) are high-

affinity transmembrane receptors which bind to 

growth factors, cytokines, and hormones. RTKs play 

an important role in growth, proliferation 

differentiation and movement of cells (122). RTKs, 

inappropriately regulated, and expressed in many 

cancer types, are strongly implicated in EMT (15). 

Binding of growth factors (EGF, FGF, IGF, HGF, 



miRNA clusters in EMT 

56 © 1996-2020 
 

CFC) to RTKs leads to activation of EMT-TFs such 

as SNAIL, SLUG, ZEB and TWIST via multiple 

signaling axis notably PI3K-AKT-glycogen synthase 

kinase 3 beta (GSK3β)-β-catenin axis or RAS-MAPK 

signaling (15). 

The miRNA cluster can either activate or 

inhibit the expression of tyrosine kinase pathway 

genes (123). For example, miRNA cluster 23a/24-

2 regulates EGFR and c-MET expression in lung 

cancer. Cancer cell invasion and metastasis are 

driven by c-MYC induced miR-23a/27a cluster 

(124). The treatment of NSCLC cells by TGF-β1 

activates miR-134/miR-487b/miR-655 cluster. 

MiR-134/miR-487b/miR-655 by targeting 

membrane-associated guanylate kinase (MAGI2) 

induces gefitinib resistance (42). In chronic 

myelogenous leukemia (CML) both miR-17/92 

cluster and tyrosine kinase activity were reported 

(125). Overexpression of receptor tyrosine kinases 

and miR-221/222 is reported in breast cancer. 

MET, EGF, and miR-3a/24-2 interaction are 

reported in non-small cell lung cancer (124). MiR-

143/145 cluster is downregulated in KRAS mutant 

pancreatic cancer cells. Further, forced expression 

of this miRNA cluster inhibited tumorigenesis 

(126). Interestingly, the miR-143/145 cluster also 

targets KRAS and RREB1 and is an inhibitor of 

Ras signaling (127). MiRNA clusters can promote 

EMT by targeting and inhibiting negative 

regulators of PI3K-AKT signaling. For example, 

miR-106b/25 (128), miR-23a/24-2 (129) and miR-

17/106 (130) activate PI3K- AKT signaling by 

downregulation of PTEN. MiR-27a belonging to 

miR-23a/24-2 synergizes with AKT by targeting 

FOXO1 (131). MiR-15/16 is a tumor suppressive 

cluster that inhibits prostate cancer cell invasion by 

suppressing the TGF-β signaling pathway (132). 

TGF-β and FGF-2 are reported to promote EMT in 

lung adenocarcinoma (PC-9 and HCC-827) cells 

through Smad3, MEK/extracellular-signal-

regulated kinase (ERK), and mTOR pathways. 

Overexpression of miR-16 reduces the expression 

of fibroblast growth factor receptor 1 (FGFR1) and 

vascular endothelial growth factor receptor 2 

(VEGFR2) in endothelial cells (133). MiR-143/145 

is repressed by the activation of EGFR and Ras 

signaling (114). The miR-143 expression has been 

negatively correlated with EGFR in NSCLC cells. 

Transfection studies have shown that EGFR is a 

target of miR-143. MiR-99a/let-7/miR-125b is 

downregulated in malignant pleural mesothelioma 

(134, 135). MiRNA-99a targets (insulin-like growth 

factor 1 receptor) IGF1R/PI3K/AKT/mTOR and 

inhibits proliferation, migration, and invasion of 

cancer cells (136). Thus, altered expression of 

miRNAs can lead to inappropriate activation of 

tyrosine kinase pathways contributing to 

aggressiveness, progression and tumor resistant 

phenotypes in cancer cells via activation of EMT. 

