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Abstract

Background: Breast cancer is the most common cancer in women worldwide. Here we aimed to develop an effective non-invasive
method to screen for breast cancer and reduce mortality while still being curable. Methods: Here we propose a method that leverages
the available data by incorporating information on copy number variations, mutation signature, and fragment size. Our approach adopted
principal component analysis and a generalized linear model algorithm to distinguish between breast cancer and normal samples. Results:
A total of 100 samples (85 tumor, 15 controls) were used for training, and 44 samples (37 tumor, 7 controls) were used to validate the
proposed method based on whether the sample originated from breast cancer. Our model reached an area under the receiver operating
characteristic curve reached 1.0 and 0.690 in the training set and in the validation set, respectively. Conclusions: Our method can
differentiate between breast cancer patients and controls using non-invasive, cost-effective, low-coverage whole-genome sequencing
technology that may provide new ideas for future breast cancer screenings.
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1. Introduction

Breast cancer (BC) has become the leading cause of
cancer-related death among women worldwide, with an es-
timated more than 2 million new cases annually [1]. The
incidence of BC has increased in China and the US [2,3].
Considering population expansion, experts estimate that by
2050, there will be roughly 3.2 million additional BC cases
annually worldwide [4]. More importantly, the average
age at the diagnosis of BC is decreasing worldwide [5].
Many factors may contribute to the increasing number and
increasingly younger trend of patients with BC, including
family history, individual differences, and living environ-
ment [6]. In order to reduce the mortality rate of breast
cancer, early diagnosis and treatment are urgently needed,
as breast cancer is prone to dissemination in the middle and
late stages [7].

Most BC patients are not diagnosed until the disease
has spread throughout their bodies [8]. However, breast tu-
mours can concentrate in certain parts of the human body
during their natural cycle, allowing them to be diagnosed
and treated earlier [9]. BCmortality can be reduced by 40%
in medium-risk women who undergo early screening, re-
sulting in improved survival [10]. Based on these reports,
the death rate fromBCdecreased by 40% from 1989 to 2017
[3], which can be attributed to advancements in treatment
and early detection [11]. The purpose of early screening
for breast tumours is to discover them at a stage when ther-

apy is more likely to be effective, giving patients a greater
possibility of long-term survival [12]. In addition, both tra-
ditional and novel therapeutic approaches, including resec-
tion, irradiation, and pharmacological treatments, are more
effective when breast tumour density is minimal [7–9].

Early screening methods have been examined as pos-
sible strategies to address this clinical gap. Among the
most common screening methods, modern screening dig-
ital mammography has a sensitivity of 86.9%; however,
not all types of BC are detectable on mammography [13],
while certain breast tumours grow along with the natural
breast architecture, making them difficult to detect using
mammography [14]. The high false positive rate of mam-
mography, particularly in women who are young or have
thick breasts, results in unnecessary additional testing such
as biopsies [15,16]. According to recent reports, indicators
based on methylation analysis have been used for the early
diagnosis of BC [17]. However, numerous methylation-
based methods use distinct locus or Cytosine-phosphate-
Guanine (CpG) site mechanization with a group of non-
restrictive controls in which the methylation features of be-
nign and cancerous tumours are mainly revealed [18]. Cir-
culating tumour DNA (ctDNA) analysis based on whole-
genome mutations with next-generation sequencing (NGS)
has been used to predict early recurrence and guide drug
treatment of a variety of malignancies. Unfortunately, the
reliability of mutation-based ctDNA identification in BC is
hindered by the lack of common variants [19]. Thus, an ef-
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fective, fast, and economical method for the early detection
of BC is urgently needed.

To address these problems, we attempted to develop
a cost-effective early screening method for BC. In gen-
eral, whole-genome sequencing (WGS) was performed on
the patient’s peripheral blood and the principal component
analysis (PCA)–based method was applied to discriminate
between tumour and normal cells. Specifically, for each
sample, we built a vector that contained copy number vari-
ation (CNV) indications, error rates, and fragment sizes and
used it for PCA training in which we extracted the first
five principal components for each sample and used them to
classify normal and tumour cells. The experimental results
showed that our early screening algorithm performed well
for BC.

2. Methods
2.1 Patient Selection and Ethics Statement

In this study, 144 samples (122 BC, 22 normal con-
trols) were analysed. All participants were recruited from
the Peking Union Medical College Hospital from April
2018 to June 2018. BC was diagnosed according to the
National Comprehensive Cancer Network Clinical Practice
Guidelines in Oncology for BC. Age, pathological type, and
clinical stage information of BC cases were obtained from
medical records (Table 1). Written informed consent was
obtained from all patients. This study was approved by the
Ethics Committee of Peking Union Medical College Hos-
pital (HS-1949) and conducted according to the principles
of the Declaration of Helsinki.

