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1. ABSTRACT 

 
A variety of gene transfer technologies have been 

devised as tools for functional analysis of genes as well as 
gene therapy and regenerative medicine. Electroporation 
enables efficient genetic transfection in vivo into various 
organs as well as tumors without the aid of any infectious 
viral vector, and has been applied to preclinical nonviral 
gene therapy approaches. The efficacies of transfection and 
expression can be further elevated when the electroporation 
procedure was used to deliver Epstein-Barr virus (EBV)-
based plasmid vectors that have characteristic artificial 
chromosome-like functions. Electroporation also facilitates 
delivery of synthetic short interfering RNA (siRNA) into 
some organs and tumors, potentially providing feasible 
strategies of RNAi-based molecular targeting therapy 
against various diseases including malignancies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. ELECTROPORATION AS AN EFFICIENT 
METHOD FOR GENETIC TRANSFECTION BOTH 
IN VITRO AND IN VIVO 
 

Basically, gene delivery systems so far devised 
can be classified into two categories, viral and nonviral 
vector systems. The former consist of recombinant viral 
particles that are capable of infecting target cells, while the 
latter do not use any genetically modified infectious 
viruses. Compared with viral vector systems, nonviral 
vectors are devoid of virus-associated adverse effects, 
including induction of strong immune responses (e.g. 
adenovirus), potential generation of replication-competent 
viruses, and oncogenesis due to proviral integration into 
host chromosome (e.g. retrovirus). Thus, nonviral gene 
delivery systems may offer promising measures to treat 
patients (1). Another advantage of nonviral systems is 
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large-scale, affordable manufacture. The major hurdle that 
should be overcome is the low efficiency of nonviral 
systems in transferring and expressing exogenous genes in 
target cells. In this regards, technical breakthrough is 
required to develop nonviral gene delivery systems that are 
feasible for molecular therapeutics. 

 
A nonviral gene delivery system consists of two 

components: (i) nucleic acids carrying genetic information, 
most typically plasmid DNA (pDNA), and (ii) gene 
delivery methods/materials (nonviral vectors). Both of 
which should be taken into account to develop superior 
nonviral systems. The former will be discussed in the 
following sections, while we first briefly discuss the 
nonviral vectors.   

 
A variety of nonviral vectors have been devised, 

including particular chemical compounds and physical 
methods. Chemical compounds (carrier molecules) include 
synthetic and natural macromolecules such as cationic 
lipids (2-4) and cationic polymers (5-7) that interact with 
nucleic acid and form complexes (lipoplex, polyplex etc.) 
to be endocytosed into cells. Physical methods such as 
electroporation (8-10), particle bombardment (gene gun) 
(11), sonoporation (12, 13) and other procedures (14) 
promote transfer of nucleic acid into cells in an endosome 
pathway-independent manner. Naked DNA methods are 
another means to transfect exogenous gene into some 
tissue/organs (8, 15). 

 
Among them, the electroporation is one of the 

most promising methods to facilitate transfection of naked 
DNA, not only into cultured cells in vitro but also into 
organs/tissues in vivo (9, 10, 16, 17), including skeletal 
muscle (18-20), liver (21, 22), skin (23-25), cornea (26), 
blood vessels (27), cardiac muscle (28), and synovium of 
joints (29).   

 
Application of an electric field forms pores in the 

lipid membrane, allowing influx of extracellular substances 
such as nucleic acids into the cell (30, 31). Methods, 
equipment and parameters for electroporation should be 
devised and optimized for each target organ. The 
efficiencies of electric gene transfer are highly affected by 
the electric field strength and pulse shapes. It is generally 
believed that square wave pulses are superior to 
exponentially decaying pulses, because the pulse duration 
and amplitude can be controlled independently (32), so that 
most electroporation devices are designed accordingly. 
Square wave pulses of low field strength have been 
popularly employed in electroporation in vivo, while 
exponentially decaying wave pulses have been used rarely 
(32, 33). However, some reports showed that an 
exponentially decaying wave pulse was also suitable for 
electrotransfection in vitro (34), probably because it 
provides both the initial high voltage required for poration 
and the following low voltage “tail” for electophoretical 
transfer of DNA molecules into the cell, while the 
feasibility of another waveform has also been presented 
(35). We have shown that transcutaneous direct current 
(DC) shock that is commonly used for cardiac delibrillation 
in clinical situations is capable of enhancing delivery, into 

