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1. ABSTRACT

This study was to demonstrate the feasibility 
of an automatic approach for early detection of diabetic 
retinopathy (DR) from SD-OCT images. These scans 
were prospectively collected from 200 subjects through 
the fovea then were automatically segmented, into 12 
layers. Each layer was characterized by its thickness, 
tortuosity, and normalized reflectivity. 26 diabetic 
patients, without DR changes visible by funduscopic 
examination, were matched with 26 controls, according 
to age and sex, for purposes of statistical analysis 
using mixed effects ANOVA. The INL was narrower 
in diabetes (p = 0.14), while the NFL (p = 0.04) and 
IZ (p = 0.34) were thicker. Tortuosity of layers NFL 
through the OPL was greater in diabetes (all p < 0.1), 
while significantly greater normalized reflectivity was 
observed in the MZ and OPR (both p < 0.01) as well as 
ELM and IZ (both p < 0.5). A novel automated method 
enables to provide quantitative analysis of the changes 
in each layer of the retina that occur with diabetes. In 
turn, carries the promise to a reliable non-invasive 
diagnostic tool for early detection of DR.

2. INTRODUCTION

Spectral domain optical coherence 
tomography (SD-OCT) is a widely used tool for the 
diagnosis and evaluation of retinal diseases. Utilizing 
interferometry, low coherence light is reflected from 
retinal tissue to produce a two-dimensional grayscale 
image of the retinal layers. Differences in reflectivity of 
retinal layers produce different intensities on SD-OCT 
scan, allowing for noninvasive visualization of distinct 
retinal layers (1-4). This detailed cross-sectional 
anatomy of the retina is often referred to as “in-vivo 
histology” and is instrumental in the assessment of 
several common retinal pathologies including diabetic 
retinopathy (DR), age-related macular degeneration 
(AMD), macular hole, macular edema, vitreo-macular 
traction (VMT), choroid neovascularization, and 
epiretinal membrane. SD-OCT can be also used to 
assess retinal nerve fiber layer (RNFL) thickness 
for the evaluation of glaucoma (5). Retinal layer 
morphology and retinal thickness measurements are 
used to identify and measure retinal abnormalities 
such as macular edema, and these measurements 
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are also used to monitor disease progression and 
response to treatment (1-3).

With the exception of retinal thickness 
measurements, current SD-OCT provides limited 
objective quantitative data, and therefore images must 
be subjectively interpreted by an eye specialist (1). As 
a result, findings are susceptible to human bias and 
error. Ideally, OCT data should be tracked quantitatively 
and objectively in order to monitor the progression of 
abnormalities as well as aid in the diagnosis of various 
pathologies.

The challenge with diseases such as DR is 
that the patient is not aware of the disease until the 
changes in the retina have progressed to a level 
that treatment tends to be less effective. Therefore, 
automated early detection could limit the severity of the 
disease and assist ophthalmologists in investigating 
and treating it more efficiently.

The purpose of this study was to develop a 
novel automated algorithm that objectively quantifies 
three features; namely the reflectivity, tortuosity and 
thickness of retinal layers from the segmented OCT 
images, and to apply this algorithm to quantitatively 
distinguish normal and diabetic subjects (Figure 1).

3. MATERIALS AND METHODS

The proposed method consists of three basic 
steps: 

1.	 12 distinct retinal layers are localized and 
segmented based on a novel joint model 
that combines shape, intensity, and spatial 
information. The shape prior is built using a 
subset of co-aligned training OCT images.

2.	 The three features are extracted from the 
segmented OCT images. 

3.	 The layers showing significant difference 
based on statistical analysis are determined.

The mathematical details of the proposed 
joint model are detailed below.

