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1. ABSTRACT 
  
 In rheumatoid arthritis, chemokines mediate the 
migration of inflammatory leukocytes into the synovium. 
Among the four known chemokine families, CXC, CC 
chemokines and fractalkine seem to be of outstanding 
importance in this process. Angiogenesis, the formation of 
new vessels, is also important during the perpetuation of 
inflammation underlying rheumatoid arthritis. In this 
review, authors discuss the role of the most important 
chemokines and chemokine repetors in arthritis-associated 
neovascularization. The process and regulation of 
angiogenesis are described in this context as well. Apart 
from discussing the pathogenic role of chemokines and 
chemokine receptors in arthritic vessel formation, authors 
also review the important relevance of chemokines and 
angiogenesis for therapeutic intervention. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Rheumatoid arthritis (RA) is associated with 
increased synovial vascularity. The large number of blood 
vessels observed in the RA synovium are derived from 
endothelial progenitor cells or pre-existing vessels. These two 
processes are termed vasculogenesis and angiogenesis, 
respectively (1-10). In RA, leukocytes extravasate through the 
vascular endothelium and form inflammatory infiltrates 
within the synovium. The transendothelial migration of 
leukocytes involve numerous inflammatory chemokines 
(5,12-15). Some of these chemokines are also involved in 
synovial neovascularization (5,6,15). On the other hand, some 
chemokines suppress angiogenesis and thus synovial 
inflammation (5,11,14). Accelerated angiogenesis may result 
in an expanded endothelial surface, which may promote more 
intense inflammatory cell ingress into the synovium (13,16). 
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Figure 1. The role of chemokines and endothelial cell-bound chemokines receptors in angiogenesis. 
 
 In addition to the role of chemokines in 
angiogenesis, this issue may have important relevance for 
antirheumatic therapy. For example, small molecular 
chemokine or chemokine receptor inhibitors or anti-
chemokine biologics that also suppress neovascularization 
may be used in the therapy of arthritis (1,5,6,11,14). 
 
3. ANGIOGENESIS IN RHEUMATOID ARTHRITIS 
 
 Although the role of chemokines and chemokine 
receptors in synovial neovascularization will be discussed 
in more detail, we will first briefly describe angiogenesis in 
RA. RA is considered an "angiogenic" disease state as there 
is a perpetuation of neovascularization in the synovium 
associated with synovial inflammation (1-5). The 
angiogenic process itself, its mediators and inhibitors, 
cellular and molecular interactions underlying 
neovascularization, as well as the role of angiogenesis and 
the possibilities of angiostatic targeting in RA have been 
extensively discussed in a number of recent reviews (1-6). 
In RA, the synovial tissue is rich in newly formed vessels. 
The high turnover of capillary formation leading to 
increased vascular endothelial surface may enable the 
extravasation of inflammatory leukocytes into the 
synovium and thus the progression of RA (1-5) (Figure 1).  
 Angiogenic mediators also involved in the 
pathogenesis of RA include numerous growth factors, 
cytokines, chemokines, extracellular matrix 
macromolecules, cell adhesion receptors, proteolytic 

enzymes and other factors. Most of these mediators are 
released by endothelial cells and macrophages; cells also 
present in high quantities in the RA synovium (1,2,12). 
Angiogenesis inhibitors in RA include cytokines, 
chemokines, a number of antirheumatic drugs, protease 
inhibitors, antibiotics and other compounds (1-7). Many of 
these factors may influence the progression of RA and thus, 
they may be useful for the management of this disease. 
 
 The outcome of neovascularization, and thus the 
extent of leukocytic invasion through the newly formed 
vessels into the synovium, greatly depends on the 
imbalance between angiogenic and angiostatic mediators. 
Several interactive and feedback mechanisms exist in the 
RA synovial tissue, which up- or down-regulate the 
angiogenic process (1-7,11,14). 
  
