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1. ABSTRACT 
 

Polymorphic light eruption (PLE) is a 
photodermatosis (i.e. "sun allergy") with a high 
prevalence, particularly among young women in 
temperate climates.  It is characterized through itchy skin 
lesions of variable morphology, occurring in spring or 
early summer on sun exposed body sites.  As yet the exact 
etiology and pathogenesis of PLE are unknown although a 
resistance to ultraviolet (UV)-radiation-induced 
immunosuppression (i.e. a physiologic phenomenon in 
normal healthy subjects) and a subsequent delayed type 
hypersensitivity (DTH) response to a UV-modified skin 
antigen (i.e. neo-antigen) has been suggested as a key 
factor in the disease.  This article reviews the cellular and 
molecular disturbances associated with and most likely 
playing a role in pathogenesis of the disease.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION AND CLINICAL ASPECTS 
 

Polymorphic light eruption (PLE; "i.e., sun 
allergy") is the most common form of photodermatosis, 
with a prevalence of up to 10 to 20% in young women of 
the North American and European populations (1-4).  
Similar to lupus erythematosus (LE), a systemic 
autoimmune disease, PLE has a female preponderance 
and its mean onset in the second to third decade of life (5-
8); however, symptoms may also begin in early childhood 
or late adulthood (5, 9-11).  Although women are affected 
much more often (by a factor of approximately 4) (7, 8), 
men also do develop the condition in significant numbers 
(9).  As the name of the condition implies, itchy non-
scarring skin lesions of variable morphology appear 
several hours or even days after sun exposure on sun 
exposed skin sites, but not less than 30 minutes, and 
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subside in 7-10 days if further exposure is avoided (4, 7, 
10-13). PLE lesions usually appear in spring or early 
summer (4, 10).  Several morphological variants of PLE 
have been described, including papular, papulovesicular, 
plaque-type, erythema multiforme (EM)-like and insect 
bite-(strophulus) like forms (4, 6, 7, 9-11, 14).  Despite 
the different morphology among different individuals, in 
general lesions are usually monomorphic in the same 
individual (4, 6).  Jansen and Karvonen followed 114 PLE 
patients for 7 years and 76% reported consistent lesion 
morphology during the follow up period (15).  The 
affected body sites are sun-exposed areas, particularly 
those that are normally covered during the winter such as 
the upper chest, the neck and the extensor aspects of the 
arms (6).  The face and the hands of PLE patients are 
typically spared, presumably because these sites often 
receive daily sun exposure and thus undergo continuous 
natural hardening (16). Indeed, many individuals 
experience a hardening effect with prolonged sun 
exposure, occurring after repetitive exposures to UV 
radiation (10, 17).  This means that, as summer 
progresses, skin lesions are less likely to occur, or may be 
less severe than they were in early spring allowing 
prolonged sun exposure.  PLE is chronic in nature and in 
most affected subjects the disease has a persistent course 
with a slow tendency to amelioration (15, 18).  

 
PLE has a wide geographic distribution and is 

seen much more frequently in temperate than tropical areas 
near the equator (1-4, 19).  This difference is unlikely to be 
due to cultural, dietary or ethnic factors because the 
incidence rate of PLE in the UK, for instance, is 
approximately 15% compared with less than 5% in 
Australia, a difference that most likely can be attributed to 
the different amounts of UV in these geographical regions 
(3).  The observation that PLE increases in prevalence and 
severity towards higher northern latitudes, where the 
relative differences in UVB between summer and winter 
are bigger may also indicate the importance of UV 
adaptation.  Loss of adaptation of the skin to UV radiation 
(UVB) during winter, making the patients sun-sensitive in 
spring, is of paramount importance in the disease (20). 

 
3. PHOTOBIOLOGIC WAVEBAND ASPECTS 
 

The UV waveband action spectrum inducing PLE 
appears to be quite broad.  In general, laboratory studies 
revealed that most PLE patients are sensitive to UVA, but 
lesions can also be induced with UVB alone, and some 
patients are sensitive to both waveband ranges (5, 6, 21-
26).  The observation that most PLE patients exhibit a 
sensitivity to sunlight through window glass (6, 27), along 
with the lack of protection from pure UVB absorbing 
sunscreens in the majority of PLE patients (28) substantiate 
the role of UVA in triggering the eruption.  The importance 
of UVA is also supported by the fact that in PLE patients 
sunburn is not mandatory for provoking the manifestation 
of the disease.  Additionally, the higher incidence of PLE in 
subjects living in temperate areas compared with tropical 
regions, may relate to the higher proportion of UVA 
compared to UVB rays during the spring and autumn in the 
former areas (3). 