3.1. Data collection

This study was reviewed and approved by 
the Institutional Review Board (IRB) at the University 
of Louisville - School of Medicine. Following IRB 
approval, subjects were recruited at the Kentucky 
Lions Eye Center, University of Louisville Department 
of Ophthalmology and Visual Sciences, Louisville, 
Kentucky between June 2015 and December 2015. 
Informed consent was obtained from all participants. 
Subjects with either normal retinas or diabetes ranging 
in age from 10 to 79 years old were included in the 
study. Past medical history, ophthalmologic history, 
smoking status, and current medications were obtained 
via chart review and subject interview. Persons with 
history significant for any retinal pathology, history 
significant for diabetes mellitus, high myopia defined as 
a refractive error less than or equal to −6.0.0 diopters, 
and tilted OCT image were excluded from participation 
in the study. SD-OCT scans were prospectively 
collected from 200 different subjects (40 with diabetes 
and 160 non-diabetic controls free of retinal pathology) 
using the Zeiss Cirrus HD-OCT 5000. SD-OCT data 
were exported for analysis as 8-bit, greyscale raw files 
with size 1024 pixels × 1024 pixels × N slices, where 
N = 5 or 21. For N = 5, the field of view as 6 mm nasal-
temporal (N-T) and 2 mm posterior-anterior (P-A), and 
the slice spacing was 0.2.5 mm. For N = 21, the field 
of view was 9 mm N-T and 2 mm P-A, while the slice 
spacing was 0.3 mm.

Figure 1. A typical OCT scan of a normal subject showing the 12-distinct layers.
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3.2. Automatic segmentation of twelve retinal layers

Let “g” be a grayscale image taking integer 
values from (0 – 255) and “m” is the associated region 
map (segmented image) taking values from a set of 
labels (0 – 12). An input OCT image “g”, co-aligned to 
the training database, and its map “m”, are described 
with a joint probability model (6):

“P(g , m) = P(g | m) P(m)”,

that combines a conditional distribution of the images 
given the map P(g | m), and an unconditional probability 
distribution of maps “P(m) = Psp (m) PV (m)”. Here, “Psp 
(m)” denotes a weighted shape prior, and “PV (m)” is a 
Gibbs probability distribution with potentials “V”, that 
specifies a Markov Gibbs random field (MGRF) model 
of spatially homogeneous maps “m”.

3.2.1. Adaptive shape model Psp (m)

In order to account for the inhomogeneity of 
the OCT images, the shape information is taken into 
account in the segmentation. The shape model is 
built using 12 OCT scans, selected from 6 men and 6 
women. “Ground truth” segmentations of these scans 
were delineated under supervision of retina specialists. 
Using one of the optimal scans as a reference (no tilt, 
centrally located fovea), the others were co-registered 
using a thin plate spline (TPS) (7).

The same deformations were applied to their 
respective ground truth segmentations, which were 
then averaged to produce a probabilistic shape prior 
of the typical retina, i.e., each position (x, y) in the 
reference space is assigned a prior probability “P (m)” 
to lie within each of the 12 tissue classes.

An image to be segmented is first aligned to 
the shape database by a new technique integrating 
the TPS with multi-resolution edge tracking that 
identifies control points to initialize the alignment. First, 

the “`a trous” algorithm (8) decomposes each scan 
by undecimated 130 wavelet transform. In a three-
band appearance of the retina, two hyperreflective 
bands are separated by a hyporeflective band, 
corresponding roughly to the layers from ONL to MZ. 
Contours following the gradient maxima of this wavelet 
component provide initial estimates of the vitreous/
NFL, MZ/EZ, and RPE/choroid boundaries (Figure 
2). The fourth gradient maximum could estimate the 
OPL/ONL boundary, but that is not sharp enough an 
edge to be of use. These ridges in gradient magnitude 
were followed through scale space to the third wavelet 
component, corresponding to a scale of approximately 
15 micrometers for the OCT scans used in this study. 
The foveal pit was then determined as the point of 
closest approach of the vitreous/NFL and MZ/EZ 
contours. Control points were then located on these 
boundaries at the foveal pit and at uniform intervals 
nasally and temporally therefrom. Finally, the optimized 
TPS was employed in order to align the input image to 
the shape database using the control points identified.

