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1. ABSTRACT

Steroids exert their actions by binding to the 
glucocorticoid, mineralocorticoid, androgen, estrogen 
and progesterone classes of receptors. Despite an 
exponential increase in our knowledge of steroid 
receptors, their interactions with other molecules, 
subcellular location and functions still need further 
elucidation. To unravel the mechanism(s) of action of 
the steroid hormones, as well as the function of their 
cognate nuclear receptors, an interaction network was 
created (henceforth referred to as “R1 Interactome”)- 
illustrating that robust interactions have been 
preserved in rodents, frog, zebra fish and drosophila. 
The generated interactome of the retrieved orthologs 
across species revealed: a. interactions among 
surface-cytosol-nuclear receptors, and/or orphan 
receptors and genes, and b. nuclear corepressor 
1 (NCOR1) as a major “hub”, through which most 
steroid receptors interact. These mechanisms (i) 
integrate social behavior and environmental stimuli 
with intrinsic cellular functions, (ii) provide an 
explanatory mechanism of the major Public Health 
problem of “non-ionizing” radiation impact, surpassing 
the existing conflict over the “thermal”/ “non- thermal” 
consequences of radiation, linking all the so far 
proposed mechanisms, and addressing all reported 

effects in humans, rodents and insects, and (iii) reveal 
biologically or clinically important pathways and/or 
regulatory networks.

2. INTRODUCTION

The new approach of “translational systems 
medicine” corresponds to the rising new field of P4 
medicine (predictive, preventive, personalized, and 
participatory)(1). This new research approach requires 
clinical scientists’ contribution to resolve complex 
target goals.  Comparison of biomolecular networks 
or biophysical conditions among species represents 
a new approach to discovering and interpreting the 
major mechanisms involved in the physiology of living 
organisms. Such comparative analyses may reveal 
biologically or clinically important pathways and/or 
regulatory networks. 

Steroid hormone receptors (either 
cytoplasmic, nuclear or membrane related) mediate 
signal transduction of steroid hormones, which 
eventually lead to changes in gene expression 
patterns, lasting from a few minutes, to hours to 
days. They may be either nuclear (subfamily 3) or 
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cell surface receptors (G-coupled receptors or ion 
channels) and are implicated in endocrine disorders, 
when malstructured or malfunctioning. Steroid 
hormone receptors may also bind to diverse gene 
regulators (orphan receptors), the ligands of which are 
currently unknown. Gene regulation involves multi-
level crosstalk between inner cell and membrane 
receptors through a) phosphorylation cascades, b) 
nuclear receptors, and c) transcriptional proteins and/
or enzymes. Nuclear receptors, together with other 
proteins, regulate the expression of downstream 
genes so as to control body’s homeostasis, 
development, metabolism, immune function, behavior 
and reproduction. Their ability to directly interact with 
and regulate genomic DNA highlights their prominent 
role in the intra-uterine embryonic development and 
postnatal body’s homeostasis (2, 3). 

A great number of multi-disciplinary 
experiments and a large amount of expenses are 
often required for addressing any research question. 
The development of systems biology methods, such 
as phylogenomic studies and biological networks, 
enables biomedical researchers to unravel currently 
unknown molecular pathways and complex 
associations among biomolecules in a relatively fast, 
inexpensive and effective manner. This would help 
to further develop research rationales and to enable 
medical practitioners to make more precise decisions 
in their daily practice.

3. METHODS

The protein sequence database UniProt (4) 
and the biomedical literature were mined, through the 
PubMed (5) search engine, for genes/gene products 
related to the human steroid receptors in Homo 
sapiens using the key term ‘steroid hormones.’ The 
interactions among these molecules were examined 
through STRING v10 (6), a database of both known 
and predicted associations among genes/proteins; a 
high confidence interaction score above the threshold 
value of 0.7. was chosen. The nodes connecting the 
input nodes were also predicted, with a maximum 
number of 20 interactors. Only the gene/gene 
products that could form a network were considered 
in the subsequent steps of this analysis. The 
sequences of those Homo sapiens proteins that were 
part of the network were used as queries to search for 
orthologous Drosophila melanogaster (fruitfly) protein 
sequences by employing reciprocal BLASTp (7). A 
network was also created for drosophila using the 
same method and parameters. In the case a novel 
interactor was identified in the Drosophila network, its 
corresponding protein sequence served as a probe to 
search for orthologs in the human with the usage of 
BLASTp (7). This process was iterated until no more 
components could be added in the two networks. 
Subsequently, orthologs of the components of the 

human network were detected in the well-annotated 
genomes of Mus musculus (mouse), Xenopus 
tropicalis (frog) and Danio rerio (zebrafish), by 
performing BLASTp (7) searches. 