4. TREATMENT 
 

The selection of the appropriate PLE treatment 
requires knowledge of the individual clinical course of the 
disease and depends on the frequency, duration and 
severity of the disease and the degree of lifestyle affection 
(29, 30).  As PLE often causes problems during leisure-
time activities and holidays, resulting in a substantial loss 
of quality of life, prophylaxis is an important therapeutic 
approach (29).  Mild cases respond well to basic 
photoprotective measures such as avoiding sun exposure, 
the use of broad-spectrum sunscreens with high UVA 
protection capacity, and protective clothing (29).  Topical 
corticosteroids and occasionally oral antihistamines reduce 
the inflammation, alleviate itch and can shorten the 
duration of the eruption (4, 10, 30).  In patients with 
occasional bouts of the disease, oral steroids can be used to 
suppress PLE (31, 32).  Other treatment options particularly 
in cases with severe symptoms include the administration 
of azathioprine (33), anti-malarials (6, 34, 35), or 
thalidomide (6).   

 
Most PLE patients benefit from prophylactic 

treatment with phototherapy or photochemotherapy 
(hardening) to alleviate discomfort and lifestyle restrictions 
during the summer months or vacation periods in areas 
with high intensity sun exposure.  As phototherapy 
modality, broad-band UVB (290-320nm), narrow-band 
UVB (311nm), broad-band UVA or psoralen plus UVA 
(PUVA) photochemotherapy is effective in PLE (5, 13, 22, 
36-39).  Photo(chemo)therapy stimulates the naturally 
occurring phenomenon of hardening and aims to induce 
photoadaptation with small, carefully regulated doses of 
UV radiation without inducing the manifestation of the 
disease.  The mechanisms underlying this hardening effect 
are unknown but may be the result of increased 
melanization in the skin, thickening of the stratum corneum 
or immunological changes induced by UV radiation (12, 
40, 41).  Watanabe et al (42) reported that photo-hardening 
might be due to UV-induced immunosuppression, a theory 
supported by the down regulation of cell adhesion 
molecules and partially due to removal of un-identified 
endogenous antigens which cause a DTH reaction.  

 
5. GENETIC FACTORS 
 

The exact pathogenesis of PLE remains unclear 
but genetic factors seem to play a role. Epstein reported 
that PLE is particularly prevalent in the North American, 
Latin American Indian and the Finnish populations and 
that in these populations there appears to be a genetic 
(dominant) predisposition to develop the disorder (11).  
PLE patients with a family history of photosensitivity are 
described, ranging from 15% to 56% (1, 3, 17, 41, 43-46).  
Several authors have speculated that PLE is inherited as 
an autosomal dominant gene with reduced penetrance (6, 
13, 16, 17, 43).  

 
Two studies have investigated the genetics of 

PLE in greater detail, and the results of these studies 
suggest that a polygenic model can explain PLE 
inheritance (45, 46).  These twin studies and genetic 
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modelling have established a clear genetic influence (45, 
46).  Millard et al (46) examined 420 pairs of adult female 
twins (119 monozygotic and 301 dizygotic twins) to 
assess the question of PLE inheritability.  The prevalence 
of PLE, assessed by a quantitative genetic model, was 
21% and 18% in monozygotic and dizygotic twins, 
respectively.  The probandwise concordance for PLE was 
higher in monozygotic (0.72) than in dizygotic twin pairs 
(0.30), indicating a strong genetic effect.  In addition, a 
family history of PLE in first-degree relatives was present 
in 12% of affected twins, compared with 4% in unaffected 
twins, providing evidence of a familial clustering.  The 
data substantiate the possibility of a genetic susceptibility 
to PLE and demonstrate that the disease is multifactorial, 
comprising both genetic and unique environmental 
components.  The authors estimated that the heritability of 
PLE is 84 to 87%, and that both a polygenic model of 
inheritance and a dominant single gene model could 
explain these data.  Mc Gregor et al (45) used segregation 
analysis to assess the inheritability of photosensitivity in 
420 individuals of PLE and actinic prurigo ascertained 
families.  Across the pedigrees of 23 PLE probands a 21% 
prevalence of photosensitivity among the first-degree 
relatives of the probands was observed.  The expression of 
PLE in genetically susceptible individuals was determined 
in large part by a polygenic model of inheritance, with an 
important additional environmental component, possibly 
exposure to sunlight.  No evidence for a dominant single 
gene model was observed, but the authors caution that the 
small number and size of the PLE pedigrees analyzed 
limited the power to detect major single gene effects.  