3.2.2. First-order intensity model P (g | m)

In order to make the segmentation adaptive 
and not biased to only the shape information, we model 
the empirical gray level distribution of the OCT images. 
The first-order visual appearance of each label of the 
image is modeled by separating a mixed distribution of 
pixel intensities into individual components associated 
with the dominant modes of the mixture. The latter is 
approximated using the linear combination of discrete 
Gaussians (LCDG) approach, which employs positive 
and negative Gaussian components that is based 
on a modified version of the classical Expectation 
Maximization (EM) algorithm. For detailed information, 
please refer to (9).

3.2.3. Second-order MGRF model PV (m) 

For better spatial homogeneity of 
segmentation, the MGRF model of dependencies 

Figure 2. Illustration of the basic steps of the proposed system framework.
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between adjacent region labels is combined with the 
shape prior and intensity mode (9). This model is 
identified using the nearest pixels’ 8-neighborhood and 
analytical bi-valued Gibbs potentials. The potentials 
are approximated analytically from the empirical 
probability of equal label pairs in the training region 
maps.

The steps of the segmentation framework 
are illustrated in Figure 1, whereas Figure 3 shows 
segmentation results on different SD-OCT images 
from subjects in different decades of life. The 
performance of the proposed segmentation framework 
relative to manual segmentation was evaluated using 
the agreement coefficient (AC) and the Dice similarity 
coefficient (DSC) (10-11).

More details about each component of this 
model and the segmentation algorithm are completely 
discussed in (12).

3.3. Feature extraction from SD-OCT images

Several quantitative data can be derived 
from the segmented SD-OCT images in order to 
optimally characterize retinal morphology. This paper 
specifically addresses and discusses four distinct 
retinal features that are extracted from the segmented 
OCT scans. The first feature is the “reflectivity” of the 

retinal layers, which was obtained from two regions 
per scan, comprising the thickest portions of the retina 
on the nasal and temporal sides of the foveal peak. 
Mean reflectivity is expressed on a normalized scale, 
calibrated such that the formed vitreous has a mean 
value of 0 units normalized reflectivity scale (NRS), 
and the retinal pigment epithelium has a mean value 
of 1000 NRS. The average grey level within a segment 
was calculated using Huber’s M-estimate, which is 
resistant to outlying values that may be present, such 
as very bright pixels in the innermost segment that 
properly belong to the internal limiting membrane and 
not the NFL. Average grey levels were converted to 
NRS units via an offset and uniform scaling. Statistical 
analysis employed ANCOVA (13) on a full factorial 
design with factors gender, side of the fovea (nasal or 
temporal) and retinal layer, and continuous covariate 
age. The second feature is the “tortuosity” of the 
retinal layers, which calculates the curvature values for 
each point across the layer. First, a locally weighted 
polynomial is applied for smoothing the surface, then 
Manger curvature is calculated for each point. The third 
feature is the “thickness” of the retinal layers, which 
uses Laplace’s equation to calculate the streamlines 
between the corresponding points on the two surfaces 
for each retinal layer (14). The fourth and last feature 
is the “foveal angle”, which is calculated for both nasal 
and temporal sides. The angle is estimated between 
the normal to the foveal peak and the line connecting 

Figure 3. Segmentation results for different OCT images in row (A) for normal (1-3), diabetic retinopathy (4), and AMD (5) cases. Results of the proposed 
approach are displayed in row (B). The DSC score is displayed above each result.
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the foveal peak and the peak estimated on the nasal/
temporal side (Figure 4).

4. RESULTS

This section addresses the experimental 
results after applying the proposed approach on the 
images collected, followed by analysis of the three 
features across different decades of life. The proposed 
novel segmentation approach was first validated using 
“ground truth” for subjects, which was collected from 
200 subjects aged 10-79 years. Subjects with high 
myopia (less than -6.0. diopters), and tilted OCT were 
excluded. This ground truth was created by manual 
delineations of retina layers reviewed with different 
retina specialists (SS, AP, AH, DS).