Patients were selected based on the following criteria:
(1) age of 18 or above; (2) diagnosed as breast cancer; (3)
a peripheral blood sample of 14–20 mL can be collected;
(4) voluntary informed consent. Patients were excluded ac-
cording to the following criteria: (1) with unqualified nu-
cleic acid quality after DNA extraction; (2) diagnosed with
a second primary malignant tumor; (3) who had previously
received transplant surgery; (4) who had received an allo-
geneic blood transfusion or immunotherapy that may intro-
duce foreign DNA.

2.2 Library Preparation and NGS
Peripheral blood was collected in Streck tubes (Streck,

Inc., Omaha, NE, USA) and processed within 72 h of sam-
ple collection. The plasma was then isolated by centrifu-
gation at 4 °C for 10 min at 1600 ×g, followed by cen-
trifugation at 16,000 ×g for 10 min. A cell-free DNA
(cfDNA) extraction from 4 mL of plasma was then per-
formed using a QIAamp® Circulating Nucleic Acid Kit
(Qiagen, Hilden, Germany) according to themanufacturer’s
instructions. DNA concentrations were determined using a
Qubit dsDNAHigh-Sensitivity Assay kit (Q32854, Invitro-
gen, Carlsbad, CA, USA).

The cfDNA from each sample was used for the li-
brary construction using a KAPAHyper Prep Kit (KK8504,

Table 1. Clinical characteristics of breast cancer cases.
Characteristic N (%)

Age (years)
≥60 25 (20.49)
40–60 63 (51.64)
<40 34 (27.87)

Pathological type
Benign 65 (53.28)
Luminal A 19 (15.57)
Luminal B 26 (21.31)
Her2+ 7 (5.74)
TNBC 5 (4.10)

Clinical stage
Benign 65 (53.28)
I 27 (22.13)
II 19 (15.57)
III 5 (4.10)
NA 6 (4.92)

TNBC, triple negative breast cancer; NA,
not available.

KAPA Biosystems, Wilmington, MA, USA) according to
themanufacturer’s instructions. The final polymerase chain
reaction (PCR) products were analysed using an Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA), Library Quant Kit (KK4824, Illumina GA revised
primers-SYBR Fast Universal, KAPA Biosystems, Wilm-
ington, MA, USA), and an ABI 7500 real-time PCR system
(Life Technologies, Paisley, UK) to estimate insert size and
concentration.

After quality control, the pooled library was se-
quenced using a NextSeq500 analyser (Illumina, San
Diego, CA, USA) to generate 75-bp paired-end reads. The
read depth of the entire genome was nearly 1×.

2.3 Patients’ Characteristics and Vector Construction
2.3.1 Bioinformatics Analysis

The FASTQ files were generated using bcl2fastq2
(v.2.17.1.14, Illumina, San Diego, CA, USA). Raw reads
containing the P5/P7 adapters were trimmed. Reads
that contained more than one N or five consecutive nu-
cleotides with an average Phred score of <20 were re-
moved. The raw reads were mappedto the human refer-
ence genome GRCh37 (https://hgdownload.soe.ucsc.edu/
goldenPath/hg19/chromosomes/) using the BWA MEM al-
gorithm (v.0.7.17; http://bio-bwa.sourceforge.net/). PCR
duplicates were removed using Picard v.1.119 (https://br
oadinstitute.github.io/picard/), and only uniquely mapped
reads were retained for further analysis. Each Binary Align-
ment/Map (BAM) file was converted to Sequence Align-
ment/Map (SAM) using SAMtools (version 1.7, https://gith
ub.com/samtools/samtools) and then filtered using AWK to
retain mutant reads containing only a single point mutation.
SAMtools mpileup was used to identify the point muta-
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tions. ANNOVAR software (version 2018-04-16, https://an
novar.openbioinformatics.org/en/latest/) was used to anno-
tate the variants using RefSeq (http://www.ncbi.nlm.nih.g
ov/refseq/) and dbSNP 151 (https://ncbi.nlm.nih.gov/snp/).
Mutations were annotated as concordant or discordant. In-
dels were removed from the variant call format (VCF) mu-
tation using grep. Annotated and filtered VCF files were
read into R (version 4.1.2; https://www.rstudio.com/produc
ts/rstudio/download/), and mutations were annotated with
single-base substitution contexts using the MutationalPat-
terns package (version 1.10.0; http://bioconductor.org/pac
kages/MutationalPatterns).

2.3.2 CNV Vector
We used 100 Kb as the optimal bin size and overlap-

ping bins with two adjoining bins overlapped by 50 Kb.
Bins that carried putative CNV at the population level were
removed. We controlled for GC and chromosomal biases.
We applied a smoothing spline method to remove the GC
bias. We then used 15 samples from healthy people to com-
pute the mean and variance of the GC-corrected read num-
ber in each bin and regressed out the mean using weighted
linear regression, with the inverse of the variance as the
weight to obtain the bin dosages of the reference and test
samples. After normalization, the bin dosages were used as
the CNV vector.