5.2. Integrin-linked kinase (ILK) pathway- 

integrin signaling 

ILKs belong to Raf-like kinases (RAF) 

subfamily and are an intracellular serine/threonine 

kinase. It consisting of 5 ankyrin repeats, a 

phosphoinositide binding motif, and a kinase catalytic 

domain. ILKs act as a regulator of development and 

tissue homeostasis (137, 138). Being a downstream 

mediator of the Smad‐TGF‐β1 signaling pathway, the 

ILK pathway is implicated in EMT and the acquisition 

of invasive and metastatic phenotypes (138). ILKs 

interact with integrins and can be stimulated by 

growth factors and chemokines in a PI3K dependent 

manner. Overexpression of ILKs is reported in 

multiple cancers and inhibition of their activities could 

be used as a potential mechanism to control invasion 

and metastasis in cancer (139). ILKs are required for 

integrin-dependent focal adhesion. ILKs promote 

EMT via AKT1/GSK3β/CTNNB1 axis. Forced 

expression of ILK increased invasion and migration 

of cancer cells through nuclear translocation of 

CTNNB1 and downregulation of CDH1 (140). MiR-

424/503 cluster expression is downregulated in SRC-

transformed cells with its forced expression inhibiting 

cancer cell invasion (141). MiR-23b and miR-27b 

belonging to miR-23b/24-1 have also been 

downregulated during cSrc-induced transformed 

cells (142). MiRNAs have been reported to regulate 

the expression of specific integrins. The miR-17/92 

cluster consists of 6 miRNA encoding genes namely 

miR-17, miR-18a, miR-19a, miR-19b, miR-20a and 

miR-92a (143). MiR-92a is reported to suppress 

integrin α5 expression (144). In renal cell cancers, 

integrin α5 promotes metastasis (145). In ovarian 

cancer, the silencing of ILK upregulates miR-15a-

miR-16-1 cluster (113). Integrin-α6β4 is a receptor for 
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laminin binding which promotes motility of cells in 

various types of cancer. In breast cancer, Integrin-

α6β4 downregulates the expression of miR-

25/32/92abc/363/363-3p/ 367 and miR-99ab/100 

(146). 

5.3. Ras pathway 

Ras is a small GTP-binding protein that 

controls proliferation, differentiation, adhesion, 

apoptosis, and migration of cells in normal and 

pathological conditions (147). Overexpression of Ras 

signaling promotes growth, proliferation, migration, 

and invasion of cancer cells. Ras overexpression 

induces actin cytoskeleton remodeling, inhibits 

apoptosis and confers resistance to anticancer 

agents (147). Ras signaling induced EMT involves 

activation of MAPK, Hypoxia-Inducible Factor 1-

Alpha (HIF1α) and PI3K/AKT/mTOR pathways, 

induction of SANIL2, TWIST1/2, ZEB1, and inhibition 

of CDH1 (148). Activation of the RAS pathway is 

reported to regulate the expression of many miRNA 

clusters and vice versa (149). Ras initiates tumor-

promoting pathways by repression of the miR-

143/145 cluster (126). MiR-379/miR-656 is a 

downregulated miRNA cluster in glioblastoma (GBM) 

(127). Lassad et al 2015, showed an inverse 

correlation between expression of CYLD lysine 63 

deubiquitinase (CYLD) and KRAS with the miR-183-

96-182 cluster (150). The upregulation of AKT 

signaling is reported to induce EMT. MiR-154 and 

miR-37, belonging to DLK1-DIO3 microRNA mega-

cluster, is elevated in prostate cancer, and it results 

in activation of E2F signaling, Ras pathway, hypoxia-

inducible factor signaling, and the WNT and TGF-β 

pathways (151). MiR-144/451 inhibits esophageal 

cancer cell migration by downregulation of ERK/c-

Myc signaling (152). Many previous studies have 

established the role of the Ras–MEK–ERK signaling 

pathway in EMT. The miR182 activates Ras–MEK–

ERK signaling by suppressing RAS p21 protein 

activator 1 (RASA1) and sprouty-related EVH1 

domain containing 1 (SPRED1) expression in 

squamous cell carcinoma of the oral cavity (153). 

KRAS overexpression induces NF-kB and inhibits 

CDH1 expression via SNAIL and MMP9 (154, 155). 