Figure 2 shows the segmentation of 12 distinct 
retinal layers for two different examples. In addition to 
the visual results in this figure, the robustness and 
accuracy of our approach are evaluated using both 
AC and DSC metrics, and the average deviation 
(AD) distance metric comparing our segmentation 
with the ground truth. Mean boundary error was 6.87 

micrometers from ground truth, averaged across all 
13 boundaries. The NFL/vitreous boundary of the 
retina was placed most accurately, with 2.78 µm 
mean error. The worst performance was on the RPE/
choroid boundary, with 11.6 µm mean error. Whereas, 
only the RPE/choroid boundary was reliably detected 
by the other approach (15). Table 1 summarizes the 
quantitative comparison of our segmentation method 
and the other method versus the ground truth, based 
on the three evaluation metrics for all subjects. 
Statistical analysis using paired t-test demonstrates 
a significant difference in terms of all three metrics of 
our segmentation method over the other method, as 
confirmed by p less than 0.05. This analysis clearly 
demonstrates the promise of the developed approach 
for the segmentation of the OCT scans (Figure 1).

After segmenting the 12 retinal layers and 
extracting their features, statistical analysis was 
conducted on those features (tortuosity, reflectivity, 
and thickness) for all 12 layers extracted from available 
subjects. The purpose of this analysis was to find out 
whether these features are significant to discriminate 
between normal and diabetic subjects. The statistical 

Figure 4. Illustrative images of the 4 extracted features, (a) reflectivity, (b) Tortuosity, (c) Thickness, (d) foveal angles

Evaluation Metric

DSC AC, % AD, mM

Our Segmentation 0.763 ± 0.1598 73.2 ± 4.46 6.87 ± 2.78

The Other Method (15) 0.41 ± 0.263 2.25 ± 9.7 15.1 ± 8.6

p - value < 0.0001 < 0.0001 < 0.00395

Table 1. Comparative segmentation accuracy of the proposed segmentation technique and the other 
method versus the “ground truth”
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The 12-Layers Segmented in Retina
Reflectivity Tortuosity, mm−1 Thickness, µm

Normal Diabetic Normal Diabetic Normal Diabetic

Nerve Fiber Layer (NFL) 667(147) 665(165) 0.704(1.72) 0.738(2.03) 19.13(12.98) 21.03(12.17)

Ganglion Cell Layer (GCL) 584(103) 590(111) 0.891(3.68) 1.02(4.63) 34.73(18.17) 31.51(17.93)

Inner Plexiform Layer (IPL) 638(96.8) 631(117) 0.861(3.71) 1.15(4.74) 33.72(15.29) 33.62(16.19)

Inner Nuclear Layer (INL) 479(95.8) 464(101) 1.19(4.85) 2.17(6.18) 32.01(15.52) 27.91(15.09)

Outer  Plexiform Layer (OPL) 546(93.7) 514(108) 1.17(4.86) 1.75(5.62) 27.20(14.31) 30.63(13.94)

Outer Nuclear Layer (ONL) 303(74.3) 292(108) 0.842(3.13) 1.72(4.95) 67.07(23.62) 61.60(22.62)

External Limiting Membrane(ELM) 396(135) 465(236) 0.134(0.247) 0.102(0.164) 13.78(3.71) 14.71(2.99)

Myoid Zone (MZ) 414(160) 512(309) 0.113(0.196) 0.101(0.168) 15.51(4.34) 14.30(3.96)

Ellipsoid Zone (EZ) 996(189) 1038(281) 0.115(0.202) 0.111(0.198) 14.55(3.66) 14.97(3.05)

Outer PhotoReceptor (OPR) 823(209) 883(271) 0.126(0.249) 0.061(0.009) 14.85(5.54) 15.10(5.51)