cardiac muscle of canine, of plasmid DNA that is 
simultaneously infused into coronary artery and vein via 
cardiac catheter (28). Such a procedure is quite simple and 
inexpensive, providing a new strategy for myocardial gene 
therapy without any special devise or technique other than 
cardiac catheterization and DC cardioversion that are 
general performed in ordinary hospitals. DC shock may be 
applied to gene or drug delivery to other organs, due to the 
high penetration of the devise, although parameters such as 
voltage should be optimized for each application. 

 
 Electroporation in vivo has the following 

advantages over other methods: 1) genes may be introduced 
into any tissues or cells, 2) the procedure is easy and very 
rapid, requiring application of the electric field for only a 
few seconds, 3) the amount or size of DNA used is not 
stringently restricted, compared with the limitation in other 
gene delivery procedures, 4) introduction of genes can be 
limited to the region charged with an electric field, 5) 
repeated DNA administration is possible because of low 
immunogenicity, and 6) the procedure requires no special 
skill and is inexpensive. Due to these advantages, 
electroporation has been considered a promising mean of 
nonviral gene therapy to eradicate malignancies (36). 
 
3. ELECTROPORATION-BASED GENE THERAPY 
AND CHEMOTHERAPY OF CANCER  
 

The above mentioned features of electroporation 
provoked scientist to study its application to medicine, 
especially treatment of malignant diseases. Tumors such as 
malignant melanoma (36-39), glioma (40), and 
hepatocellular carcinoma (41) are good targets of electro-
gene therapy in vivo. In some studies, tumors were given 
toxic genes such as the A fragment of diphtheria toxin that 
directly kills the cancerous cells (40, 42, 43) or so-called 
suicide genes encoding, e.g., herpes simplex virus 
thymidine kinase and bacterial cytosine deaminase (CD) 
genes whose products show toxicity to cells in the presence 
of the corresponding prodrugs (ganciclovir and 5-
fluorocytosine that are substrates for HSV-tk and bacterial 
CD, respectively)(43, 44). In this kind of cancer gene 
therapy, the delivery process must be accurately controlled 
to localize gene expression exclusively in tumors, to reduce 
possible adverse effects of such toxic genes. 
Electroporation may be quite suitable for this purpose. 

 
Several studies have focused on electro-immuno-

gene-therapy approaches, particularly cytokine gene 
therapy (45). A potential advantage of these strategies is 
that the transfection efficiency of 100% is not always 
required, because small number of successfully transfected-
tumor cells may induce anti-tumor immune responses, 
which in turn destroy metastatic tumor cells that reside in 
various organs. Another important feature of the cytokine 
gene therapy is that long-term expression of transgene is 
not always required. Electroporation may be quite suitable 
for cytokine gene transfer into tumor cells. Some 
investigators including us previously demonstrated the 
effectiveness of electroporation-mediated delivery of genes 
encoding IL-2 (38), IL-12 (37-39, 46-48) and IL-18 (37) 
into tumors including melanoma (37-39, 48), hepatocellular 
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carcinoma (46), as well as colon and rectal carcinomas 
(47). By some protocols, complete regression of 
preestablished melanomas has been observed (39, 48). 
More recently, potential toxicity of electro-IL-12-gene 
therapy has been intensively studied, demonstrating that 
adverse effects caused by the procedure is very low, if any 
(49). 