Ras-Raf-MEK1/2-ERK activates SLUG and 

represses CDH1 expression (156). Ras-Ral-RAC 

family small GTPase (Rac), P21 activated kinases 

(PAK), Myosin light chain phosphatase (MLCP), 

Megalencephalic Leukoencephalopathy with 

Subcortical Cysts 1 (MLC) axis are implicated in focal 

adhesion formation contributing to EMT (157). MiR-

23/24/27 cluster is downregulated in keratinocytes 

having HRas protooncogene (HrasG12 V) (158). 

MiR-17-92 regulation of Ras signaling is also 

reported (159). MiR-411 is a member of 4q32.31 

miRNA cluster which promotes growth, proliferation, 

and metastasis in non-small-cell lung carcinoma 

(NSCLC) cell (160). miR-411-5p targets growth factor 

receptor bound protein 2 (GRB2)-son of sevenless 

homolog (SOS)-Ras signaling to prevent migration 

and invasion of breast cancer cells (161). Activation 

of the miR-221/222 cluster by Ras signaling is 

reported in basal-like breast cancer cells resulting in 

induction of EMT by downregulation Transcriptional 

Repressor GATA Binding 1 (TRPS1), a repressor of 

ZEB2 (115, 116). 

5.4. Notch signaling pathway 

Notch signaling is one of the highly 

conserved signaling pathways important for a cell to 

cell communication, cell differentiation, proliferation, 

invasion, migration, and apoptosis. Activation of 

Notch is reported to drive aberrant expression of 

EMT-TFs such as TWIST, SNAIL, SLUG, and 

ZEB1/2, with concomitant downregulation of CDH1 

(162). Notch signaling activates genes associated 

with differentiation, survival, migration, invasion 

such as CCND1, c-Myc, and others. Notch crosstalk 

with EMT-TFs (SNAIL, SLUG) and growth factors 

(TGF-β, FGF, and PDGF) is implicated in EMT, 

chemoresistance, and metastasis (162). 

Overexpression of miR-200b inhibits Notch-1 

expression (163, 164). Direct repression of the 

Delta/Notch pathway by miR-449 cluster controls 

vertebrate multiciliogenesis (165). Notch signaling 

can also activate oncogenic miRNA clusters. For 

instance, the activation of miR-17/92 in cancer by 

the Notch pathway leads to cellular proliferation. 

MiR-17/92 cluster promoter is predicted to poses a 

binding site for Hes family transcription factor 1 

(HES1), an effector of Notch signaling. Moreover, B-

Raf proto-oncogene (BRAFV600E) induces the 

expression of miR-17-92 via activation of Notch 

signaling (166). MiRNA-134 is a member of the 

delta-like non-canonical notch ligand - 
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iodothyronine deiodinase (DLK1-DIO3) cluster. 

MiRNA-134 is reported to regulate the expression of 

protein O-glucosyltransferase 1 (POGLUT1) and 

Notch pathway proteins in human endometrial 

cancers (167). Members of miR-206/miR-133b are 

reported to target NOTCH 3 in HeLa cells (168, 

169). 

5.5. Wnt signaling pathway 

Activation of the canonical Wnt pathway, 

non-canonical planar cell polarity pathway, and 

non-canonical Wnt/calcium pathway is reported in 

various cancers. Many members of WNT signaling 

(WNTs, CTNNB1) either directly or indirectly 

activates SNAIL, SLUG, ZEB1/2, TWISTs, inhibit 

CDH1, and participate in the induction of EMT 

program (15, 170). MiRNA clusters are important 

for precise regulation of WNT signaling. Aberrant 

expression of miRNA clusters is reported to 

activate WNT signaling and to contribute to EMT. 

For example, transactivation of miR-371-373 by 

CTNNB1/ lymphoid enhancer binding factor 1 

(LEF1) modulates Wnt/β-catenin-signaling 

pathways (171). MiR-30a/b/c/d/e-5p interaction 

with members of the canonical WNT pathway is 

reported to affect the treatment outcome in 

multiple myeloma (172). Crosstalk between 

PTEN/PI3K and Wnt pathway plays an important 

role in the subcellular localization of CTNNB1. 