Interdigitation Zone (IZ) 1121(180) 1164(191) 0.083(0.138) 0.061(0.093) 14.31(3.81) 15.56(3.10)

Retinal Pigment Epithelium (RPE) 1046(97.9) 1041(135) 0.077(0.165) 0.057(0.106) 23.48(6.39) 23.34(6.75)

Table 2. The statistical analysis results. All values are represented as Mean (StD)

results are shown in Table 2. According to the unpaired 
t-test results, the tortuosity of INL, the reflectivity of MZ, 
and the thickness of NFL show statistically significant 
differences between normal and diseased cases (p 
less than 0.05). For now, these results encouraged us 
to explore the classification potential of those features 
on three layers only.

26 diabetic patients were paired with a 
control case, matched for sex and age (plus or minus 
1 year), and free of retinal pathology. Statistical 
analysis employed mixed effects ANOVA, with fixed 
effects diagnosis, retinal layer, and side of fovea 
(nasal or temporal) in a full factorial design. There was 
a random intercept for each case pair, nested within 
age, nested within sex. The three measurements 
were tested individually with univariate ANOVA. Post 
hoc testing per retinal layer used the same design, 
excluding the layer effect and its interactions, of 
course, and applied a Bonferroni correction for 
multiple comparisons. Statistical summary states the 
following:

4.1. Normalized reflectivity 

Normalized reflectivity varied significantly 
by diagnosis and retinal layer (interaction F = 5.73, 
11 numerator d.f., 1167 denominator d.f., p less 
than 0.0001). The main effect of diagnosis was 
also significant (F = 59.9, p less than 0.0001). The 
interaction of diagnosis with either side or layer was 
insignificant (F = 0.27, p = 0.99 and F = 2.74, p = 
0.098, respectively). Reflectivity in diabetic subjects 
was 67.4 units greater overall than in their matched 
controls. The greatest difference in reflectivity was 
found in MZ and OPR, followed by ELM, EZ, and IZ 
(Figure 5).

4.2. Tortuosity 

Tortuosity varied significantly by diagnosis (F 
= 55, p less than 0.0001), again showing a significant 
diagnosis/layer interaction (F = 13.4, p less than 0.0001), 
but no diagnosis/side (F = 0.005, p = 0.99) or diagnosis/
side/layer (F = 0.29, p = 0.99) interactions. Post hoc 
testing revealed significant differences anterior to the 
ONL, where tortuosity averaged 0.25 mm-1, 0.35 mm-

1, 1.07 mm-1, 0.84 mm-1, and 0.85 mm-1 greater in the 
NFL, GCL, IPL, INL, and OPL, respectively, in diabetes 
compared to control (Figure 6).

4.3. Thickness 

Thickness followed the same pattern as 
reflectivity and tortuosity, with significant diagnosis/
layer interaction (F = 6.24, p less than 0.0001). The 
main effect of diagnosis did not differ significantly 
from zero, however (F = 0.63, 1 n.d.f, p = 0.43). The 
diagnosis × side (F = 0.009, 1 n.d.f., p = 0.93) and 
diagnosis × side × layer (F = 1.77, 11 n.d.f., p = 0.054) 
interaction effects were also insignificant. The most 
pronounced differences in thickness were a wider NFL 
and IZ and a narrower INL in diabetes (Figure 7).

5. DISCUSSION

Ophthalmic OCT, first introduced in 1991 
by Huang et al. practically revolutionized ophthalmic 
practice (4). SD-OCT is an essential part of the 
modern retinal evaluation, which provides invaluable 
and unsurpassed clinical information, otherwise 
unavailable. The basic SD-OCT image is a histology-
equivalent optic reflectivity B-scan retinal section. To-
date, all SD-OCT images are manually interpreted by an 
ophthalmologist on the basis of anatomic appearance 
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Figure 5. Mean reflectivity per layer for diabetes and control cases. Error bars are 1 standard deviation. ** p (Control = Diabetes) < 0.0.5.