4. RESULTS

The retrieved protein sequences along with 
their UniProt accession number are listed in Table 
1. The subcellular localization of each protein is 
presented in Table 2 and Figure 1. The components of 
each species network are shown in Table 3.

The networks for each species under 
investigation are presented in Figure 2. The networks 
of human and Drosophila melanogaster were projected 
in a way that the associations among the orthologs are 
highlighted. The orthologs are shown at corresponding 
mirror positions (Figure 3). 

The orthologous components are associated, 
either directly or indirectly, in the human and the fruitfly 
(Figure 2) by forming part of the ‘R1’ network. 

The nuclear ecdysone receptor (EcR) 
mediates the actions of the hormone ecdysone (8). 
In Drosophila, the ecdysone less (ecd1) temperature-
sensitive mutant impairs production of ecdysone, 
and causes defects in Drosophila development and 
oogenesis (9). EcR and ecd in D. melanogaster, as 
well as NR1H3 and ECD, respectively, in the human, 
are predicted to be associated. In D. melanogaster, 
EcR is linked through the ecdysone receptor co-
activator taiman (tai) to the ecdysone-induced protein 
78C (Eip78C). In the fruitfly, EcR and ecd are predicted 
to be linked to the ecdysone-induced protein 74EF 
(Eip74EF) (Figure 2). 

Based on curated databases, NR1H3 and 
EcR are suggested to interact with the glucocorticoid 
receptor NR3C1 and the estrogen-related receptor 
(ERR) in the human and fruitfly, respectively. However, 
the human receptor NR1H3 is also associated with 
other NR3 (nuclear receptor subfamily 3) receptors, 
such as AR (androgen receptor), ESRRA (estrogen-
related receptor alpha), ESR1/2 (estrogen receptor 
1/2), PGR (progesterone receptor), through NCOR1 
(nuclear receptor corepressor 1) (Figure 2). 

The human counterpart of Eip78C, NR1D2 
(nuclear receptor subfamily 1, group D, member 2), 
is linked to NR1H3 through NCOR1. NR1D2 appears 
to be connected directly to different members of the 
“NR3” subfamily. 

Likewise, the human orthologs ECD, NR1H3 
and ELF2 (E74-like factor 2) are also predicted 
to share many similarities (Figure 2). In humans, 
both ECD and NR1H3 are suggested, based on 
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Table 1. Proteins under study

Drosophila melanogaster (Fruitfly) 

ecd ecdysoneless Q9W032

EcR ecdysone receptor P34021

Eip74EF ecdysone-induced protein 74EF P20105

Eip78C ecdysone-induced protein 78C P45447

hsp23 heat shock protein 23 P02516

hsp27 heat shock protein 27 P02518

Eip71CD ecdysone-induced protein 28/29kD P08761

Eig71Ea ecdysone-induced gene 71Ea Q9VUS3

Eig71Ef ecdysone-induced gene 71Ef Q24074

Eig71Eg ecdysone-induced gene 71Eg Q24058

Eip55E Eip55E Q7JXZ2

Ubi-p63E ubiquitin-63E P0CG69

ERR estrogen-related receptor Q9VSE9

tai Taiman (ecdysone receptor co-activator) Q9GS19

Homo sapiens (Human)

ECD ecdysoneless homolog (Drosophila) O95905

NR1H3 nuclear receptor subfamily 1, group H, member 3 Q13133

ELF2 E74-like factor 2 (ets domain transcription factor) Q15723

NR1D2 nuclear receptor subfamily 1, group D, member 2 Q14995

HSPB1 heat shock 27kDa protein 1 P04792

MSRA methionine sulfoxide reductase A Q9UJ68

CTH cystathionase (cystathionine gamma-lyase) P32929

UBC ubiquitin C P0CG48

AR androgen receptor P10275

ESR1 estrogen receptor 1	 P03372

ESR2 estrogen receptor 2 (ER beta)