Activation of the Wnt/β-catenin pathway and loss 

of PTEN activity is important for the initiation and 

progression of endometrial cancer (173). MiR-

17/92 cluster by targeting PTEN/PI3K pathway 

promotes chemotherapeutic resistance and 

metastasis (174, 175). Metastasis suppressor 

protein 1 (MTSS1) is regulated by PTEN and is 

reported to inhibit EMT via inactivation of 

PI3K/AKT signaling (176). MiR-200a is an inhibitor 

of CTNNB1. MiR-145 is a tumor-suppressive 

miRNA belonging to the miR-143/miR-145 cluster. 

It targets catenin δ-1, disturbs the nuclear 

translocation of CTNNB1, and inhibits the 

transcription of c-Myc and CCND1 (177). 

5.6. Hedgehog signaling pathway 

This pathway plays an important role in 

embryonic development, adult tissue 

maintenance, renewal, regeneration, 

differentiation, polarity, and proliferation. The 

defect in the hedgehog signaling pathway is 

reported in some cancers, especially during 

metastasis (178). It is a crucial regulator of EMT 

and is responsible for chemoresistance properties 

of human pancreatic Panc-1 cancer stem cells 

(179). Hedgehog (Hh) signaling participates in 

metastatic cascade by induction of EMT and 

angiogenesis (180). Hh signaling contributes to 

tumor development by inducing the expression of 

pro-tumorigenic genes such as CCND1, ABCG2, 

BCL2, SNAIL, WNT2, VEGF and TGF-β (181). In 

liver cancer, hedgehog enhances the expression 

of FAK/AKT, leading to increased secretion of 

MMP2 and MMP9 inducing EMT (182). Hedgehog 

via patched (PTCH) and glioma-associated 

oncogene (GLI) is reported to induce SNAIL 

expression and EMT (183). Human 

medulloblastoma shows constitutive activation of 

Sonic Hedgehog signaling and overexpression 

miR-17/92 cluster (184, 185). MiR-193b/365a 

cluster is downregulated in cutaneous squamous 

cell carcinomas (186). Hedgehog signaling 

activates its downstream target genes such as 

BCL2, FOXC2, Jagged 2 (JAG2), and MYCN via 

Smoothened (SMO) and GLI (187). MiR-193b is a 

transcriptional repressor of SMO. In colorectal 

cancer, hedgehog promotes EMT by activation of 

MMP2 and MMP9 via the induction of FAK and 

AKT. MiR-125b belonging to miR-99a/let-7c/miR-

125b cluster expression is significantly low in 

ovarian, oral, cholangiocarcinoma and prostate 

cancer (188–191). MiR-125b has been reported to 

inhibit EMT by targeting hedgehog (192). 

6. CONCLUSION 

Taken together, miRNA clusters are a key 

regulator of the EMT process. Aberrant expression of 

miRNA contributes to the acquisition of various 

hallmarks of cancer including EMT. During 

metastasis, cancer cells adapt to permanently 

changing microenvironment and undergo transitions 

from differentiated to undifferentiated or partial EMTs 

(193). The partial or incomplete EMTs are activated 

by EMT-TFs. They increase the motility of cancer 

cells and favors metastasis and invasion. Apart from 

activation of EMT, EMT-TFs has several other 
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functions such as double-strand repair, senescence, 

pro-survival and anti-apoptotic phenotype under 

various types of stress conditions (194). Also, these 

EMT-TFs are tissue-specific, for example, SNAIL 

triggers metastasis in breast cancer with no effect 

being reported in pancreatic cancer (195). Therefore, 

further detailed studies are required to elucidate the 

role of miRNAs in partial EMT during cancer 

metastasis. With the involvement of miRNA clusters 

in various health and disease conditions, it is quite 

relevant to explore and understand the possibility of 

miRNA clusters in therapy as reviewed by 

Kabekkodu et al., 2018 (197). Unraveling miRNA 

regulation in EMT will make the mechanism more 

transparent and is likely to uncover novel biomarkers 

for different cancer types. Taken together, miRNA 

cluster and EMT-TF cross-talk coordinately regulate 

multiple members of pro-EMT signaling pathways 

and promotes EMT. Thus, inhibition of pro-EMT 

miRNA clusters or reactivation of anti-EMT miRNA 

clusters may be beneficial in controlling EMT and 

cancer metastasis. 
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