 
Electroporation was also applied to the DNA 

vaccination approach, another category of cancer 
immunotherapy. Quaglino et al. vaccinated plasmid vector 
encoding extracellular and transmembrane domains of 
HER2/neu (c-ErB2) oncogene into mice that had displayed 
multifocal progressive mammary carcinomas (50), showing 
that repetitive vaccination resulted in complete clearance of 
the tumors and tumor free survival. Without electroporation 
procedure, plasmid DNA vaccine alone significantly 
delayed, but failed to prevent, tumor growth in their 
experimental setting.  

 
The B7-1 and B7-2 are important adhesion 

molecules expressed on the surface of antigen presenting 
cells, and interact with the CD28 on the T cells that 
subsequently receive costimulatory signal through this 
molecule (45). CTLA4 is another ligand for B7-1 and 2, 
while this T cell surface molecule antagonizes CD28 
stimulation to suppress T cell activation. Chakrabarti et al. 
recently co-transfected, via electroporation, a DNA vaccine 
encoding carcinoembryonic antigen (CEA) gene and a 
mutant form of B7-1/Ig fusion protein that specifically 
binds to CTLA-4 and cancels T cell-suppression via this 
negative regulatory molecule (51). The treatment 
ameliorated the effect of the anti-tumor DNA vaccine. 

 
Electroporation has been used for transferring 

chemotherapeutic agents into tumor cells 
(electrochemotherapy)(reviewed in (52, 53)). This strategy 
enables a local and effective administration of 
chemotherapeutic agents into tumor cells, avoiding severe 
toxicity that is usually caused in patients by systemic high 
dose chemotherapy. Clinical trials of electrochemotherapy 
have been conducted using bleomycin (54-62) or cisplatin 
(63-65) against cutaneous or superficial tumors including 
malignant melanoma (54, 56, 59, 62-65), head and neck 
carcinoma (55, 58, 60, 61), basal cell carcinoma (54, 57, 
62-64), squamous cell carcinoma (61-63) and 
adenocarcinoma (54). Lack of toxic effect in 
electrochemotherapy suggests that in vivo electroporation 
might be safely applied to patients when nucleic acids will 
be administered for therapeutic purposes. 
Electrochemotherapy and electro-gene therapy have been 
shown to synergistically inhibit tumors in some animal 
experiments (see below) (66).  

 
4. IMPROVEMENT OF ELECTROPORATION AND 
OTHER NONVIRAL GENE DELIVERY SYSTEMS 
BY EBV-BASED PLASMID VECTORS  
 

As described above, a nonviral gene delivery 
system consists of (i) nucleic acids carrying genetic 
information, most typically pDNA, and (ii) gene delivery 
methods/materials (nonviral vector). Although a variety of 

nonviral vectors have been devised, the other component of 
the nonviral gene delivery systems, pDNA, has not been 
very intensively studied, in an effort to improve nonviral 
gene transfection. Indeed, nucleotide sequence drastically 
affects not only intensity of transgene expression but also 
efficacy of gene delivery and longevity of expression. If 
ideal sequence elements are devised, potentially every 
nonviral vectors may be significantly improved in efficacy 
by combining them with plasmid vectors containing such 
elements.  

 
We have proposed that the 

transfection/expression efficiency of nonviral vectors can 
be significantly improved by employing the EBV nuclear 
antigen 1 (EBNA1) gene and oriP sequence in the plasmid 
construct (EBV-based plasmid vector) (67-70). They were 
originally known as elements to support replication of EBV 
genome in latently infected human cells (71-73). The 
EBNA1 is a nuclear phosphoprotein consisting of 642 
amino acids and capable of binding to specific motifs in the 
oriP sequence that contains dyad symmetry (DS) 
approximate 110 bp in length and family of repeat (FR) 
spanning approximately 620 bp. DS and FR contain 4 and 
20 copies of EBNA1 binding consensus sequence, 
respectively. EBNA1 is believed to conduct DNA 
replication in concert with cellular cofactors, so that EBV-
based plasmid vectors are maintained in transfected human 
cells as an autonomously replicating episome that 
duplicates in synchrony with host chromosomal DNA (74-
80).  