4. CHEMOKINES AND CHEMOKINE RECEPTORS 
IN SYNOVIAL ANGIOGENESIS 
 
4.1. Chemokines and chemokine receptors in rheumatoid 
arthritis 
 Among CXC chemokines, interleukin-8 (IL-
8)/CXCL8, epithelial-neutrophil activating protein-78 
(ENA-78)/CXCL5, growth-related gene product α 
(groα)/CXCL1, connective tissue activating protein III 
(CTAP-III)/CXCL7, granulocyte chemotactic protein 2 
(GCP-2)/CXCL6, interferon-γ-inducible protein 10 (IP-
10)/CXCL10, monokine induced by interferon-γ
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Table 1. Chemokine receptor-ligand pairs involved in RA-
associated angiogenesis 

Chemokine 
receptor 

Chemokine ligand  

CXC chemokine 
receptors 

 

   CXCR1 IL-8/CXCL8 
   CXCR2 IL-8/CXCL8, ENA-78/CXCL5, 

Groα/CXCL1, CTAP-III/CXCL7 
   CXCR3 IP-10/CXCL101, PF4/CXCL41, Mig/CXCL91 

   CXCR4  SDF-1/CXCL12 

   CXCR7 SDF-1/CXCL12 
C-C chemokine 
receptors 

 

   CCR1 MPIF-1/CCL23 
   CCR2 MCP-1/CCL2 
   CCR7 SLC/CCL211 

C-X3-C chemokine 
receptors 

 

   CX3CR1 Fractalkine/CX3CL1 

Other  
   DARC Duffy antigen, some CC and CXC chemokines 

1Angiostatic chemokines. See text for abbreviations. 
 
 
(Mig)/CXCL9, platelet factor 4 (PF4)/CXCL4, stromal 
cell-derived factor-1 (SDF-1)/CXCL12, B cell activating 
chemokine 1 (BCA-1)/CXCL13 and CXCL16 have been 
implicated in the pathogenesis of RA. Although some of 
these chemokines also exert homeostatic properties, these 
mediators may all be considered "inflammatory" 
(5,12,14,17,18). As discussed later, a number of CXC 
chemokines have been implicated in RA-associated 
angiogenesis (5,6,11) (Table 1) (Figure 1). 
 
 Regarding CC chemokines, monocyte 
chemoattractant protein-1 (MCP-1)/CCL2, macrophage 
inflammatory protein 1α (MIP-1α)/CCL3, MIP-3α/CCL20, 
Regulated upon Activation, Normal T-cell Expressed and 
Secreted (RANTES)/CCL5, Epstein-Barr virus-induced 
gene 1 ligand chemokine (ELC)/CCL19, secondary 
lymphoid tissue chemokine (SLC)/CCL21 and, chemokine-
like factor 1 (CKLF1) have been implicated in 
inflammatory mechanisms underlying RA (5,11,14,19,20). 
Yet, only very few CC chemokines are involved in synovial 
angiogenesis (5,21,22). 
 
 The only member of the CX3C chemokine 
family, fractalkine/CX3CL1, has been associated with 
inflammatory synovitis and angiogenesis (5,23-25).  
 
 Chemokines described above bind to their 7-
transmembrane domain receptors expressed on the target 
cells (26). Some of these receptors, such as CXCR2, CCR1 
or CCR3 have numerous chemokine ligands, while others, 
such as CXCR6, CCR8, CCR9 or CX3CR are specific 
receptors for one single ligand (5,26).  
 
4.2. Chemokines in angiogenesis 
 Regarding the possible angiogenic or angiostatic 
action of CXC chemokines, those containing the ELR 
amino acid motif, such as IL-8/CXCL8, ENA-78/CXCL5, 
groα/CXCL1, and CTAP-III/CXCL7, promote vessel 
formation (Figure 1). In contrast, ELR- CXC chemokines 
including PF4/CXCL4, IP-10/CXCL10 and Mig/CXCL9 

inhibit angiogenesis (5,27,28). SDF-1/CXCL12 lacks the 
ELR sequence, nevertheless it stimulates 
neovascularization (5,28) (Table 1).  
 
 IL-8/CXCL8 is chemotactic and mitogenic for 
vascular endothelial cells (5,14,27,28). This chemokine 
binds to one of its receptors, CXCR2, on endothelial cells 
(5,14,21). ENA-78/CXCL5, CTAP-III/CXCL7 and 
groα/CXCL1 have also been implicated in angiogenesis 
(1,5,27,29,30). Prostaglandin E2 is also angiogenic and it 
acts in part by inducing groα/CXCL1 expression (31). All 
these cytokines are abundantly produced in the RA 
synovium (1,5,11,14). 
 