ESRRA estrogen-related receptor alpha P11474

ESRRB estrogen-related receptor beta O95718

ESRRG estrogen-related receptor gamma P62508

NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) P04150

NR3C2 nuclear receptor subfamily 3, group C, member 2 P08235

PGR progesterone receptor P06401

NCOR1 nuclear receptor corepressor 1 O75376

HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A member 1 P07900

Mus musculus (Mouse)

Ecd ecdysoneless homolog (Drosophila) Q9CS74

Nr1h3 nuclear receptor subfamily 1, group H, member 3 Q9Z0Y9

Elf2 E74-like factor 2 Q9JHC9

Nr1d2 nuclear receptor subfamily 1, group D, member 2 Q60674

Hspb1 heat shock protein 1 P14602

Msra methionine sulfoxide reductase A Q9D6Y7

Cth cystathionase (cystathionine gamma-lyase) Q8VCN5

Ubc ubiquitin C P0CG50

Ar androgen receptor P19091

Esr1 estrogen receptor 1 (alpha)	 P19785

Esr2 estrogen receptor 2 (beta) O08537

Esrra estrogen related receptor, alpha O08580

Esrrb estrogen related receptor, beta Q61539
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Esrrg estrogen related receptor gamma P62509

Nr3c1 nuclear receptor subfamily 3, group C, member 1 P06537

Nr3c2 nuclear receptor subfamily 3, group C, member 2 Q8VII8

Pgr progesterone receptor Q00175

Ncor1 nuclear receptor co-repressor 1 Q60974

Hsp90aa1 heat shock protein 90, alpha (cytosolic), class A member 1 P07901

Xenopus tropicalis (Frog)

ecd ecdysoneless homolog F7A2A5

nr1h2 nuclear receptor subfamily 1, group H, member 2 Q0IHW4

elf2 E74-like factor 2 (ets domain transcription factor) F7BYM4

nr1d2 nuclear receptor subfamily 1, group D, member 2 K9J7Q4

hspb1 heat shock 27kDa protein 1 F6TYT7

msra.1 methionine sulfoxide reductase A, gene 1 F7E3T1

msra.2 methionine sulfoxide reductase A, gene 2 B0BM35

cth cystathionase (cystathionine gamma-lyase) Q6P849

ubc ubiquitin C F7DNS3

ar androgen receptor	 F6W9U4

esr1 estrogen receptor 1 	 Q25C14

esr2 estrogen receptor 2 (ER beta) Q25C13

esrra estrogen-related receptor alpha A0JM86

esrrb estrogen-related receptor beta F7ETJ5

esrrg estrogen-related receptor gamma A4IIT9

nr3c1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) F6XE59

nr3c2 nuclear receptor subfamily 3, group C, member 2 F6SI83

pgr progesterone receptor F6V3Y1

ncor1 nuclear receptor corepressor 1 Q4KKX4

hsp90aa1.1. heat shock protein 90kDa alpha (cytosolic), class A member 1, gene 1 F6SX68

Danio rerio (Zebrafish)

ecd ecdysoneless homolog (Drosophila) F1QAN3

NR1H3 nuclear receptor subfamily 1, group H, member 3 Q56A56

elf2b E74-like factor 2b (ets domain transcription factor) Q9YH24

nr1d2a nuclear receptor subfamily 1, group D, member 2a B3DHW0

nr1d2b nuclear receptor subfamily 1, group D, member 2b Q6GMI3

hspb1 heat shock protein, alpha-crystallin-related, 1 Q5PR64

MSRA methionine sulfoxide reductase A Q5TZ05

cth cystathionase (cystathionine gamma-lyase) Q6NWE3

ubb ubiquitin C Q6IS68

ar androgen receptor	 A4GT83

esr1 estrogen receptor 1 	 P57717

esr2a estrogen receptor 2a Q7ZU32

esr2b estrogen receptor 2b Q5PR29

esrra estrogen-related receptor alpha Q6Q6F6

esrrb estrogen-related receptor beta Q6Q6F5

esrrga estrogen-related receptor gamma a Q6Q6F4

nr3c1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) Q501U9

nr3c2 nuclear receptor subfamily 3, group C, member 2 A6YIH7

pgr progesterone receptor C9V3N7

ncor1 nuclear receptor co-repressor 1 A8B6H7

hsp90aa1.1. heat shock protein 90, alpha (cytosolic), class A member 1, tandem duplicate 1 Q90474

