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1. ABSTRACT 
 

Fibrosis affects organs such as the skin, liver, 
kidney and lung and is a cause of significant morbidity.  
There is no therapy for fibrosis. Recent significant 
molecular insights into the signaling underlying fibrosis 
have been made. Transforming growth factor beta 
(TGFbeta) signaling is a major contributor to fibrogenesis.  
The signaling mechanisms through which TGFbeta induces 
fibrogenic responses have been under intense scrutiny. 
Moreover, the potent pro-fibrotic proteins endothelin-1 
(ET-1) and CCN2 (connective tissue growth factor, CTGF) 
are believed to play an essential role in this process as 
downstream regulators or co-factors of TGFbeta signaling.    
This review summarizes these recent crucial observations 
with emphasis on the disease scleroderma. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

During normal connective tissue repair, 
mesenchymal cells such as fibroblasts proliferate and 
migrate into the wound, where they synthesize, adhere to 
and contract the extracellular matrix (ECM), resulting in 
wound closure. Should the normal tissue repair program 
fail to terminate, scarring results. Excessive scarring 
characterizes fibrotic diseases, which can affect individual 
organs, such as the kidney, liver, pancreas and lung, or be 
systemic, such as in diffuse systemic sclerosis (dSSc, 
scleroderma) (1-5).  Fibrotic disease often culminates in 
organ failure and death (1,2).  There is no treatment for 
organ fibrosis; identifying the signaling mechanism 
underlying fibrosis is essential to find appropriate targets 
around to base selective, anti-fibrotic therapies.  
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The cells ultimately responsible for the fibrotic 
phenotype including the disease scleroderma are 
mesenchymal cells resident within connective tissue.  Cells 
from the fibrotic connective tissue of patients can be 
readily isolated and cultured.  Fibroblasts present within 
scarred and unscarred areas of patients with scleroderma 
have been cultured and phenotypically and genotypically 
analyzed.  Intriguingly, both of these cell types possess 
significantly elevated expression of pro-fibrotic proteins 
relative to normal healthy fibroblasts (6).  Conversely, 
fibroblasts from scars differ phenotypically from their 
counterparts, possessing elevated abilities to adhere to and 
contract ECM relative to both healthy fibroblasts and 
fibroblasts isolated from unscarred areas of scleroderma 
patients (6).  These results suggest that the excess production 
of matrix per se is insufficient to generate clinically-defined 
scars.  Rather what is essential is to exert mechanical tension 
on the surrounding tissue (6).  These results are consistent with 
the notion that the presence of a specialized form of fibroblast, 
called a myofibroblast, which expresses the highly contractile 
protein alpha-smooth muscle actin (alpha-SMA) is a key 
feature of scarring (2). 

 
Although the precise origin of the myofibroblast 

in tissue repair and fibrosis is unclear, signaling 
downstream of cytokines is a critical driving force in their 
generation and activity.  One of the major cytokines 
induced during the tissue repair is transforming growth 
factor-beta (TGF-beta) (7).  TGF-beta induces fibroblasts 
to synthesize and contract ECM (8-10).  Thus this cytokine 
has long been believed to be a central mediator in wound 
healing and fibrotic responses, including SSc.  TGFbeta is 
required for fibrogenesis in acute animal models; however, 
the exact contribution of TGFbeta to pathological fibrosis 
phenotype is unclear. As TGFbeta plays many roles in 
normal physiology, including as a suppressor of the 
immune response and epithelial proliferation, broadly targeting 
TGFbeta signaling for the treatment of disease is anticipated to 
be problematic (8,10).  Thus, much interest exists, from both 
clinical and pharmaceutical points of views, in identifying 
increased selectivity.  Recently, it has been suggested that key 
pro-fibrotic proteins such as endothelin-1 (ET-1) and CCN2 
(connective tissue growth factor (CTGF)) may operate in 
tandem with or downstream of TGFbeta in the fibrotic 
pathway (11).  Thus, these may be better targets for anti-
fibrotic intervention including in scleroderma. 
 
3. TGFBETA SIGNALING  
 

The basic scheme of TGFbeta signaling has been 
extensively reviewed, and the reader is referred elsewhere 
for details (9-12).  Briefly, there are three TGFbeta 
isoforms TGFbeta1, TGFbeta2 and TGFbeta3.  These are 
synthesized as latent precursors in a complex with latent 
TGFbeta-binding proteins. These latter proteins are 
removed by proteolysis. TGFbeta is then considered 
activated and can bind to a heteromeric receptor complex, 
consisting of one TGFbeta type I and one TGFbeta type II 
receptor.  In the case of fibroblasts, the type I receptor is 
called ALK5 (activin linked kinase 5) (Figure 1). In the 
presence of TGFbeta ligand, the TGFbeta receptor I kinase 
phosphorylates the receptor-activated Smads (R-Smads), 