 IP-10/CXCL10 exerts proinflammatory action in 
RA, however, this chemokine inhibits neovascularization 
(5,14,27,28,32). This ELR-lacking chemokine has been 
shown to suppress neovascularization (27,28). IP-
10/CXCL10 inhibits VEGF-induced endothelial migration 
(33). On the other hand, VEGF induces endothelial 
expression of IP-10/CXCL10 (33). Thus, IP-10/CXCL10 
may be an autocrine inhibitory regulator of VEGF-
mediated angiogenesis: VEGF induces IP-10/CXCL10 
production, and the chemokine, in turn, suppresses VEGF-
induced capillary formation (32,33).  
 
 Other ELR- chemokines, such as Mig/CXCL9 
and PF4/CXCL4 are also angiostatic (5,28,34). All ELR- 
angiostatic chemokines have been detected in RA synovial 
tissues (5,11,14). Recently, a nonallelic variant of 
PF4/CXCL4 termed PF4var/CXCL4L1 has been described. 
This variant is also a potent inhibitor of angiogenesis and it 
inhibits melanoma and lung carcinoma proliferation 
(35,36). PF4var/CXCL4L1 expression in sarcoma cells 
could be induced by IL-1 or IL-17 (35). The role of this 
chemokine variant in RA needs to be elucidated.  
 
 SDF-1/CXCL12, the specific ligand for CXCR4, 
may be a key regulator of angiogenesis and vasculogenesis, 
despite lacking the ELR sequence (37-39). SDF-1/CXCL12 
induced endothelial cell chemotaxis, as well as dermal 
angiogenesis (38).  Hypoxia induces the release of this 
chemokine by RA synovial fibroblasts (37). Furthermore, 
the SDF-1/CXCL12-CXCR4 interaction induces Akt 
phosphorylation resulting in the stimulation of VEGF 
release via the phosphatidyl inositol 3 kinase (PI3K)/Akt 
pathway (40). Thus, SDF-1/CXCL12 may induce 
angiogenesis indirectly via VEGF (40). SDF-1/CXCL12-
mediated angiogenesis also involves the activation of heme 
oxygenase 1 (41). This chemokine also synergizes with 
granulocyte colony-stimulating factor during vessel 
formation (42). During angiogenesis, SDF-1/CXCL12 
becomes immobilized on heparan sulfate produced by 
endothelial cells (37). SDF-1/CXCL12 expression has also 
been associated with the growth of gliomas, thus, it may 
serve as an indicator of tumor neovascularization and as a 
prognostic marker (43).  
 
 Regarding vasculogenesis, a subpopulation of 
circulating CD34+ cells expressing the VEGF-2 receptor 
have been identified. These cells are functional endothelial 
precursor cells (EPCs). The process of new vessel 
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formation from EPCs is termed vasculogenesis (8,9). 
Decreased number of EPCs, as well as impaired 
vasculogenesis have been associated with RA (10). 
Virtually all CD34+/VEGF-2 receptor+ EPCs also express 
CXCR4 and migrate in response to SDF-1/CXCL12 (9). 
The cytokine-mediated production of this chemokine 
induces tissue vascularization by recruiting CXCR4+ EPCs 
(44). Thus, SDF-1/CXCL12 accelerates the 
revascularization of ischemic organs (39). Recently, an 
alternative receptor for SDF-1/CXCL12, as well as for 
IFN-inducible T cell α chemoattractant (I-TAC)/CXCL11, 
different from CXCR4, has been identified and implicated 
in chemokine-induced tumor angiogenesis (45). In 
conclusion, SDF-1/CXCL12 may serve as a "molecular 
hub" that modulates both angiogenesis and vasculogenesis 
(39). 
 