2.3.3 Mutation Signature Vector
Several studies have shown that rearrangement muta-

tional signatures are correlated with clinical characteristics,
such as C > T transitions at the NCG, and C > T and T
> C have been associated with age. Based on these stud-
ies, we inferred that the ratio of each mutational signature
may be informative, indicating whether the samples came
from patients with BC. We selected loci with a low popu-
lation frequency (<1% or >99%), obtained counts of each
mutational signature, and then computed the ratios of each
mutational signature as the mutation signature vector.

2.3.4 Fragment Size Vector
In addition, several studies have shown that plasma

cfDNA concentrations and fragment sizes can be used to
differentiate between cancer and normal samples and thus
be reflected in clinical characteristics. As our data were
obtained from low-coverage WGS, it was difficult to de-
duce the cfDNA concentrations. Thus, we considered only
cfDNA fragment size. As previous studies demonstrated,
the main difference in the fragment size distribution be-
tween cancer and control samples was the second peak.
Therefore, we computed the fragment size density among
the second peaks (approximately 251–450 bp) as the frag-
ment size vector.

2.3.5 Vector Construction
We combined the CNV, mutation signature, and frag-

ment size vectors as the entire sample vector. The range of
each feature varies significantly. We normalized the data
and considered only the degree of feature deviation to make
the features of the vector comparable to one another (Fig. 1).

x =

(
x−mean(x)

s.d.(x)

)2

Fig. 1. Schematic illustration of study design. Three differ-
ent feature types, including fragment size ratio, error rate, and
copy number variation (CNV), were calculated using mapped se-
quencing reads. The most important five principal components
were chosen, which was subsequently used by a general linearized
model (GLM) algorithm to train the final model.
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Fig. 2. Evaluation of the breast cancer (BC) risk score. (A) Receiver operating characteristic (ROC) curves evaluating the overall
performance of the predictive model for distinguishing BC patients from healthy controls in the training set. (B) ROC curves evaluating
the overall performance of the predictive model for distinguishing BC patients from healthy controls in the validation set. AUC, area
under the receiver operating characteristic curve.

Fig. 3. Evaluation of the breast cancer risk score. (A) ROC curves evaluating the overall performance of the predictive model in
distinguishing benign patients from healthy controls. (B) ROC curves evaluating the overall performance of the predictive model in
distinguishing BC patients from healthy controls. AUC, area under the receiver operating characteristic curve; ROC, receiver operating
characteristic.

2.4 Sampling Training
To maximize training input, we used a combination of

unsupervised and supervised learning.

2.4.1 Unsupervised Learning
Between the observations (samples), some informa-

tive factors of the vectors were expected to indicate whether
a sample originated from a healthy person or a BC patient.
PCA is a technique that orthogonally transforms observed
variances to convert the original informative variables into
new linearly uncorrected parameters called principal com-
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Fig. 4. Distribution of breast cancer risk scores for benign,
cancer, and healthy samples.

ponents (PCs). We trained 22 healthy individuals and 40 pa-
tients with BC using PCA and obtained 61 PCs. These PCs
were ranked by the variance they could explain, and the five
most important PCs were selected as they accounted for a
large portion of the non-random variance, which we consid-
ered correlated with information on whether samples were
incorporated with cancer. The five most important PCA ro-
tations were used to calculate the five PCs of the 61 samples
in the training set for supervised learning.

2.4.2 Supervised Learning
The general linearized model (GLM) algorithm was

used to fit GLM specified by providing a symbolic descrip-
tion of the linear predictor and a description of the error
distribution. We used the GLM algorithm to model the cor-
relation between the five most important PCs and the train-
ing set and obtained a BC risk score to indicate whether the
sample came from a BC patient. We used the following for-
mula: y = 0.6063 × PC1 – 0.4668 × PC2 – 0.7961 × PC3
+ 0.5623 × PC4 + 0.3139 × PC5.

3. Results
3.1 Sample Characteristics

The clinical characteristics of the BC and control par-
ticipants are summarized in Table 1. All patients with BC
were women with a mean age of 47.9 (20–80) years. Of the
122 patients, 34 (27.9%) were aged <40 years, 63 (51.6%)
were aged 40–60 years, and 25 (20.5%) were aged ≥60
years. Patients with benign disease and that staged I, II,
III, and NA (not available) accounted for 53.2% (65/122),
22.1% (27/122), 15.6% (19/122), 4.1% (5/122), and 4.9%
(6/122), respectively. We also collected 22 healthy samples
as controls.