 Symbols, names and UniProt accession codes
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Table 2. Distribution of the investigated proteins in human cell compartments by confidence level

Protein 
symbol

Cell compartments /confidence
nucleus cytosol ER Golgi 

A
Cytosceleton Membrane Peroxysome Extra

Cellular
Mitochondrion Endosome Lysosome

ECD 81-100% 81-
100%

21-40% <20%

NR1H3 81-100% 41-
60%

21-40% 21-40%

ELF2 81-100% 81-
100%

NR1D2 81-100% 81-
100%

HSPB1 81-100% 81-
100%

21-
40%

81-100% 61-80% <20% 81-
100%

41-60%

MSRA 81-100% 81-
100%

81-100% 81-
100%

81-100%

CTH 60% 81-
100%

<20% 81-
100%

21-40%

UBC 81-100% 81-
100%

21-
40%

<20% 61-80% 81-
100%

81-100%

AR 81-100% 81-
100%

<20% 21-40% 41-60% <20% 21-40% 21-40%

ESR1 81-100% 41-
60%

21-
40%

81-
100%

21-40% 81-100% 21-40% 21-40% 21-40% <20% 21-40%

ESR2 81-100% 21-
40%

21-
40%

21-40% 21-40% <20% 61-80% 81-100%

ESRRA 81-100% 81-100% 21-40% 61-80% 21-40%

ESRRB 81-100%

ESRRG 81-100% <20% 21-40%

NR3C1 81-100% 81-
100%

<20% 61-80% 21-40% 21-40% 21-40% 81-100%

NR3C2 81-100% <20% 100% <20% 21-40% 21-40% <20%

PGR 81-100% 41-
60%

21-
40%

21-40% 21-40% 80% 61-80%

NCOR1 81-100% 81-
100%

81-100% 21-40%

HSP9 
0AA1

81-100% 81-
100%

21-
40%

21-
40%

21-40% 81-100% <20% 81-
100%

41-60% 21-40% 81-100%

Figure 1. Localization of proteins in Table 2 in the human cell compartments. The size of the protein letters depicts the confidence level at each position 
(http://www.genecards.org/).
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experimental evidence, to be linked to the Eip71CD’s 
ortholog MSRA (methionine sulfoxide reductase A) 
through UBC (ubiquitin C). In D. melanogaster, Ecd is 
predicted to be associated with Eip71CD (ecdysone-
induced protein 28/29kD).

Similarly,, in humans, NR1H3 is predicted to 
be associated with the ortholog of Hsp23 and Hsp27, 
HSPB1 (heat shock protein 1), through HSP90AA1 
(heat shock protein 90kDa alpha, class A member 
1). The components of the human ‘R1” network, are 
also conserved in fellow vertebrates such as the 
mouse, frog and zebrafish, and the patterns of their 
associations are quite similar (Figure 2). 

Conversely, human UBC’s counterpart in 
fruitfly, Ubi-p63E (Ubiquitin-63E), is connected to 
Eip71CD via Eip55E, the latter being an ortholog of 
human CTH (cystathionase); CTH is associated with 
UBC and MSRA (Figure 2). 

5. DISCUSSION 

The created interactome in humans 
comprises molecules of the Hypothalamic –Pituitary – 
Adrenal and -Gonadal axes. Glucocorticoids modulate 
the stress response at a molecular level by altering 
gene expression, transcription, and translation, among 
other pathways. Glucocorticoids also modulate the 
growth, reproductive and thyroid axes and influence 
immunity and behavior. 

Taken together, our findings lead to the 
suggestion that the mechanism by which steroids 
exert their effects are evolutionarily conserved. 
Given that evolutionary sequence (nucleotide or 
protein) conservation can be indicative of functional 
conservation (10), we suggest that the orthologous 
proteins that comprise these networks in several other 
species investigated here have similar functions. We 
assume that evolutionary pressure has been exerted 