 
6. PATHOPHYSIOLOGY 
 
6.1. Neo-antigens 

The UVB radiation (290-320nm) is a potent 
activator of photochemical reactions and has the required 
energy to modify cellular organic molecules such as 
proteins and DNA (47, 48).  Exposure to UVB can 
therefore create new or altered skin antigens that the 
immune system may recognize as foreign.  While these 
neo-antigens have the potential to provoke (auto)-immune 
reactivity, at the same time the immunosuppressive 
properties of UV radiation may ensure that this adverse 
reaction does not occur in normal subjects (49-51) (Figure 
1).  For instance, epidermal cells derived from the skin of 
PLE patients and exposed to UV radiation are able to 
stimulate autologous peripheral blood mononuclear cells, 
suggesting indeed that a sensitization against autologous 
UV light modified skin antigens does occur in PLE (52).  

 
A possible photoantigen candidate is heat shock 

protein 65 (HSP65), which given its importance in 
autoimmune processes such as LE has been implicated in 
PLE lesions (53). Mc Fadden et al (54) studied the 
expression of 65kD HSP (HSP65) immunoreactivity in 
skin biopsies from experimentally induced PLE lesions to 
investigate its possible role as a photo-induced antigen 
responsible for precipitating the manifestation of the 
disease.  Increased HSP expression was detectable in 
epidermal keratinocytes and endothelial cells of dermal 
blood vessels from 1 h post-irradiation, and in dermal 

dendritic cells from 5 h sustained through to 6 days.  In 
normal subjects there was no increase in HSP65 labelling.  

 
One other possible photo-target is herpes 

simplex virus (HSV) because erythema multiforme (EM), 
a frequently recurring (muco)cutaneous syndrome often 
caused by HSV infection shares some similarities with 
PLE (55, 56).  Both diseases are suspected to have an 
etiology involving cell-mediated (auto)immune reactivity, 
but while this reactivity in EM manifests itself against 
pertinent antigens like HSV, the PLE antigen remains 
unidentified.  Reports of PLE patients, who became 
totally free of PLE symptoms while taking the anti-viral 
substance acyclovir (57), and of cases in which episodes 
of PLE were followed by recurrent EM (58), led us to 
search for the presence of HSV DNA in PLE skin lesions 
as a potential allergen in UV-exposed PLE skin.  
However, in contrast to EM lesions (10 of 31; 32%) we 
did not detect by PCR and Southern blot hybridization 
HSV DNA in any PLE skin sample, contradicting the 
hypothesis that a direct immune response to HSV antigens 
in the skin is involved in the pathogenesis of PLE (59). 

 
6.2. Immune system 
6.2.1. General immunological aspects 

The skin infiltrate of PLE is composed mainly of 
activated Ia+ (HLA+) CD4+ cells resembling the 
histopathologic characteristics of DTH reactions (60).  
Moncada et al (61) characterized the dermal cell infiltrate 
and found a predominance of T helper (Th) cells and cells 
expressing high levels of Ia antigens, suggesting that an 
abnormal immune response is responsible for the tissue 
damage in PLE (61).  This was later supported by the 
immunohistochemical studies of Norris et al (62) who 
observed that UVB exposure of PLE skin resulted in an 
initial influx of CD4+ T lymphocytes up to 72h in early 
lesions, followed by CD8+ T cells in established lesions, 
consistent with a cellular mediated immune reactivity 
underlying the pathogenesis of PLE.  The predominantly 
lymphocytic perivascular cellular infiltration was 
associated with increased numbers of dermal macrophages 
and both dermal and epidermal Langerhans cells (LCs) 
within 5h of UV exposure.  These features support the early 
hypothesis in 1942 by Epstein that PLE represents a DTH 
response to photo-induced antigens (63).  The suggested 
immune response, responsible for the tissue alteration (64, 
65) is also supported by the therapeutic response of PLE to 
immunosuppressive drugs (9).  A critical factor in the 
pathogenesis of PLE is the effect of UV light on skin 
components (66).  It was hypothesized that in genetically 
predisposed subjects UV light induces a modification of 
certain skin molecules that renders them immunogenic.  
Supporting this hypothesis is the observation that cultured 
epidermal cells from PLE patients are capable of 
stimulating autologous peripheral blood mononuclear cells 
after exposure to high doses of UVA or UVB, suggesting 
that an immune sensitization against autologous UV light-
modified skin antigens occurs in PLE (52). 