 
The facilitation of DNA replication, however, is 

not the only function of EBNA1/oriP. The EBNA1 also 
promotes transfer of oriP-bearing plasmid DNA from 
cytosol to the nucleus (81, 82) and its maintenance in the 
nucleus (83). Another function of the EBNA1 is to activate 
transcription through binding to oriP (84-88). These 
characteristics may explain the reason why plasmid vectors 
with EBNA1 gene and oriP enable gene transfer and 
expression at high rates (89). 

 
In this regard, we estimated contribution of each 

activity of the multifunctional viral elements to the high 
efficiency of transfection. Bottom line is that transfer of 
pDNA from cytoplasm into the nucleus is actually the most 
critical step of which efficacy is quite different between 
conventional and EBV-based plasmid vectors (Kishida et 
al., manuscript in preparation). This is consistent with 
previous reports indicating that most pDNA molecules 
introduced into a cell is entrapped and degraded in the 
cytoplasmic and endo-lysosomal compartments without 
successfully transported into the nucleus, and this barrier is 
the critical obstacle of conventional nonviral gene delivery 
strategies (reviewed in (90)). We also found that replication 
of pDNA does not essentially contribute to the high rate 
transfection of EBV-plasmids ((89) and Kishida et al., 
manuscript in preparation), although this function may play 
key roles in prolonged transgene expression in cultured 
human cells (76, 77). 

 
Some tumor-specific or inducible (e.g., blood 

glucose level-inducible) promoter/enhancer sequences can 
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Figure 1. Chemotherapeutic agent and Th1 cytokine may synergistically induce anti-tumor immunity in electro-chemo-gene 
therapy approach. See text and Ref 66 for detail. 

 
be inserted into an EBV-based plasmid vector to drive 
either or both transgene and/or EBNA1 gene, so that 
transcriptional targeting as well as inducible gene 
regulation can be achieved more stringently compared with 
using a conventional plasmid vector (91, 92).  

 
It has been showed that the EBV-based plasmid 

vectors improves delivery and expression efficiencies, both 
in vitro and in vivo, of variety of nonviral vectors including 
cationic lipid (89, 93-95), cationic polymer (91, 94, 96-99), 
gene gun (100), naked DNA method (89, 101, 102), and 
electroporation (28, 29, 37, 103, 104). Taking advantage of 
the high transfection efficiency, we performed preclinical 
gene therapy studies with EBV-based plasmid vectors in a 
variety of animal model systems, as reviewed in elsewhere 
(67-69). In brief, significant therapeutic or prophylactic 
outcomes were obtained against benign disorders (92, 101, 
105, 106) as well as subcutaneous (37, 66, 95, 96, 98, 99, 
107) and metastatic (66, 95, 108-110) tumors.  

 
Other investigators have also employed EBV-

based plasmid vectors for in vivo gene therapy against 
various diseases (reviewed in (67, 68)). Briefly, Tsukamoto 
et al. delivered dystrophin gene-encoding EBV plasmid 
into muscle and succeeded in prolonged expression of the 
transgene (111). Shibata et al. transfected EBV-plasmid 
carrying diphtheria toxin A gene into mammary carcinoma 
by means of electroporation (42). Yoo et al. used cationic 
emulsion and transferred the EBV-based plasmid vector 
encoding proinsulin gene into diabetic animals, resulting in 

sustained correction of hyperglycemia (112). More recently 
Mei et al. obtained sustained expression of factor VIII in 
muscle by transfecting the EBV based plasmid vector via 
electroporation (113).  