Table 3. Network components

Human Mouse Frog Zebrafish Fruitfly

ECD Ecd ecd ecd ecd

NR1H3 Nr1h3 nr1h2 NR1H3 EcR

ELF2 Elf2 elf2 elf2b Eip74EF

NR1D2 Nr1d2 nr1d2
nr1d2a

Eip78C
nr1d2b

HSPB1 Hspb1 hspb1 hspb1
hsp23

hsp27

MSRA Msra
msra.1

MSRA
Eip71CD

msra.2 Eig71Ea

n.d. n.d. n.d. n.d. Eig71Ef

n.d. n.d. n.d. n.d. Eig71Eg

CTH Cth cth cth Eip55E

UBC Ubc ubc ubb Ubi-p63E

AR Ar ar ar

ERR

ESR1 Esr1 esr1 esr1

ESR2 Esr2 esr2
esr2a

esr2b

ESRRA Esrra esrra esrra

ESRRB Esrrb esrrb esrrb

ESRRG Esrrg esrrg esrrga

NR3C1 Nr3c1 nr3c1 nr3c1

NR3C2 Nr3c2 nr3c2 nr3c2

PGR Pgr pgr pgr

n.d. n.d. n.d. n.d. tai

NCOR1 Ncor1 ncor1 ncor1 n.d.

HSP90AA1 Hsp90aa1 hsp90aa1.1. hsp90aa1.1. n.d.

The orthologous proteins are presented in the same row; n.d.: not detected.x
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on the genes encoding these protein sequences to 
maintain a functionally conserved network through 
which the ancestral hormone ecdysone exerts its 
effects. Given that NCOR1 was identified as a major 
hub in this network, it could be suggested that most 
receptors and axes interact with each other via this 
node (NCOR1). 

5.1. Intra- and inter-species functional interactome

The orthologs across species are presented 
in Table 3. Human NR1H3 (implicated in homeostasis 

and cholesterol uptake regulation through MYLIP) (11-
13) is orthologous to  Nr1h3 in Mus musculus  (which 
is implicated in cholesterol homeostasis and circadian 
physiology (14)), to NR1H3 in Xenopus tropicalis (whose 
functionality is documented based on cDNA project 
results (15, 16)), to Danio rerio’s nr1h2 (plays a role in 
cholesterol /glucose metabolism and homeostasis (11, 
17)) and to EcR in Drosophila melanogaster (regulates 
development and reproduction) (18).

Similarly, human NR3C1 (nuclear receptor 
subfamily 3, group C, member 1) or glucocorticoid 

Figure 2. Network illustrating the interactions among the ecdysone-related gene/gene products of Homo sapiens (human), Mus musculus (mouse) and 
Xenopus tropicalis (frog) and Danio rerio (zebrafish) and Drosophila melanogaster (fruitfly). The nodes represent the molecules and the edges denote 
the predicted mode of action.
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receptor is expressed in almost every cell of the human 
body, regulating development, immune function, 
metabolism, etc. (19-25). It is orthologous to Nr3c1, 
the corresponding gene encoding glucocorticoid 
receptors  (26, 27) and their circadian expression 
patterns (28), Danio rerio’s nr3c1 glucorticoid receptor 
(29, 30), nr3c1 in X. tropicalis  (15, 16), and ERR in 
the fruitfly, which triggers a metabolic switch that 
supports growth (31). Human NR3C2 or aldosterone 
or mineralocorticoid receptor is a protein with equal 
affinity for mineralocorticoids and glucocorticoids.

Human ECD is orthologous to Ecd in Mus 
musculus, which has been recently identified as 
a novel key regulator of the cell cycle, since upon 
binding to hypophosphorylated Rb, facilitates Rb-
E2F dissociation and cell cycle progression (32), 
ecd in Xenopus tropicalis (15, 16), Ecd in Drosophila 
melanogaster regulates the stability and function of 
p53, while, it activates the expression of glycolytic 
genes and influences the cell-cycle (32).

Human ELF2 participates in cancer growth 
and metastasis (33). Its murine Elf2 or E74-like factor 

2 ortholog is a transcription factor whose  transcripts 
are equally expressed in all tissues except thymus, 
where it is over-expressed. It is implicated in leukemia 
(34), mesenchymal to epithelial signaling in pancreatic 
development (35) and embryonic cardiac development 
(36). The frog ortholog of ELF2 is ELF2B (15, 16), 
whilst, fruitfly’s ortholog is Eip74EF, a transcription 
factor involved in circadian physiology (37).

Human NR1D2 encodes a hormone receptor, 
which belongs to the NR1 subfamily of receptors. 
The encoded protein functions as a transcriptional 
repressor and may play a role in circadian rhythms 
and carbohydrate and lipid metabolism. Alternatively, 
spliced transcript variants of NR1D2 have been 
described (38-41). Its ortholog in Mus musculus is 
Nr1d2, in Xenopus tropicalis nr1d2a/b, in Danio rerio 
Nr1d2, which follows a circadian pattern with peak 
expression at ZT0-02 (42, 43)), and in D. melanogaster 
Eip78C (with an identical function).