 
An immunological basis for the pathogenesis of 

PLE is further supported by the findings of Norris et al (67, 
68), who compared the expression of endothelial leukocyte 
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adhesion molecule-1 (ELAM-1), intercellular adhesion 
molecule-1 (ICAM-1), and vascular cell adhesion 
molecule-1 (VCAM-1) in UVB-induced erythema with 
delayed hypersensitivity.  The expression of ELAM-1 was 
more prolonged and both VCAM-1 and ICAM-1 were 
induced in response to intra-cutaneous tuberculin-purified 
protein derivative (PPD) compared to UVB.  Norris et al 
later extended their immunohistologic analysis of UV-
induced PLE lesions (62) to correlate the expression of 
adhesion molecules ELAM-1, ICAM-1 and VCAM-1 to the 
presence of leucocytes during the evolution of this 
condition (68).  The pattern of adhesion molecule 
expression was similar to that seen in normal skin during a 
DTH reaction, supporting an immunological basis for PLE.  
Additionally, Norris et al studied neutrophil tissue 
infiltration in developing PLE lesions and demonstrated 
neutrophil migration into the dermis beginning at 5h with 
maximal infiltration occurring from 24h onwards (68), 
similar to that observed in DTH responses (67).  These 
results provide additional understanding of the 
immunologic basis of PLE and add further support to the 
concept that PLE is not simply an aberrant reaction to UV 
exposure (68).  The findings are consistent with the 
hypothesis that PLE consists of a type IV hypersensitivity 
reaction to endogenous antigens induced by UV exposure, 
although the nature of the antigens remains obscure. 

 
Using immunogenic skin tumors that would 

normally be rejected by naïve recipients, Fisher and Kripke 
pioneered in the seventies the field of photoimmunology 
and demonstrated that exposure to UV radiation prior to 
tumor inoculation would cause tumors to grow 
progressively (69).  They concluded that UV radiation had 
immunosuppressive properties, inhibiting the host anti-
tumor response.  This UV-induced immunosuppression 
mimics what occurs in transplant patients on 
immunosuppressive chemotherapy (70).  In addition to the 
suppression of anti-tumor immune responses, UV radiation 
also inhibits cell-mediated immune reactions generated 
during allergic contact dermatitis (49, 51).  In normal 
human subjects the ability of contact allergens to generate 
strong T cell mediated immune responses is significantly 
suppressed by UV radiation (71-74).  In addition to this 
failure to mount a primary immune response, 
immunological tolerance develops.  This is observed when 
individuals treated in this way cannot be re-sensitized 
against the same hapten even when topically applied at a 
later time point.  Furthermore, this UV-induced tolerance is 
hapten specific, as the sensitization against another non-
related hapten is not affected.  In the meantime we know 
that the UV-induced suppression of the ability of contact 
allergens to generate T cell-mediated responses in normal 
subjects (49) involves the release of cytokines, particularly 
tumor necrosis factor (TNF)-alpha, interleukin (IL)-4 and 
IL-10, the appearance of a HLA-DR+/CD11b+/CD1a- 
macrophage subset and the migration of LCs out of the 
epidermis (75) (Figure 1).  Additionally mast cells are 
required for UV-induced immunosuppression as mast cell 
deficient mice are resistant to the effects of UVB (76).  
UVB exposure induces a recruitment of mast cells into 
irradiated skin sites, followed by migration of these cells to 
the draining lymph nodes, required for the activation of 

regulatory cells (77, 78).  When this migration is blocked, 
UV-induced immunosuppression is prevented (77). 

 
In addition to the dynamics in migration of these 

different cell populations, UVB radiation causes a temporal 
change in the cutaneous cytokine micromilieu, and the 
microenvironment becomes favorable to the development 
of type 2 helper (Th2) cell like immune responses (79) 
(Figure 1).  Moreover, neuropeptides in the skin including 
calcitonin gene related peptide (CGRP) and substance P are 
significantly upregulated in UVB-exposed skin and play a 
significant role in UV-induced immunosuppression (80, 
81).  While UV-induced immunosuppression is often 
thought of as an obstacle to an effective anti-tumor immune 
response, there are many conceivable situations including 
induction and/or preservation of allograft tolerance (82), 
treatment of the autoimmune disease psoriasis, and the use 
of photopheresis to control graft versus host disease (83) 
where photo(chemo)therapy-induced immunosuppression 
can be beneficial. 

 
6.2.2. Immune function in PLE  

There is the hypothesis that PLE results from a 
failure of UVB-induced immunosuppression allowing a 
DTH reaction to UV induced neo-antigens (44, 62, 68, 84) 
(Figure 1).  The delayed reaction time to UV radiation in 
PLE resembles that observed in immune responses 
mediated by CD4+ cells (85).  This delay between sun 
exposure and manifestation of the PLE rash led Epstein to 
first suggest in 1942 that PLE might be due to a DTH 
response to autologous cutaneous antigens generated by 
UV radiation (63).  It is hypothesized that the production of 
these antigens occurs in all people, but that in PLE there is 
a critical failure of UV-induced immunosuppression.  
However, a DTH response takes many hours (usually 48h) 
to develop (86) and so this hypothesis fails to explain the 
immediate photo-sensitive reaction displayed by PLE 
patients (i.e. lesions that appear in less than 1hr of UV 
exposure).  This rather implies that PLE may be not 
directly related to a DTH reaction to neo-antigens (50). 