Smad2 and 3, which are then able to bind the common 
mediator Smad, Smad4. The resultant complex can then 
translocate into the nucleus (Figure 1).  The Smad3/Smad4 
pair binds promoters at the Smad consensus sequence, 
CAGAC (13). Smad2, on the other hand, is not believed to 
bind DNA directly, but rather requires a nuclear DNA-
binding protein of the family Fast (Fast-1) to bind DNA 
(14).  Smads then recruit common transcription factors and 
cofactors to the promoter.  A third group of Smad proteins, 
the inhibitory Smads Smad6 or Smad7, prevent R-Smad 
phosphorylation and subsequent nuclear translocation of R-
Smad/Smad4 heterocomplexes; it appears that Smad7 
competes for binding for Smad2 and Smad3 to the 
TGFbetaR1 (15). TGFbeta induces Smad7 expression 
through a consensus Smad binding element in its promoter; 
thus TGFbeta can suppress its own action (16) please 
include as well here Stopa et al; JBC.   
 
4. TGFBETA AS A PRO-FIBROTIC PROTEIN 
 
4.1. Genetic models   

Evidence supporting the contribution of TGFbeta 
in fibrotic responses have principally been derived using 
acute in vitro or in vivo models.  It should be noted that 
these models, although likely of direct importance in 
understanding wound healing, may not be of the most 
relevance to chronic fibrotic disease. It has long been known 
that mesenchymal cells exposed to TGFbeta acquire a 
fibrogenic phenotype, including ECM production and 
contraction (10). This phenotype exists as long as TGFbeta 
ligand is present; TGFbeta itself is incapable of generating a 
heritable fibrotic phenotype (17). In vivo, treatment of fetal 
wounds with TGFbeta promotes wound closure and scarring 
(18,19).  Injection of TGFbeta either directly subcutaneously 
or into metal chambers, results in enhanced deposition of ECM 
(19-21).  Incisional rat wounds treated with anti-TGFbeta 
antibodies or antisense oligonucleotides show a marked 
reduction in ECM synthesis and scarring (22,23). Following 
incisional wounding, animals lacking Smad3 show accelerated 
wound healing, reduced granulation tissue formation, 
increased epithelialization, and reduced inflammation possibly 
due to an impaired chemotactic response (24). Smad3-
deficient mice display resistance to cutaneous fibrosis caused 
by radiation injury or bleomycin; however, there is a Smad3-
independent component to this latter model (25, 26).  
Consistent with these observations, experiments using 
microarrays and Western blot analyses have compared gene 
expression profiles of fibroblasts taken from adult Smad3-/- and 
Smad3+/+ mice.  These results have shown that, in the absence 
of Smad3, TGFbeta was not able to induce gene transcription, 
including that of matrix and proadhesive proteins such as 
collagen and CCN2 (27-29). 

 
4.2. Fibrotic models  

In the case of kidney fibrosis, there is growing 
evidence indicating that an important source of renal 
interstitial myofibroblasts is the transdifferentiation of 
epithelial cells, a process known as epithelial mesenchymal 
transdifferentiation (EMT). Tubular epithelial cells can 
phenotypically and ultrastructurally become myofibroblasts  
(to editorial office: this sentence should be located 
elsewhere)  
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Figure 1.  Schematic diagram of general and gene-specific TGFbeta signaling in fibroblasts resulting in myofibroblast formation.  
TGFbeta binds to the TGFbeta type I and type II receptors, activates Smad3, which activates target gene expression by binding 
the sequence CAGA.  This pathway regulates virtually every TGFbeta responsive gene in fibroblasts, but not ET-1 in fibroblasts.  
Conversely, TGFbeta  can act through MAP kinase cascades p38, ERK and JNK requiring betaglycan, syndecan 4 and 
integrin/FAK, respectively.  ERK is required for CCN2 induction, whereas JNK is required for ET-1 production. 

 
in response to TGF-β in vitro in a rat remnant kidney 
model and in progressive human kidney diseases but this 
does not occur in Smad3-deficient mice (30). Inhibition of 
Smad2/Smad3 phosphorylation by overexpression of 
Smad7 inhibited the EMT process induced by TGF-β and 
prevented TGF-β-induced collagen matrix production (31). 
Smad-independent signalling pathways, such as RhoA, 
extracellular signal-related kinase (ERK) 1, ERK2, and 
p38/mitogen-activated protein kinase (MAPK) have also 
been reported to play an essential role in the EMT (32-34).  
Moreover, TGFbeta receptor inhibitors given orally 
significantly reduced renal fibrosis and decreased the 
mRNA levels of key mediators of extracellular matrix 
deposition in kidneys (35).  Similar results have been 

observed in liver cirrhosis, in which activated hepatic 
stellate cells play a key role, and in lung fibrosis (36, 37).  
It is unclear what is the specific origin of the fibrotic cells 
in scleroderma, but they may arise from EMT, fibroblast 
differentiation in response to growth factors, pericytes or 
circulating cells (38). 