HSPB1, or heat shock protein 1, is related 
to estrogen stimulation and is also involved in 
actin regulation and stress resistance (44, 45). It is 

Figure 3. Reduced network depicting the orthologous components of the ecdysone networks. The ecdysone receptors, EcR and NR1H3, are boxed. The 
solid lines indicate direct link; the dashed lines indicate indirect link.
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orthologous to Hsb1 in Mus musculus, hspb1 in Danio 
rerio, and Hsp23/27 in Drosophila melanogaster.

Human MSRA encodes a ubiquitous and 
highly conserved protein that repairs oxidatively 
damaged proteins to restore biological activity (46-50). 
The similarity in functionality of the pro-msra ortholog 
in Xenopus tropicalis is verified based on cDNA project 
results (15, 16). MSRA is orthologous to Msra in M. 
musculus, msra1/2 in Danio rerio and Eip71CD in 
D. melanogaster, the latter of which is suggested to 
confer protection against oxidative stress (51), while it 
regulates sleep in the same species.

Human CTH is implicated in amino acid 
metabolism, female reproductive capacity (52), 
cardiovascular pathology (hyperhomocystinemia) 
(53), diseases associated with disorders of sulfur 
metabolism (hypertension, diabetes mellitus, septic 
and hemorrhagic shock, and pancreatitis) (54). It 
is orthologous to Cth in mouse, cth in the frog and 
zebrafish, and Eip55E in the fruitfly.

Human UBC Ubi-p63E is a polyubiquitin 
precursor. Ubiquitination has been associated with 
protein degradation, DNA repair, cell cycle regulation, 
kinase modification, endocytosis, and regulation 
of other cell signaling pathways; furthermore, its 
expression is increased by glucocorticoids (55). It is 
orthologous to Ubc in Mus musculus, ubc in Xenopus 
tropicalis, ubb in Danio rerio and Ubi-p63E in D. 
melanogaster.

Human AR (androgen receptor or NR3C4) is 
activated by specific binding of androgenic hormones 
and plays a role in male phenotype development and 
reproductive capacity maintenance (56-58). Like the 
GR, the AR is a known DNA binding transcription factor 
which regulates gene expression (56) and induces the 
rapid activation of kinase-signaling cascades which, 
in turn, modulate intracellular calcium levels (57). Its 
ortholog in mouse is Ar, in frog and zebrafish is ar, and 
the ancestral ERR in fruitfly.

Estrogen receptors ESR1 and ESR2 are 
activated by estrogens in humans (59-61). ESR2 
function is associated to cardiovascular targets, 
including the ATP-binding cassette transporter A1 and 
apolipoprotein A1. It may also have anti-proliferative 
effects, thereby opposing the activity of ESR1 in 
reproductive tissues (62), and play an important role 
in the adaptive function of the fetal lung (63). Their 
orthologs in Mus musculus, Xenopus tropicalis, Danio 
rerio and Drosophila melanogaster are Esr1/2, esr1/2, 
esr1/2a/2b and ERR, respectively.

Human progesterone receptor PGR is 
another nuclear receptor activated by progesterone 
through self-dimerization and DNA binding. Genes are 

transcribed to mRNA, which is translated by ribosomes 
into certain proteins. PGR’s role in breast and 
endometrial cancer is currently under investigation.  Its 
ortholog in Mus musculus is Pgr, in X. tropicalis and D. 
rerio is pgr, while in Drosophila melanogaster is ERR.

Human NCOR1 is known to modulate 
multiple autonomous repression domains, which 
are suggested to be mediators of hormone action 
(including the thyroid hormones) (64). Its ortholog in 
Mus musculus is Ncor1, in Xenopus tropicalis and 
Danio rerio is ncor1, while no ortholog was detected in 
D. melanogaster.

HSP90AA1 is a protein expressed as soon 
as a cell experiences proteoxic stress. Due to its 
chaperoning ability, it may be implicated in stress 
adaptation, while it is also suppressed in the aging 
brain, and in Alzheimer and/or Huntington diseases 
(65). Its clinical role includes prognosis of leukemia, 
breast and pancreatic cancers, and chronic obstructive 
pulmonary disease (66-69). HSP90AA1’s expression 
is increased by the cytokines IL-2, IL-4 and IL-13 in 
human T-cells (70). Its ortholog in Mus musculus 
is Hsp90aa1, in Xenopus tropicalis and Danio rerio 
is hsp90aa1, while there is no known ortholog in 
Drosophila melanogaster.