 
To demonstrate electroporation-mediated cancer 

gene therapy using the EBV-based plasmid vector, we 
previously transfected subcutaneous melanoma in mice 
with EBV-plasmids carrying IL-12 and IL-18 genes, 
showing that the serum concentrations of the cytokines 
reached significantly higher levels in comparison with 
those obtained by transfection with conventional (non-EBV 
type) plasmid vectors. The cotransfection of IL-12 and IL-
18 genes elevated cytotoxic T lymphocyte (CTL) killing 
activity against the melanoma as well as natural killer (NK) 
cytolytic activity, which in turn resulted in drastic 
suppression of the preestablished tumors (37). Another 
example is the electro-chemo-gene therapy approach in 
which we co-delivered bleomycin and IL-12 gene into 
subcutaneous melanoma in mice and found the treatment 
extremely effective in suppressing the malignancy, while 
significant retardation of pulmonary metastasis was also 
obtained by the combination therapy (66). The synergistic 
action between the chemotherapeutic agent and cytokine 
gene may be mediated through activation of dendritic cells 
(DCs) that may preferentially engulf apoptotic tumor cells 
and present tumor antigen derived from them, subsequently 
leading to the induction of tumor-specific T cell responses, 
although precise immunological mechanisms elicited by the 
combination treatment remain unrevealed (Figure 1). 



Electroporation-based RNAi- and gene-therapy of canc 

320 

5. THERAPEUTIC MOLECULAR TARGETING FOR 
CANCER BY ELECTROTRNAFERING RNAi 
MOLECULAR THERAPEUTICS FOR TREATMENT 
OF CANCER. 
 

In contrast to the gene therapy trials that aim at 
eradicating cancers by adding therapeutic genes to patients 
(gain-of-function), loss-of-function approaches, or 
therapeutic molecular targeting, may provide another 
promising measure to treat malignancies.  

 
RNA interference (RNAi)-based gene silencing 

offers a powerful means of functional analysis of genes as 
well as therapeutic molecular targeting for treatment of a 
variety of diseases. Fire et al. first demonstrated that post-
transcriptional knockdown of genetic expression can be 
induced by double-stranded RNA in nematodes (114). 
RNAi has also been demonstrated in other organisms, 
including fungi (115), flies (116), trypanosomes (117), 
hydra (118), plants (119), and amphibians (120), suggesting 
its important roles in the development and antiviral defense 
mechanisms. Although RNA interference is evolutionarily 
conserved in mammals (121), introduction of long double-
stranded RNA molecules into mammalian cells is 
problematic due in part to induction of the interferon 
response that causes general inhibition of protein synthesis 
and growth arrest of the cells. Elbashir et al. (122) 
demonstrated that RNA interference can be achieved 
without triggering the interferon response using two 
complementary oligoribonucleotide chains approximately 
21 bases in length with a 2-base overhang at the 3’ end of 
each chain (short interfering RNA; siRNA). Expression of 
reporter (122, 123), enzyme (124), and viral (125-127) 
gene could be specifically inhibited in human (122-127) 
and rodent (122, 123, 127) cells in culture.  

 
RNAi in living mammalian organs was first 

documented by McCaffrey et al. (128) and Lewis et al. 
(129), who intravenously injected siRNA into post-natal 
mice via the tail vein under high pressure. Because these 
intravenous administration methods may allow transfer of 
siRNA into multiple organs (102, 130, 131), organ-specific 
delivery methods were required. Thus, technologies were 
devised to deliver siRNA or siRNA-expressing vectors into 
various organs, such as the skeletal muscle (132), central 
nerves system (133), articular synovial cells (134, 135), 
cardiac vessels (13), etc., suggesting that RNAi-mediated 
gene knockdown might be useful for molecular targeting 
for human diseases. Indeed, preclinical trials of therapeutic 
molecular targeting have been conducted against various 
disorders including infectious (136-140), 
neurodegenerative (133, 138, 141), inflammatory (134, 
135), and malignant (137, 138, 142) disorders. 