3.2 Optimizing Scores for Predictions of Test and
Validation Datasets

We obtained 22 control and 122 BC samples. We ran-
domly selected 70% of the samples (15 controls, 85 BC
samples) as the training set and the remaining samples (7
controls, 37 BC) as the validation set. Our model worked
well in the training set, reaching an area under the receiver
operating characteristic curve (AUC) of 1.0 in the training
set and 0.690 in the validation set (Fig. 2A,B).

3.3 Optimizing Scores for Predictions among Healthy,
Benign, and Cancer Samples

As our model aimed to identify cancer patients at an
early stage, we attempted to differentiate between benign
patients and controls to determine the performance. The
model obtained an AUC of 0.903, similar to that differen-
tiating between cancer patients and controls (AUC, 0.911;
Fig. 3A,B). The median risk scores were –197.98 (Q25–
75, –264.35 to –153.81), –190.239 (Q25–75, –301.95 to –
151.36), –67.69 (Q25–75, –98.51 to –60.22) for the benign,
cancer, and healthy sets, respectively (Fig. 4).

3.4 BC Risk Score Effects by Clinical Characteristics
Associations among BC risk score, stage, and patho-

logical type were studied. The median risk scores were –
227.90 (Q25–75, –324.38 to –158.28), –185.73 (Q25–75,
–269.17 to –160.02), and –164.71 (Q25–75 –238.38 to –
147.42) for stages I, II and III, respectively. Moreover,
there was no statistically significant difference between BC
risk score and clinical stage. The median risk scores were –
163.23 (Q25–75, –314.17 to –140.96), –195.95 (Q25–75, –
266.19 to –158.40), –232.57 (Q25–75 –284.78 to –176.14),
and –185.73 (Q25–75 –310.77 to –150.02) for Luminal
A, Luminal B, Her2+, and triple negative breast cancer
(TNBC), respectively. There was no correlation between
BC risk score and pathological type (Fig. 5).

4. Discussion
BC is the most common cancer affecting women

worldwide. In 2017, 255,180 new cases of BC were di-
agnosed in the USA; in 2018, the number of deaths due to
BC reached 627,000 [3,4]. The goal of early screening is
to detect BC early while it is still curable to decrease mor-
tality rates. Previous studies demonstrated that early de-
tection with screening mammography significantly reduces
BC deaths by 20–40% [16–20], which might be very useful
in the diagnosis of BC.

Several studies have reported that certain factors may
contribute to the early detection of cancer. Urothelial car-
cinoma can be detected in a sample as it has more CNV
than a control sample [17–19]. Based on this information,
Urine Exfoliated Cells Copy Number Aberration Detector
(UroCAD) was developed [17–19]. In the current study, a
clear correlation was observed in the fragment size distri-
bution determined by the paired ends generated by NGS. In

5

https://www.imrpress.com


Fig. 5. Distribution of BC risk scores. (A) Distribution of BC scores of stage I, II, III samples. (B) Distribution of BC scores of Luminal
A, Luminal B, Her2+, and TNBC samples. BC, breast cancer; TNBC, triple negative breast cancer.

addition, the second peak exhibited the most distinct distri-
bution. Thus, we also considered a second peak (251–450
bp). In addition, patients with BC are likely to have loss
of heterozygosity, so it may be helpful to add the mutation
signature to our model. To enhance the performance of our
model, we included all three factors.

We considered three factors to construct the vector
for the samples and then used PCA and the GLM algo-
rithm for the following analysis. Sample quality and selec-
tion were assessed. We randomly selected approximately
70% (15 healthy, 85 cancer) of the samples as the training
set and the remaining samples as the validation set. Our
model achieved an AUC of 1.0 in the training set and an
AUC of 0.690 in the validation set. We also tested whether
our model could differentiate benign samples from controls
and obtained an AUC of 0.903. Consistent with previous
studies of non-small cell lung, gastric, ovarian, and pan-
creatic cancer, this proof-of-concept study of low-coverage
plasma WGS provides insight into circulating signatures in
plasma DNA and their potential utility for diagnosing can-
cer [20,21].

Moreover, we also attempted to observe the distribu-
tion of BC risk scores among patients with BC of clinical
stages I, II, and III. We found no statistically significant dif-
ferences between BC risk scores and clinical stages. We
also found no statistical significance between BC risk score
and pathological characteristics, consistent with the results
of previous studies [21]. This study has the disadvantages
of including a limited sample size and a large number of raw
features before the PCA analysis, which may have resulted
in model overfitting. Future studies using deep sequenc-

ing in plasma and the features from matched samples are
needed to fully characterize the circulating signatures.

5. Conclusions
In conclusion, here we introduced the BC risk score,

which incorporates the effects of CNV, mutation signature,
and fragment size, and analysed its performance at screen-
ing for BC in a Chinese population. Our study showed that
the BC risk score could differentiate among BC patients
and controls using a non-invasive, cost-effective, and low-
coverage WGS technology, which may provide new ideas
for future BC screening.
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