 
In humans, TGFbeta signaling through the 

TGFbeta type I receptor (ALK5) contributes to the 
pathogenesis of scleroderma (systemic sclerosis, SSc).  For 
example, the over-expression of type I collagen by SSc 
fibroblasts is blocked by an ALK5 TGFbeta antagonist 
(39).  Similarly, the enhanced ECM contraction and 
adhesion observed in SSc fibroblasts depends on TGFbeta 
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type I receptor activity (6, 39).  ALK5 inhibition also 
reduced basal collagen synthesis, adhesion and contraction 
in normal fibroblasts.  These results strongly suggest that 
the contribution of autocrine TGFbeta and TGFbeta 
signaling to the phenotype of SSc fibroblasts arises from an 
exaggeration of processes normally operating in fibroblasts (6, 
39).  However, ALK5 inhibition had no significant effect on 
the CCN2, endothelin-1 or alpha-smooth muscle actin 
overexpression or assembly of an alpha-SMA stress fiber 
network by SSc fibroblasts (6, 39). These data support 
to the notions that autocrine TGFbeta signaling 
contributes to some features of the SSc phenotype. 
Although there is some evidence that activation of the 
Smad pathway plays a role in the phenotype of SSc 
fibroblasts, this activation may be independent of 
TGFbeta ligand (40). Intriguingly, in SSc there appears 
to be heightened expression of ALK5 at the expense of 
the TGFbeta type II receptor and that this phenotype 
may be responsible for the TGFbeta ligand-independent 
activation of collagen (41).  These data suggest that 
altering the TGFbeta type I/type II ratio to normal might 
be a viable therapeutic strategy in SSc.  These notions 
may explain the results recently obtained, where a 
neutralizing anti-TGFbeta antibody was used in a multi-
dose, multi-center clinical trial to treat SSc patients.  In this 
study, the neutralizing anti-TGFbeta antibody lacked anti-
fibrotic ability, but resulted in increased mortality and serious 
adverse effects (42) presumably due to the pleiotropic nature 
of TGFbeta (8).  
 
5. ANTI-TGFBETA STRATEGIES IN FIBROTIC 
DISEASE  
 
5.1. Non-Smad signaling 

As TGFbeta is a multifunctional protein, for 
example acting as a potent suppressor of the immune 
system and of epithelial proliferation, one concern about 
long-term administration of TGF-β antagonists, including 
antibody, soluble receptor, small molecular inhibitors, and 
siRNAs, is unwanted side-effects such as exacerbation of 
inflammation and increased risk of neoplasia (8,10). Based 
on these concerns, it is likely that targeting gene- or 
fibrosis-specific pathways, such as individual MAP kinase 
pathways, would be more useful anti-fibrotic strategies (11, 
43).  TGFbeta induces other signaling pathways, such as 
the MAP kinase pathways, to modify gene expression in 
a tissue-specific fashion (10) (Figure 1).  These 
pathways include ras/MEK/ERK, which requires the 
heparan sulfate-containing proteoglycan (HSPG) 
syndecan 4 as a co-receptor (6), p38, which requires the 
HSPG betaglycan (17), and JNK which requires focal 
adhesion kinase and presumably integrin-based signaling 
(18, 19).  These pathways act in a tissue??-specific fashion 
(6, 17-20).  Of these, for example, ERK is important for the 
contraction of ECM as well as for the expression of CCN2 
(connective tissue growth factor, CTGF) (6, 47-49) this is 
not a general mechanism – the tissue/physiological stage, 
where this was described, should be mentioned.  
Moreover, FAK/JNK mediates the induction of key pro-
fibrotic proteins such as alpha− smooth muscle actin 
(SMA), type I collagen and endothelin-1 (ET-1) 
expression (45, 50, 51) (Figure 1).  