 
Supporting the link between susceptibility to UV-

induced immunosuppression and PLE incidence is the fact 
that PLE patients demonstrate a functional resistance to 
UV-induced immunosuppression, favoring a DTH response 
to potential UV-induced neo-antigens under certain 
circumstances (87, 88).  The work by van de Pas et al (87) 
revealed that there was a narrow UV-dose window for this 
resistance to immunosuppression, with a significant 
difference found between groups irradiated with 1 minimal 
erythema dose (MED) of solar simulated UV radiation, but 
not those exposed to 0.6 or 2 MED.  Contact 
hypersensitivity (CHS) responses of unirradiated skin of 
PLE patients were identical to healthy controls.  The 
highest UV radiation dose used in this study (2 MED) was 
highly immunosuppressive in both PLE patients and 
controls, leading to almost complete immunosuppression 
by more than 90% in magnitude (87).  This might explain 
why PLE lesions are often provoked by exposure to low 
doses of UV radiation but rarely by severe sunburn.  Van 
de Pas et al further noted the possibility that PLE patients 
were less immunosuppressed after 1 MED exposure 
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Figure 1. The schematic diagram highlights the potential pathogenic resistance to UV-induced immunosuppression in patients 
with PLE.  It is hypothesized that exposure to UV radiation leads to the continuous formation of neo-antigens in the skin.  In 
patients with PLE, a failure of UV-induced immunosuppression may favor the occurrence of autoimmunogenic skin rashes.  In 
normal subjects, simultaneous UV-induced immunosuppression may prevent autoimmunity, and, therefore, the formation of skin 
rashes upon UVexposure. 

 
possibly because in their study the physical dose of UV 
radiation required to induce erythema in PLE patients was 
slightly lower than that in controls.  The dose response for 
immunosuppression is quite steep between 0.6 and 1 MED, 
so a small difference in physical dose may have 
confounded the results.  To that end, and in contrast to the 
findings of van de Pas et al, we have found that the MED 
values of PLE patients did not differ significantly from 
those of normal subjects (5).  Further studies are required to 
illuminate these differences and pathways. 

 
6.2.3. Altered cell migration patterns in PLE 

In healthy individuals, LCs disappear from the 
epidermis after UVB irradiation (51, 79, 89-91).  IL-1beta, 
TNF-alpha, and IL-18 release can modulate LC migration 
out of the skin (92-98).  Koelgen et al (99) investigated 
which of the two most likely mechanisms for LC 
disappearence, apoptosis or migration, is responsible for 
UVB induced LC depletion in healthy individuals (99).  
Their results suggested that in human healthy skin UVB-
induced LC depletion is mainly caused by migration and 
not by apoptosis.  Concurrently with the depletion of 
CD1a+ LCs after UV exposure, CD36+CD11+CD1- 
macrophage like cells expand in the dermis and infiltrate 
the epidermis (100).  CD11b+ macrophage-like cells, 
including both macrophages and neutrophils, play an 
important role in the induction of tolerance and suppression 
of DTH after UVB irradiation (49, 101, 102).  The CD11b+ 
macrophages, infiltrating the dermis and epidermis after 
UVB exposure were found to be potent producers of the 

immunosuppressive cytokine IL-10 (102, 103).  
Neutrophils expressing CD15 and CD11b, also migrate into 
human skin after UV irradiation (67, 104-107).  In addition 
to other cells, including T cells, mast cells and NK cells, 
neutrophils are able to produce IL-4 (104, 108, 109).  These 
cell migration patterns have important consequences for 
immunosuppression and current theory suggests that the 
migration of cells upon UV exposure in PLE skin differs 
from that in the skin of healthy individuals (Figure 1). 