 
In therapeutic experiments for malignancies, a lot 

of target genes have been proposed. Cell surface growth 
factor receptors and signal transduction molecules are 
crucially involved in oncogenesis as well as survival and 
proliferation of neoplastic cells, so that several preclinical 
therapeutic RNAi trials have been conducted to knockdown 
these signaling molecules, including bcr-abl (143), EGF 
receptor (144), and ErbB2/HER2/neu (145, 146). Other 

important molecules for cancer cell survival are cell cycle 
regulatory molecules. Therefore, some studies have 
targeted viral proteins, i.e., human papillomavirus (HPV) 
E6 (147, 148) and E7 (148, 149) that interfere with p53 and 
Rb, respectively, while other cell cycle regulators also 
served as targets (150-153). Because catepsin L interacts 
with p21WAF1, RNAi-mediated silencing of catepsin L 
rendered tumor cells sensitive to chemotherapeutic drugs 
and promoted tumor cell senescence (154). Premature 
cellular senescence was also observed when expression of 
the helix-loop-helix transcriptional factor, Id1, was silenced 
to increase p16INK4a (155).  

 
But the most frequently used targets are probably 

the proteins involved in apoptosis signal transmission. 
Because tumor cells frequently express anti-apoptotic 
proteins, silencing of these molecules may induce apoptosis 
of tumor cells and/or sensitization of tumor cells to chemo- 
and radiation therapies. These include the Fas-associated 
death domain-like interleukin-1beta-converting enzyme-
like inhibitory protein (FLIP) (156), Bcl-2 (157-160), Bcl-
xL (157, 161, 162), Mcl-1 (163), survivin (157, 164-169) 
and X chromosome-linked IAP (XIAP) (160, 170). Genes 
involved in protein stability and degradation are other 
molecular targets for RNAi intervention. Cks-1 (171), Skp-
2 (172, 173) and E3-ubiquitin ligase receptor subunit 
betaTRCP1 (174) are classified into this category.  

 
Neoangiogenesis is essentially required for 

growth in vivo of tumors. Thus, inhibition of angiogenesis 
provides a different RNAi therapy strategy. For this 
purpose, VEGF (175, 176) and VEGF receptor 2 (177) 
have been knocked down. In the meanwhile, proliferation, 
invasion, and migration of tumors are dependent on 
degradation of extracellular matrix. In this context, some 
trials have been conducted to silence urokinase-type 
plasminogen activator (u-PA) (178), catepsin B (179, 180), 
urokinase plasminogen activator receptor (uPAR) (181), 
matrix metalloprotease (MMP)-9 (179, 181), and 
heparanase (182). Tumor invasion and metastasis may also 
be inhibited by targeting other molecules (183-187). 

 
Some tumors are capable of escaping from 

immune surveillance through particular mechanisms that 
play quite important roles for the survival and growth of the 
tumor cells in the hosts (45, 188). RNAi technology may be 
also useful in canceling tumor escape machinery from 
immune surveillance. In this regard, silencing of some 
tumor-derived immunoregulatory cytokines have been 
reported (189, 190). Other strategies aim at increasing 
susceptibility of tumors to chemotherapy or radiotherapy. 
Multidrug resistant proteins (191-196) and the molecules 
involved in DNA repair (197-201) are silenced in these 
studies.  

 
6. THERAPEUTIC RNAi FOR MALIGNANCIES 
TAKING ADVANTAGE OF ELECTROPORATION 
 

The biggest problem of RNAi cancer therapeutics 
is the lack of ideal methods to transfect siRNA or siRNA-
expression vectors into tumors in vivo (137, 138, 142). 
Indeed, therapeutic potential against malignancies has been 
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tested in in vitro experiments in most reports mentioned 
above (143, 144, 146-157, 159-165, 167-171, 173, 174, 
178, 182-187, 189-201). Effectiveness and safety of each 
strategy should be assessed by in vivo administration 
experiments to achieve feasible RNAi cancer therapy. Also 
the most appropriate delivery system should be selected for 
each RNA-based therapeutic application depending on the 
target cell type, location of the target organ, number of 
treatment, etc. 