Of particular interest, the complicated and 
elaborate network observed in humans and, to a lesser 
degree in other mammals, may be attributed to the fact 
that these organisms are more complex than the other 
species studied. 

5.2. Orphan receptors

The above described interactions are 
supplemented by nuclear receptors considered as 
orphan receptors, given that their ligands are currently 
unknown.

Human ESRRA or NR3B1 is currently 
considered an orphan nuclear receptor (71, 72), closely 
related to estrogen receptor, and is required for the 
activation of mitochondrial genes and/or mitochondrial 
biogenesis (73), oxidative phosphorylation (74) and 
fatty acid metabolism (75), as well as regulating other 
proteins such as lactoferrin, osteopontin, and thyroid 
hormones. It is implicated in corticosteroidogenesis 
(76, 77), i.e. in cortisol and aldosterone production in 
the adrenal gland (78). It has been suggested to play 
a pivotal role in the mammalian circadian clock and 
metabolic homeostasis (79). On the contrary, ESRRB 
or NR3B2 is also a nuclear receptor, but, of unknown 
function in humans, while in mice it has been implicated 
in placental development. Human ESRRG or NR3B3 
is another orphan steroid hormone receptor that 
acts as a constitutive activator of transcription of still 
unknown physiological function. Yet, it is deactivated 
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by 4-hydroxytamoxifen and diethylstilbestrol or 
bisphenol A (80). The human ESRRA/B/G orthologs 
in the other species under study are as follows: Esrr 
a/b/g in Mus musculus and Danio rerio, esrr a/b/g 
in Xenopus tropicalis and the ancestral ERR in 
Drosophila melanogaster.

5.3. Species-restricted proteins

The Tai, Eig71Ea, Eig71Ef and Eig71Eg are 
species-specific, limited to Drosophila melanogaster, 
and are part of its ancestral interactome (Table 2, 
Figure 1). Species-specific gene loss or gain might be 
attributed to the distinct biochemical and physiological 
needs of an organism. In particular, during the course 
of evolution, an organism acquires genes necessary for 
its survival and adaptation to different environmental 
conditions (81, 82). 

5.4. Multiple orthologs in more complicated  
organisms 

The fruitfly ERR has several orthologs (AR, 
PGR, five estrogen receptors, NR3C1 and NR3C2) 
in the other organisms under study (Table 3). This 
is probably due to fruitfly’s “ancestral nature”, that 
is, a primordial ERR gene might have existed in D. 
melanogaster, which has undergone several rounds 
of duplications to give rise to several orthologs during 
evolution in the more complicated organisms.

5.5. Predictions 

Interactions in humans were also predicted: 
(i) ECD, NR1H3 and ELF2, (ii) NR1H3 and HSPB1 
through the membrane HSP90AA1, and (iii) CTH 
and MSRA. These predictions could provide further 
insight into the membrane-cytosol-nuclear receptors 
interactions. 

Likewise, in the fruitfly, (a) EcR and ecd are 
predicted to be associated, (b) EcR is suggested to 
be linked to Eip74EF, (c) ecd is predicted to activate 
Eip74EF, (d) EcR is predicted to activate Hsp23 
and, (e) tai is suggested to be a co-activator of EcR 
(Figure 2).

5.6. Surface–cytosol-nucleus interactions and ion 
channels

The localization of all proteins investigated 
in this study is presented in Figure 1. We identified 
interactions of the aldosterone receptor or NR3C2 
(which can be found in the endoplasmic reticulum or 
nucleus as well) with solely nuclear receptors. It has 
been established that NR3C2 increases the activity of 
the basolateral Na/K ATPase, ENaC sodium channels 
and ROMK potassium channels of the principal cell 
in the kidney distal convoluted tubule and cortical 

collecting duct of nephrons, bowel, and sweat glands. 
Cell surface receptors also found in nucleus are ESR1/2, 
ESRRA/B, NR3C1/C2 and HSP90AA1. The surface 
membrane receptors are suggested to be activated 
faster than nuclear receptors. Their translocation might 
take place through coupling to cytoplasmic proteins 
and/or adjunct lipid bilayer membranes, so as to 
interact with extracellular molecules (83).