 
6.2.4. Differential expression of cytokines in PLE  

To establish whether UVB exposure induces 
aberrant cytokine expression in the non-diseaseed skin of 
patients with PLE, Koelgen et al (110) compared the 
expression of UVB-induced cytokines in the skin of normal 
individuals with that from PLE patients.  Their results 
showed that the skin of PLE patients contains lower levels 
of cytokines related to LC migration (IL-1, IL-18 and TNF-
alpha).  No differences were observed in the expression of 
Th1 related cytokines (IL-12, IFN gamma and IL-6), while 
there were fewer cells expressing the Th2-biasing cytokine, 
IL-4, in the epidermis of PLE patients 24h after irradiation 
(110).  The results from concurrent immunohistochemical 
staining for neutrophils (elastase+), mast cells (tryptase+) 
and macrophages (CD36+) showed that after UV exposure, 
TNF-alpha, IL-4 and, to a lesser extent IL-10 was 
predominantly expressed by neutrophils, suggesting that 
the differences between healthy and PLE subjects might be 
attributable to the differences in cytokine secretion by 
neutrophils.  Koelgen and colleagues concluded that the 
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reduced expression of neutrophil-derived TNF-alpha, IL-4 
and IL-10 in UVB-irradiated PLE skin is responsible for 
both reduced LC migration and a failure to suppress Th1 
responses in these patients (Figure 1).  

 
In contrast to this study, we found no difference 

in cell migration or cytokine gene expression (mRNA 
levels of TNF-alpha, IL-1 beta, IL-10 and IL-12) between 
PLE patients and healthy controls.  Furthermore, whereas 
Koelgen et al observed a persistence of epidermal LCs 48h 
and 72h after UV exposure in PLE skin, we found that the 
migration levels of CD1a+ LC did not significantly differ 
between PLE patients and healthy control subjects (111).  
There may be several explanations for the apparent 
differences in the results of these two studies including 
spectra (narrowband UVB in the Koelgen study vs solar 
simulated UV in our study), dose (6 MED vs 1, 2 and 3 
MED) and kinetics (48-72h vs 6-24h).  Nevertheless, our 
two studies both highlight the complexity of PLE 
pathogenesis and hint to further study into the 
immunological mechanisms of the disease.   

 
6.2.5. Role of neutrophils in PLE 

A role for neutrophils in UVB-induced skin 
pathology was supported by a study of Teunissen et al 
(104), who showed that UVB radiation induces a transient 
appearance of IL-4+ neutrophils in normal human skin, and 
that these cells contribute to the enhanced development of 
Th2 cells in UVB-irradiated skin.  This UV-induced IL-4 
was of sufficient quantity to be measured in suction blister 
fluid obtained from UV-irradiated skin, although the 
cellular origin could not be determined (104).  The authors 
could not exclude the possibility that IL-4 in the blister 
fluid originated from other cutaneous cells, for instance 

from mast cells, which are known to degranulate upon 
UVB irradiation (112).  In addition to IL-4, an induction or 
increase in the levels of TNF-alpha, IL-6, and IL-8 was 
detected in the suction-blister fluid of UVB-exposed skin 
(104).  Additionally it was shown that the presence of 
neutrophils affects T cell responses in primary T cell 
cultures derived from UVB-exposed skin.  Dermal cell 
cultures from UVB-exposed skin, in contrast to unexposed 
skin, induced a predominant Th2 cell response that was 
abolished by removing the CD15+ neutrophils from the co-
culture.  The results by Teunissen et al suggest that the 
presence of neutrophils and IL 4, a strong Th2-polarizing 

cytokine (113), in UVB-exposed skin favor the 
development of Th2 cell responses in this tissue, while Th1 
cell responses are concomitantly inhibited.  This is relevant 
because IL-4 is known to be involved in UV-induced 
suppression of both DTH (114) and CHS (115). 

 
IL-10 is an immunosuppressive cytokine that acts 

via inhibiting antigen presentation to Th1 cells (116) and is 
induced in normal skin upon UVB irradiation (102, 103, 
117, 118).  IL-10 counteracts IL-12 activity and inhibits the 
activation of Th1 cells allowing for the activation of Th2 
cells (119).  Piskin et al (107) reported that neutrophils 
infiltrating UVB-irradiated normal human skin display high 
IL-10 expression, although it is generally believed that IL-
10 is predominantly expressed by CD11b+ HLA-DR+ 
macrophages that infiltrate the UVB-exposed skin (102, 

103).  However, since neutrophils invade UVB-exposed 
skin and, like macrophages, express CD11b and HLA-DR 
(104), Piskin et al sought to determine whether neutrophils 
represent another source of IL-10.  As expected IL-10 
could be detected in CD11b+ HLA-DR+ CD36+ 
macrophages in both the epidermis and dermis of UVB-
exposed skin.  Surprisingly, however, the majority of the 
abundant IL-10 expression was found in CD11b+ HLA-
DR+ elastase+ neutrophils.  