Figure 6. Mean tortuosity of layer boundaries for diabetes and control cases. Error bars are 1 standard deviation. ** p (Control = Diabetes) < 0.0.5.

and human pattern recognition. The need for an 
automated processing and an un-biased interpretation 
of retinal scans is pertinent. Accurate reproducible 
automated SD-OCT image analysis will enable earlier 
identification of retinal conditions, enable better follow 
up strategies and plans, eliminate human errors, 
and allow more efficient and cost-effective patient 

care. Although initial preliminary automated image 
processing exists in some commercially available SD-
OCT models, it is currently limited to retinal thickness, 
retinal volume and partial retinal segmentation.

Segmentation of retinal layers from SD-OCT 
images has been previously attempted by several 
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groups. Several notable achievements and pitfalls 
are worth discussing. Ishikawa et al. developed an 
automated algorithm that identifies four retinal layers 
using an adaptive thresholding technique (16). This 
algorithm failed with poor-quality images and also failed 
with some good-quality ones. Bagci et al. proposed 
an automated algorithm that extracted seven retinal 
layers using a customized filter for edge enhancement 
in order to overcome uneven tissue reflectivity (17). 
However, further work is needed to apply this algorithm 
to more advanced retinal abnormalities. Mishra et 
al. applied an optimization scheme to identify seven 
retinal layers (18). The algorithm could not separate 
highly reflective image features. Chui et al. proposed 
an automated approach for segmenting 8 retinal layers 
using graph theory along with dynamic programming, 
which reduced processing time (15). The algorithm 
yet worked only with high-contrast images. Another 
automated approach was proposed by Rossant et al. 
to segment eight retinal layers using active contours, 
k-means, and Markov random fields (19). This method 
performed well even when retinal blood vessels 
shaded the layers, but failed in blurry images. Kajic 
et al. developed an automated approach to segment 
8 layers using a large number of manually segmented 
images that were used as input to a statistical model 
(20). Supervised learning was performed by applying 
knowledge of the expected shapes of structures, their 
spatial relationships, and their textural appearances. 
Yang et al. devised an approach to segment eight 
retinal layers using gradient information in dual scales, 
utilizing local and complementary global gradient 
information simultaneously (21). This algorithm 

showed promise in segmenting both healthy and 
diseased scans, yet more work is needed to evaluate 
it on retinas affected with outer/inner retinal diseases. 
Yazdanpanah et al. presented a semi-automated 
approach to extract 9 layers from OCT images using 
Chan and Vese’s energy-minimizing active contour 
without edges model (22). This algorithm incorporated 
a shape prior based on expert anatomical knowledge 
of retinal layers. The proposed method required user 
initialization and was never tested on human retinas 
nor on diseased retinas. Ghorbel et al. proposed 
a method for segmenting 8 retinal layers based on 
active contours and Markov random field model 
(23). A Kalman filter was also designed to model 
the approximate parallelism between photoreceptor 
segments. Dufour et al. proposed an automatic 
graph-based multi-surface segmentation algorithm 
that added prior information from a learnt model by 
internally employing soft constraints (24). Yin et al. 
applied a user-guided segmentation method that first 
manually defined lines at irregular regions for which 
automatic approached fail to segment (25). Then the 
algorithm is guided by these traced lines to trace the 
3D retinal layers using edge detectors that are based 
on robust likelihood estimators. Ehnes et al. developed 
a graph-based algorithm for retinal segmentation 
which could segment up to eleven layers in images 
of different devices (26). Srimathi et al. applied an 
algorithm for retinal layer segmentation that first 
reduced speckle noise in OCT images, then extracted 
layers based on a method that combines active 
contour model and diffusion maps (27). Tian et al. 
proposed a real-time automated segmentation method 

Figure 7. Mean thickness per layer for diabetes and control cases. Error bars are 1 standard deviation. ** p (Control = Diabetes) < 0.0.5.
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that was implemented using the shortest path between 
two end nodes (28). This was incorporated with other 
techniques, such as masking and region refinement, in 
order to make use of the spatial information of adjacent 
frames.