5.7. R1: an explanatory mechanism of electromag-
netic fields’ influence 

Natural and/or man-made radiation (i.e. 
radiofrequency fields) is omnipresent in our lives 
affecting environmental chemicals, electrical devices 
and living organisms. In the past decade, conflicts 
in the biomedical community have occurred over the 
issue of “non-ionizing electromagnetic fields (including 
cellular phones and base stations antennas) exposure 
effect on health”. World Health Organization (WHO) 
has classified the exposure to cellular phone use as 
possibly carcinogenic (B2 level) (84-86). Thus, an 
increasing research interest originating from social 
concerns gave rise to a thoughtful and constructive 
approach, distinctive from loud and impressive 
evidence that fail to give answers to pivotal queries: 
is the exposure really detrimental to humans? Which 
mechanism/s is/are involved? How could one prevent 
any possible negative effects?

The currently reported effects of 
electromagnetic fields include influences on human 
and rat circadian rhythms and, hence, the “biological 
clock” (84, 87-96), on human fertility (97-102), rat 
reproduction (103, 104), Drosophila fecundity (105-
107), and human carcinogenesis and genotoxicity 
(108-116), (109, 117-119). Also, they may influence 
other hormones in humans (120,131-134) and rodents 
(121,129-130), and neurological (135-138) or cardiac 
function and wellbeing in humans (139-143). 

The current explanatory mechanisms of the 
above stated effects include magnetic alterations 
in cell membrane energy, cell apoptosis (144, 145), 
heat stress (146-148), oxidative stress (111, 139, 144, 
145, 149-154), resonance (155, 156), alterations of 
the hydrophilic and hydrophobic properties of the cell 
membrane (157), electrophysiological dysregulation, 
alterations of ion channel functions (158, 159) and 
ecdysone action in the Drosophila (106). 

The above described effects (in all retrieved 
organisms from insects to humans), as well as the 
suggested mechanisms are implicated in the described 
interactome R1. Of interest, this evolutionarily 
preserved network seems to be activated upon 
radiofrequency (RF) exposure, triggering downstream 
pathways of cell apoptosis, oxidative stress, membrane 
lipids and/or ion channel function, thereby leading to 
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acute or chronic adaptation. Additionally, the major 
hub identified NCOR1 highlights the importance of 
a common negative feedback in thyroid and steroid 
hormone, action a revealed previously by Geronikolou 
et al (126). The predictions we revealed suggest that 
the “thermal vs. non-thermal” concept is too limited.

Finally, the Interactome we created integrates 
hypothalamic-pituitary-adrenal (HPA), -thyroid 
(HPT) and -gonadal (HPG) axes and the autonomic 
nervous system (ANS). The HPA/ANS interactions 
have attracted increasing research interest in 
neuroendocrinology.

The functional cross-talk between the 
hypothalamic-pituitary-adrenal and -gonadal axes 
integrates social and reproductive behavior (160-162). 
Thus, the proposed evolutionarily conserved interactome 
integrates social behavior, environmental exposures 
and homeostatic and reproductive mechanisms. 

6. CONCLUSIONS

We studied the evolutionary relationships of 
steroid receptors and their implications in clinical and 
environmental studies. The “R1 inter-interactome” 
constructed herein connects the HPA, HPT and HPG 
axes and the autonomic nervous system through 
NCOR1. Apart from steroid receptors, it comprises 
heat shock proteins, enzymes, co-repressors, and 
transcription factors. Furthermore, it integrates 
social behavior, environment and cell mechanisms, 
regulating extrinsic /intrinsic influences (160-162). 
More importantly, we proposed a new explanatory 
mechanism of the effects of exposure to electromagnetic 
fields on insects, fish, amphibians, rodents and 
humans. Its constituent nodes, which correspond to 
gene/gene products, are implicated in physiologic 
functions (development, reproduction, homeostasis, 
circadian thythms, immunity, metabolism, behavior), 
and pathophysiologic functions (carcinogenesis, 
cardiovascular pathology, neurodegenerative 
diseases, inflammation, etc). Future research efforts 
could be directed towards the study of other types of 
steroid hormones (as i.e. G-coupled receptors, sex 
hormone-binding globulin receptor, etc).
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