 
Via the production of these immunosuppressive 

cytokines, neutrophils may contribute to the development 
of a Th2 milieu, supporting an immunosuppressive 
microenvironment in UVB-exposed skin (104, 107, 120).  
The prominent role of IL-10 has been clearly demonstrated 
in UVB irradiated mice in which blocking of IL-10 resulted 
in the abolishment of not only UVB-induced 
immunosuppression (121) but also photocarcinogenesis 
(122).  In IL-4 gene knockout mice the DTH response is 
not suppressed by UVB exposure (114) and injection of 
blocking anti-IL-4 abolishes UVB-induced 
immunosuppression (123), indicating that IL-4 plays an 
important role in the development of this 
immunosuppression. 

 
Immunohistochemical studies by Schornagel et al 

(124) clearly demonstrated a significantly impaired 
neutrophilic infiltration into the skin of PLE patients 
compared with healthy controls after UVB irradiation.  
Neutrophils migrate to the skin shortly after UV exposure 
by binding to adhesion molecules expressed on the dermal 
endothelium (125).  Because ICAM-1 and E-selectin on 
endothelial cells is critical to this migration, they compared 
the relative expression of these adhesion molecules.  The 
immunohistochemical results showed that in both PLE 
patients and healthy controls ICAM-1 and E-selectin 
expression increased at 6h after UVB irradiation (124).  
Morevoer, neutrophil chemotactic responses to IL-8 and 
CD5a was similar in PLE patients and healthy controls.  
Thus, it is not entirely clear whether the failure of 
neutrophils to infiltrate PLE skin after UV-irradiation is 
due to local and/or not systemic pathogenic mechanisms.  

 
In light of the fact that neutrophils produce a 

variety of immunosuppressive cytokines (IL-4 and IL-10) 
and can regulate immune reactions (104, 107, 120), it has 
been suggested that the oberserved decreased neutrophil 
infiltration after UVB irradiation of PLE skin leads to an 
impaired local production of IL-4 and IL-10, thereby 
altering the local skin cytokine milieu after UVB 
irradiation, resulting in activation of the skin immune 
response rather than suppression (Figure 1).  Restoring 
normal immune cell migration may explain the beneficial 
effects of phototherapy in PLE patients.  Koelgen et al (91) 
found that in a particularly sun sensitive PLE patient, 
successful hardening therapy increased the migration of 
LCs from the epidermis 48h after 6 MED overexposure.  
Similarily, studies by Janssens et al (126) showed that 
before hardening therapy, epidermal LC depletion and 
neutrophil influx at 48h after 6MED was impaired in UVB-
provocable PLE patients compared with healthy controls.  
Phototherapy significantly improved UV-induced cell 
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migratory responses in these patients restoring both the 
capacity of UV-induced LC depletion and neutrophil 
infiltration into the skin. 

 
6.3. Sex hormones 

Another aspect of PLE that requires further 
investigation is the disproportionate incidence observed in 
females.  This is interesting because it was recently found 
that compared to males, females are resistant to the 
immunosuppressive effects of UV radiation (74).  
Moreover, an earlier study by Widyarini et al (127) leads 
us to hypothesize that this sex difference may be due to 
protection from UV-induced immunosuppression afforded 
to females via signaling through the estrogen receptor.  
Interestingly, however, the role of oral hormonal 
contraceptives has been discussed controversially (128, 
129).  There does not seem to be a straightforward 
relationship between their use and the manifestation of 
PLE.  

 
6.4. Relation to lupus erythematosus 
 Photosensitivity is one of the pathognomonic 
features of LE and in some cases the sun-related skin rash 
in lupus is virtually indistinguishable from PLE  (130-133).  
The presence of antinuclear anibodies (ANA) in lupus 
patients was one of the early criteria used to distinguish 
PLE from lupus; however, several studies have 
demonstrated that PLE patients may have elevated ANA 
titers in the absence of other apparent lupus symptoms (5, 
15, 18, 134, 135). 
 

It has been suggested that PLE and LE may share 
a common pathogenesis (133-135).  While progression of 
PLE to LE has been proposed, long term follow up studies 
of PLE subjects have not shown an increased risk of 
transition to LE (15, 18) although PLE lesions may precede 
the development of LE (132).  The reported high 
prevalence of PLE in LE patients, together with the 
clustering of PLE among first degree relatives of subacute 
cutaneous lupus erythematosus (SCLE) and chronic 
cutaneous (discoid) lupus erythematosus (CCLE/DLE) 
subjects, suggests a shared pathogenic basis for PLE and 
cutaneous LE (132, 133).  Millard et al (136) examined the 
relative risk (RR) attributable to the presence of PLE, 
together with the effect of the major histocompatibility 
complex (MHC) in the development of cutaneous LE.  
They found that PLE and the HLA DRB1 0301 extended 
haploptye are independent risk factors for cutaneous LE.  
An association was observed between PLE and cutaneous 
LE, but not between PLE and any HLA allele.  It was 
estimated, for the general population, that the RR of 
developing SCLE given the presence of PLE, DRB1*0301 
and both PLE and DRB1*0301 is 3.37, 5.45 and 12.03, 
respectively.  For CCLE/DLE, equivalent RRs are 3.11, 
2.15 and 6.94.  These data imply the involvement of both 
PLE and HLA DRB1*0301 in the development of SCLE 
and CCLE/DLE. 