One study reports that 21 percent of type 2 
diabetics have some form of retinopathy at the time of 
diagnosis, and that during the first two decades of the 
disease, 61 percent have retinopathy (29). Diagnosing 
diabetes before further complication is the goal of 
numerous researchers. Fundus are photography that 
allows to have a wide view of the retina the picture 
is taken from the dilated pupil but are 2D and give 
none information about depth. While with OCT you 
have 3D information and also allows to distinguish 
the morphology of the different retinal layers. Our 
approach to automated pre-DR identification is based 
on the analysis of 2D slices from the macular OCT 
volume. Mizutani et al. investigated a computerized 
method for the detection of micro aneurysms on retinal 
fundus images that are considered to be early signs 
of DR (30). His scheme was developed by using the 
training cases and when the method was evaluated, 
the sensitivity for detecting micro aneurysms was 65 
percent at 27 false positives per image. Jaafar et al. 
suggested an automated method for the detection 
of hard and soft exudates in fundus images as the 
earliest signs of diabetic retinopathy, its success is 
subjective to the existence of those candidates (31). 
Pachiyappan et al. describe a system for detecting 
of the macular abnormalities caused due to DR 
by applying morphological operations, filters and 
thresholds on the fundus images of the patient (32).

Durkin et al. patented a technology for the 
use of Raman spectroscopy that can be employed for 
the related US Application Data detection of molecular 
changes underlying ocular pathologies but this 
invention needs excessive techniques and equipment 
and technician of using laser in addition to the experts 
of ophthalmologist to interpret the results (33). You and 
co-workers patented a fundus camera with infrared-
based technology for detecting and monitoring DR, 
the method is primarily based on the fundus camera, 
which although is useful for non-invasive diabetic 
retinopathy detection and monitoring but fundus 
limitation to 2D imaging which doesn’t give details in 
depth still disadvantage of the technique (34).

The above discussion demonstrates that 
there are some limitations associated with retinal 
layers’ segmentation such as the low accuracy 
achieved when having images with low signal to 
noise ratio (SNR), and the fact that the majority of the 
proposed approaches could segment only up to eight 
retinal layers, while methods that segmented more 
layers were successful only with high-contrast images. 
Most of systems for early DR detection that are being 

introduced in the literature have been proposed from 
fundus images. Fundus photography uses the same 
concept of the indirect ophthalmoscope for a wide view 
of the retina. One of the reasons fundus pictures are 
more common is that it can give a good presentation 
of systemic diseases. However, one of its crucial 
drawbacks is it give pictures in 2D with no appreciation 
for depth. To the best of our knowledge, there are no 
systems in the literature that aim at early detection 
of DR using OCT scans, and we are the first group 
proposing such system.

The automated data analysis revealed subtle 
but clinically significant quantitative characteristics of 
retinal layer and demonstrated significant-features 
changes throughout the decades of life and between 
layers. The framework includes a new approach for 
the segmentation of the 12 distinct retinal layers. 
Applications of the proposed approach yield promising 
results that could, in the near future, replace the use 
of current technologies for early detection of DR. The 
retina, being a direct derivative of the brain, cannot 
heal and does not regenerate. To-date retina diseases 
are detected after substantial anatomical damage 
to the retinal architecture has already occurred. 
Successful treatment nowadays can only slow disease 
progression, or at best maintain present visual function. 
Revealing the normal topographic and age-dependent 
characteristics of retina reflectivity and defining rates 
of normal age-related changes, will enable us to detect 
pre-disease conditions. This carries the promise for the 
development of future preventive retinal medicine that 
will allow early detection and early treatment of retinal 
conditions prior to the recognition of advanced anatomy-
distorting clinical findings that is available today.
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