 Much less information is available on the 
possible angiogenic capacity of CC chemokines. MCP-
1/CCL2 induced endothelial cell chemotaxis in  vitro and 
angiogenesis in vivo (21,22). MCP-1/CCL2 stimulates 
vessel formation via its receptor, CCR2, which is expressed 
on the surface of endothelial cells (21). This chemokine 
exerts its angiogenic activity by the upregulation of the Ets-
1 transcription factor. This process also involves integrins 
and ERK-1/2 activation (22). MCP-1/CCL2 is a mediator 
of TGF-β-induced angiogenesis. This chemokine stimulates 
the migration of vascular smooth muscle cells (46). 
Fibroblast growth factor 2 (FGF-2) enhances MCP-
1/CCL2-driven vasculogenic signals (47). Thus, MCP-
1/CCL2 may act in concert with other angiogenic mediators 
during angiogenesis and vasculogenesis (Table 1). 
 
 Among other CC chemokines, myeloid 
progenitor inhibitory factor 1 (MPIF-1)/CCL23 has been 
implicated in endothelial cell migration and 
metalloproteinase secretion (48). In contrast, secondary 
lymphoid tissue chemokine (SLC)/CCL21 exerts 
remarkable angiostatic effects and inhibits tumor 
progression (49). Yet, the role of CC chemokines in 
angiogenesis needs further investigation (Table 1). 
 
 Fractalkine/CX3CL1 has been implicated in 
angiogenesis, as well as atherosclerosis (25,50,51). 
Fractalkine/CX3CL1 stimulates neovascularization (24,25). 
Mice lacking the fractalkine receptor CX3CR1 developed 
less pronounced atherosclerosis than wild type animals 
(50). In addition, an M280/I249 polymorphism in the 
CX3CR1 gene has been associated with lower 
cardiovascular risk in humans (51). As fractalkine/CX3CL1 
is abundantly produced in RA (24,25) and increased 
cardiovascular risk is a leading mortality factor in RA, 
these observations may have important clinical relevance. 
 
4.3. Chemokine receptors in neovascularization 
 CXCR2 recognizes the most important 
proinflammatory and pro-angiogenic, ELR+ CXC 
chemokines (5,14) (Table 1; Figure 1). CXCR2 is 
expressed on RA macrophages, neutrophils, articular 
chondrocytes, as well as on endothelial cells during 
inflammation (5,14,21,52). As discussed above, CXCR4 
has been implicated in SDF-1/CXCL12-induced synovial 

neovascularization (17,18). Hypoxia induces CXCR4 
expression in glioblastoma via hypoxia-inducible factor 1 
(HIF-1) and VEGF production (53). CXCR7 recognizing I-
TAC/CXCR11 and SDF-1/CXCL12 may also be involved 
in angiogenesis (45) (Table 1). 
 
 CCR2 is a receptor for MCP-1/CCL2 and some 
other CC chemokines (5,14). As described above, MCP-
1/CCL2 has been implicated in synovial angiogenesis (21). 
Among other CC chemokine receptors, CCR2 is also 
produced in the joint (52). In a recent study using a murine 
model of skeletal muscle injury, CCR2-deficient animals 
had delayed muscular angiogenesis and decreased VEGF 
production (54). Thus, CCR2 may be important in VEGF-
mediated neovascularization. 
 
 DARC, originally described on red blood cells, 
binds the Duffy antigen, as well as some CXC and CC 
chemokines. RA synovial endothelium also expresses 
DARC (55). DARC has been implicated in breast cancer-
associated neovascularization (56). 
 Chemokine receptors described above have been 
associated with angiogenesis. Conversely, CXCR3, which 
binds the angiostatic chemokines IP-10/CXCL10 and 
MIG/CXCL9, may be involved in chemokine-mediated 
angiogenesis inhibition (5).  
 