 
Some investigators used retroviral (145, 202-

205), adenoviral (166, 172, 206), adeno-associated viral 
(207, 208) and lentiviral (139, 172) vectors engineered to 
express siRNA or shRNA, while others tested nonviral 
transfection in vivo into tumors to deliver synthetic siRNA 
(158, 175-177, 209) or plasmid vectors carrying expression 
units for siRNA (179-181). Yano et al. used cationic 
liposome to administrate bcl-2-specific siRNA into the 
murine models bearing liver metastasis through intravenous 
bolus injection, as well as into the mice with subcutaneous 
transplant of prostate cancer via subcutaneous injection 
around the tumor (158). Takei et al. delivered VEGF-
specific siRNA into xenograft prostate cancer model by 
means of atelocollagen, showing dramatic suppression of 
tumor growth and angiogenesis (176). Schiffelers et al. 
devised ligand-targeted, sterically stabilized nanoparticles 
to administer intravenously VEGF R2-targeting siRNA into 
the mice bearing tumor burdens, demonstrating selective 
tumor uptake of the siRNA and inhibition of tumor growth 
and angiogenesis (177). 

 
Electroporation may also provide a quite 

powerful means to transfect the functional RNA molecules 
in vivo into tissues and tumors. First application of siRNA 
electro-delivery into vertebrates was performed in ovo into 
chick embryos (210, 211), as well as into postimplantation 
mouse embryos (212). Thereafter, electroporation has been 
widely used to transfer siRNA into embryos to examine 
functional characterization of target genes in development 
and morphogenesis (213-215).  

 
We first demonstrated electrotransfer of siRNA 

into a postnatal mammalian organ in vivo (132). In this 
study, siRNA duplexes specific for luciferase GL3, 
enhanced green fluorescence (EGFP), or glyceraldehyde-3-
phosphate dehydrogenase (GAPD) genes was injected, 
alone or in combination with GL3 expression plasmid, 
into skeletal muscle of wild type or EGFP transgenic 
mice, immediately followed by transdermal electric 
pulsation. It was found that expression of the target 
genes was almost completely silenced in vivo in the 
muscle when the GL3 plasmid and GL3-specific siRNA 
were cotransfected, and the silencing effect sustained 
for more than 7 days. Endogenous genes (EGFP in 
EGFP transgenic mice, and GAPD) were also 
significantly suppressed, albeit to a lower extent in 
comparison with the suppression level of GL3 reporter 
gene (132). Thereafter it was also shown that 
electroporation enables transfer of siRNA into other 
tissues, including glomerulus (216), intestinal 
epithelium (217), articular synovium (134, 135) and 
brain (218) (reviewed in (17)).  

As a molecular therapy application of electro-
transfer of siRNA, Schiffelers et al. (134) and our group 
(135) succeeded in sequence specific silencing of tumor 
necrosis factor-alpha (TNF-alpha) in joint articular 
synovium of mouse (134) and rat (135) collagen-induced 
arthritis models, respectively, demonstrating that the joint 
disorder was remarkably ameliorated by silencing the 
inflammatory cytokine.  

 
With regard to RNAi therapy of malignancies, we 

have recently reported an electroporation-mediated cancer 
molecular therapy approach, using synthetic siRNA 
targeting the microphthalmia-associated transcription factor 
(Mitf) that is the transcriptional factor with helix-loop-helix 
leucin zipper structure responsible for induction of several 
enzymes of melanin biosynthesis. Mitf is also crucially 
involved in the growth and differentiation of melanocytes 
(219-221). Role of Mitf in growth and survival of 
melanoma, however, remained controversial; some 
studies indicated that Mitf essentially contributed to 
survival and proliferation of melanoma (222-224), 
whereas other reports documented that Mitf induced 
growth suppression of, or even apoptosis in, melanoma 
(225-229).  