5.2. Endothelin-1 
Direct targeting of downstream mediators or co-

factors of TGFbeta is also likely to be of benefit.  The 
vasoconstrictory peptide endothelin-1 (ET-1) is normally 
produced by endothelial cells, but is overexpressed by 
fibrotic fibroblasts including in SSc (52, 53).  In lung 
fibroblasts, TGFbeta induces ET-1 by a Smad-independent 
but ALK5- and JNK-dependent fashion (54; Figure 1) in 
fibroblasts.  TGFbeta induces ET-1 in other cell types 
including endothelial cells (55). This induction is 
responsible for many of TGFbeta’s profibrotic effects 
including  alpha-SMA and CCN2 production and ECM 
contraction (56).  Consistent with this notion, ET-1 induces 
ECM synthesis and contraction in fibroblasts (52, 53), and 
acts synergistically with TGFbeta (48,49).  ET-1 signals 
through two receptors, called the A receptor and the B 
receptor.  The ET-A receptor is responsible for alpha- SMA 
production and ECM contraction, whereas both the ET-A 
and ET-B receptors are necessary for ECM production (57, 
58). Blockade of the endothelin receptors significantly 
reduces alpha-SMA, CCN2 and type I collagen 
overexpression and ECM contraction by SSc fibroblasts 
(52, 59). ET receptor blockade does not inhibit basal 
fibroblast activity (52, 59).  Overexpression of ET-1 in SSc 
fibroblasts is ALK5-independent, relying on an autocrine 
ET-1 loop acting via JNK and TAK1 (53). However, 
TGFbeta can further induce ET-1 in this cell type (53).  In 
patients with pulmonary arterial hypertension (PAH) 
exclusively related to connective tissue diseases, bosentan 
treatment? (description of what bosentan is, is missing) was 
associated with improvement or stability of clinical status 
and a 92% estimate for survival at 48 weeks, which was 
considered to be a significant achievement in this patient 
population (54). Thus ET-A/B receptor antagonism is well 
tolerated in patients, and is therefore likely to be of clinical 
benefit in alleviating at least one aspect of fibrosis in SSc, 
namely that of the persistently activated fibroblast and the 
fibrogenic responses to added TGFbeta. 
 
5.3 CCN2 

The CCN family of cysteine rich matricellular 
molecules possesses potent adhesive activity acting through 
integrins and HSPGs. These proteins share a common 
modular domain structure and modify responses to a 
variety of extracellular ligands via their adhesive 
properties.  Of this family, the most studied perhaps is 
CCN2 (CTGF) (60) which is induced by TGFbeta in 
fibroblasts through protein kinase C and ras/MEK/ERK 
pathways via Smad and Ets-1 response elements in its 
promoter (27, 47-49,61).  CCN2 is constitutively expressed 
by mesenchymal cells in development, and by kidney 
mesangial cells and endothelial cells and is 
characteristically overexpressed in fibrotic disease, 
including SSc, in a fashion correlating with severity of 
fibrosis (62).  Anti-CCN2 strategies have been shown to 
improve the fibrosis in a variety of animal models, 
including kidney, heart and liver (63-65). As yet, anti-
CCN2 strategies have not been attempted in models of SSc. 
CCN2 by itself is not potently fibrotic, but generates an 
environment favorable for fibrogenesis (66, 67). Consistent 
with this notion, CCN2 and TGFbeta synergistically 
promote sustained fibrosis in rodents, whereas application 
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of one ligand by itself results in transient fibrotic responses 
(21).  CCN2-deficient embryonic fibroblasts respond to 
TGFbeta through the Smad pathway; however, these cells 
show impaired induction of adhesive signaling in response 
to TGFbeta, as visualized by the induction of FAK and Akt 
(68).  CCN2-deficient fibroblasts show defective induction 
of alpha-SMA and type I collagen as well as adhesion to 
matrix (68).  These results are consistent with the notion 
that the CCN2 receptors are integrins (69-71). What was 
surprising about these studies was that the lack of 
responses observed in CCN2-deficient embryonic 
fibroblasts were attributed to the absence of basal CCN2 
expression, as the impaired TGFbeta responses did not rely 
on newly made CCN2 simplify this sentence (68).   These 
results suggest that CCN2 acts as cofactor of TGFbeta to 
induce adhesive signaling in cells which are already 
activated and undergoing tissue remodeling (e.g. 
embryonic and fibrotic fibroblasts). In embryonic 
fibroblasts, CCN2 was also required for focal adhesion and 
actin stress fiber formation, as well as adhesion, cell 
migration and ECM contraction (72).  These results suggest 
that anti-CCN2 therapy may be warranted in fibrotic 
conditions. 
 
6. CONCLUSION  
 

TGFbeta, ET-1 and CCN2 have been shown to 
mediate fibrogenic responses in fibroblasts. Genetic and 
pharmacological studies have suggested that although 
broad targeting of general TGFbeta signaling pathways 
may be problematic for treating chronic fibrotic disease due 
to the pleiotropic nature of TGFbeta it is now understood 
that several pathways operate downstream of TGFbeta and 
selectively contribute to fibrogenesis.  Targeting these 
pathways, which include MAP kinase cascades and ET-1 
or CCN2 production, is likely to be of benefit in combating 
persistent fibrotic disease such as in SSc.   
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