 
Plasmacytoid Dendritic Cells (pDCs) are 

identical to the natural type I interferon (IFN)-producing 
cells (137), a rare CD4+/major histocompatibility complex 
(MHC) II+ population that is capable of synthesizing 

extremely high amounts of type I IFN upon viral infection 
(138).  In addition to their classical antiviral and 
antiproliferative effects, type I IFNs like IFN-alpha also 
perform several prominent immunoregulatory functions, 
including the promotion of antigen-activated Th1 cell 
survival and differentiation, the development of 
autoantibodies, and, thus, the promotion of autoimmunity 
(139-141).  Farkas et al (142) reported that pDCs 
accumulate in CCLE and systemic LE skin lesions and that 
their density correlates well with the high number IFN 
alpha/beta-inducible protein MxA+ cells (a surrogate 
marker for INF-alpha/beta  in such lesions).  Increased 
levels of IFN-alpha/beta is often found in LE patients and 
correlates with disease activity and severity.  In light of 
these findings, we investigated whether pDCs populate the 
skin of UV-exposed PLE patients (143).  Microscopic 
examination of the immunohistochemically stained sections 
confirmed the presence of CD68+/CD123+ pDCs in most 
specimens obtained from LE (10/11 [91%]) but not at all in 
those obtained from PLE patients.  The absence of pDCs in 
PLE skin lesions did not support the hypothesis that these 
cells in conjunction with an increased production of IFN-
alpha, play an immunomodulating role in PLE.  

 
Concerning the suggested shared pathogenesis 

with LE, other investigators additionally found that UV-
irradiated (with 6 MED), uninvolved skin of photosensitive 
LE patients did not exhibit the same pathologic trafficking 
of LCs and neutrophils as described for PLE patients.  A 
gradual decrease of epidermal LCs and a gradual increase 
of epidermal neutrophils and macrophages were observed 
at several timepoints after six MED irradiation equally in 
both LE patients and controls (144).  In light of all these 
studies it would seem that PLE is not generally predictive 
of LE.  Indeed, there is increasing evidence supporting the 
idea that these two diseases may follow separate and 
distinct pathoetiological paths. 

 
7. CONCLUSIONS AND PERSPECTIVES 

 
In conclusion, clinical and experimental evidence 

supports the hypothesis of an aberrant cellular immune 
response in UV-exposed PLE skin, suggesting the presence 
of a UV-induced neo-antigen together with a failure of UV-
induced immunosuppression.  As yet, the presence of a 
possible photo-neo-antigen has not been confirmed but a 
resistance to UV-induced immunosuppression has been 
found in PLE patients.  Considering the high prevalence of 
PLE, together with its increasing incidence, associated 
discomfort and life style restrictions, future studies are 
required to establish new therapeutic and/or preventive 
strategies.  One such strategy may build on liposomes 
containing DNA repair enzymes (145-149).  Indeed, a 
recent experimental study from our laboratory has revealed 
that DNA damage is a potential trigger of PLE, and that 
increasing DNA repair by topical application of liposomes 
containing specific DNA repair enzymes may afford 
protection from the induction of PLE symptoms (150).  In 
an experimental set-up, the external administration of an 
after sun lotion with liposomes containing a combination of 
DNA repair enzymes (photolyase from Anacystis nidulans 
and endonucleases from Micrococcus luteus lysate) 
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significantly diminished PLE symptoms in human 
volunteers upon photoprovocation with artificial solar 
simulated UV radiation.  While the exact mechanism, by 
which improving DNA repair may prevent PLE lesions 
remains to be determined, one possibility is that the 
enhanced removal of UV-induced DNA photoproducts may 
eliminate the initial antigenic trigger for an immune 
response in the UV-exposed skin of PLE patients. It 
furthermore remains to be investigated in more detail why 
patients with PLE are incapable to respond upon UV 
exposure with sufficient neutrophil infiltration of the skin 
(104, 124), possibly associated with a failure of 
immunosuppression (87, 88).  One possibility is that there 
are biochemical abnormalities of the arachidonic acid and 
prostaglandin metabolism (151-153).  
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