 
We synthesized some siRNA duplexes 

corresponding to the Mitf cDNA sequence and 
transfected them into B16 melanoma in vitro and in vivo 
(209). When B16 cells in culture were treated with the 
Mitf-specific siRNA duplex that had been coupled with 
a lipid vehicle, the tumor cells showed a remarkable 
decrease in viability as well as significant apoptosis, 
accompanying with a reduction in the expression level of 
the transcriptional factor. In vivo transfection of the siRNA 
was performed into subcutaneous B16 transplant in 
syngenic mice by means of electroporation. Repetitive 
treatment resulted in significant growth retardation of the 
preestablished melanoma. Moreover, we found that a 
considerable proportion of the tumor cells underwent 
apoptosis in vivo, as demonstrated by TUNEL staining of 
the tumor sections. Compared to more commonly used 
target genes for cancer RNAi therapy, such as cell cycle 
regulator, signaling molecule for growth control, and 
cytokines, Mitf, especially Mitf-M isotype, is specific 
for melanomas, which may guarantee the safety of 
patients when the Mitf RNAi will be put into a clinical 
trial. Another advantage of the Mitf knockdown therapy 
is that Mitf silencing may induce apoptosis of tumor 
cells rather than cytostatic effects, while specific 
silencing of angiogenic or cell cycle-regulatory genes 
may have transient and reversible influence on tumor 
cells. A combination therapy targeting more than two 
genes may elicit more promising results. 

 
Electroporation may be repetitively applied to 

cancer patients without causing any serious adverse effects. 
The repetitive treatment should be quite important, because 
transfection efficiencies achieved by a single trial hardly 
reach 100%. The tumor cells that fail to be transfected with 
siRNA may survive the treatment, but when repetitive 
therapy is conducted the residual tumor cells may be killed 
by subsequent treatments.  



Electroporation-based RNAi- and gene-therapy of canc 

322 

Table 1. Early Research on RNAi Therapeutics of Cancer. Several genes were proposed as the targets for RNAi-based cancer 
molecular therapy. See text for detail and citations 
Category Example 
Growth factor receptors/signal transducers bcr/abl, EGFR, Her2/neu 
Viral genes that affect p53 or RB pathways HPV E6, E7 
Genes involved in cellular senescence Id1, p16INK4a, catepsin L 
Anti-apoptotic genes FLIP, Bcl-2, Bcl-XL, Mcl-1, survivin, XIAP 
Genes involved in protein stability and degradation Cks-1, Skp-2, betaTRCP1 
Genes involved in angiogenesis VEGF, VEGFR2 
Genes involved in ECM degradation u-PA, catepsin B, uPAR, MMP-9 
Immunoregulatory cytokine genes TGF-β, IL-10 
Lineage specific transcriptional factor Mitf 
 
7. CONCLUSIONS 
 

The electroporation procedures may offer 
powerful tools to eradicate malignancies, by inducing 
anti-tumor immune responses, apoptosis of tumor cells, 
etc., through delivery of therapeutic molecular agents 
that exert specific gain-of-function and/or loss-of-
function activities in the neoplasms. The unsolved issues 
include technologies to regulate the location, intensity 
and duration of transgene expression, and to guarantee 
safety for patients. As far as RNAi therapy is concerned, 
possible off-target effects should be taken into 
consideration, while safety issue of EBV-based plasmid 
vectors should be carefully examined. To treat the 
tumors in non-superficial regions, such as 
gastrointestinal, respiratory, and urinary tracts, 
peritoneal and intracranial cavities, as well as 
reproducible organs, appropriate devises such as 
catheter-equipped electrodes and corresponding pulse 
generators should be developed. Finally, 
multidisciplinary approaches should be important to 
eradicate malignancies in patients, and electroporation-
assisted gene- and RNAi-therapies may play an 
important part in this context. 
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