4.4. Regulation of chemokine-induced synovial 
angiogenesis 
 The outcome of synovial neovascularization 
depends on the imbalance between angiogenic mediators and 
angiogenesis inhibitors. There are several interactive 
mechanisms involving inflammatory mediators in the RA 
synovium (1,2,5,7). Some pro-inflammatory cytokines may 
directly stimulate angiogenesis or may act indirectly by 
enhancing the production of angiogenic chemokines. Indeed, 
TNF-α and IL-1 stimulate the release of chemokines by RA 
synovial fibroblasts (1-5). IL-18 exerts its proinflammatory 
and angiogenic effects at least in part by inducing the 
secretion of angiogenic SDF-1/CXCL12 and MCP-1/CCL2 
by RA synovial tissue fibroblasts (57). Macrophage 
migration inhibitory factor (MIF) is a pro-inflammatoy and 
angiogenic cytokine in RA (58,59). MIF also stimulates the 
production of angiogenic chemokines, such as IL-8/CXCL8 
(60,61). On the other hand, in a recent study, IL-13 gene 
transfer in rat adjuvant-induced arthritis resulted in the 
suppression of angiogenesis, which was associated with the 
downregulation of the angiogenic chemokines groα/CXCL1 
and ENA-78/CXCL5 (62). Possible interactions between 
VEGF and HIFs or IP-10/CXCL10 are described above 
(5,33,34). Other regulatory mechanisms include the balance 
between specific antagonistic pairs, such as ELR+ versus ELR- 
chemokines (5,14,27,28). The effects of anti-chemokine 
therapy on angiogenesis will be discussed later. 
 
5. PRACTICAL ISSUES WITH RESPECT TO 
CHEMOKINE-INDUCED ANGIOGENESIS IN RA 
 
5.1. The possible prognostic value of chemokines and 
angiogenesis  
 The number of newly formed blood vessels in 
biopsy samples indicating the extent of neovascularization 
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may also reflect the progression of the disease, similarly to 
that, which has been observed in malignancies (1,2). For 
example, significantly higher number of synovial vessels have 
been detected histologically in RA in comparison to 
osteoarthritic or normal synovial tissues (5,63,64). The 
synovial expression of some angiogenic mediators including 
chemokines may also have some prognostic value. As 
described above, the expression of SDF-1/CXCL12 in 
gliomas correlated with tumor progression (43). Thus, the 
synovial expression of certain inflammatory and angiogenic 
chemokines may also be correlated with synovial 
inflammation. 
 
5.2. Inhibition of angiogenic and use of angiostatic 
chemokines to control synovial neovascularization 
 As described above, numerous chemokines 
promote angiogenesis and these mediators may be targeted by 
small molecular inhibitors or specific antibodies. On the other 
hand, some ELR- chemokines suppress neovascularization (1-
5,14).  
 
 Among anti-inflammatory and antirheumatic drugs 
currently used in the treatment of RA, corticosteroids, such 
as dexamethasone, effectively suppressed IL-8/CXCL8 and 
MCP-1/CCL2 production in RA (65,66). Non steroidal 
anti-inflammatory drugs (NSAIDs), such as diclofenac and 
meloxicam attenuated IL-8/CXCL8 production in rat 
antigen-induced arthritis (67). Sulfapyridine, a constituent 
of sulfasalazine, inhibited the production of IL-8/CXCL8 
by pro-inflammatory cytokine-stimulated endothelial cells 
(68). TNF-α blockade using infliximab reduced the serum 
levels and/or synovial expression of IL-8/CXCL8, MCP-
1/CCL2, groα/CXCL1, as well as angiogenesis in RA 
patients (69,70). As discussed above, IL-13 gene transfer 
resulted in the suppression of angiogenesis and the 
production of angiogenic CXC chemokines (62). 
 
 Among angiostatic chemokines, PF4/CXCL4 has 
been tried in animal models of arthritis (2,7,34). Its variant, 
PF4var/CXCL4L1 inhibited tumor progression (36), and 
thus may also be used to control synovial angiogenesis. 
Mig/CXCL9 chemokine gene therapy improved the 
therapeutic efficacy of some cytotoxic agents in cancer 
(71). Blockade of CXCR2 also inhibited tumor-associated 
angiogenesis (72). In general, most angiostatic chemokines 
may have therapeutic relevance for RA-associated 
angiogenesis as well.   
  
6. CONCLUSIONS 
 
 In this review, we have discussed the potential 
role of chemokines in arthritis-associated angiogenesis. A 
number of CXC chemokines, as well as some CC and 
CX3C chemokines may be involved in the angiogenic, as 
well as inflammatory events underlying RA. In addition, 
chemokine-induced angiogenesis may have clinical 
relevance as well. The determination of synovial 
vascularity and the expression of angiogenic chemokines in 
the arthritic synovium may have some value for 
determining the progression of RA. Anti-angiogenesis 
targeting using chemokine or chemokine receptor inhibitors 
may control synovial inflammation. 
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