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Abstract

Background: This retrospective cohort study aims to determine the relationship between morphologic grading of day 1 or 3 embryos and
euploid blastocyst rate in the preimplantation genetic testing cycle. Methods: 2001 two pronucleus (2PN) embryos were obtained from
219 patients in our in vitro fertilization center on day 1. Embryo morphologic grading was conducted on day 1 and day 3. A blastocyst
trophectoderm biopsy was conducted on day 5 or day 6, followed by aneuploid screening using next a generation sequencing platform.
Chi-square test, Student’s t-tests and Mann-Whitney U tests were used to compare categorical and continuous variables between the
cohorts. Logistic regression analysis for euploidy was conducted to determine the association of embryo morphological grading with
blastocyst euploidy. Results: 811 blastocysts selected from 2001 2PN embryos were appropriate for biopsy and DNA from all biopsies
were successfully amplified for aneuploidy screening. The day 1 pronuclear pattern showed a weak, non-statistically significant asso-
ciation with euploid blastocyst (p > 0.05). In contrast, day 3 cleavage-stage embryo scoring, which included blastomere number (p <

0.01, odds ratio (OR) = 1.156), symmetry (p < 0.01, OR = 0.710) and fragmentation (p < 0.01, OR = 0.624) all showed significant
association with euploid blastocyst. 8 cell or≥12 cell embryos were measured with the highest euploid rate, while increased blastomere
size differences and fragmentation decreased the euploid embryo rate. Conclusions: Day 3, but not day 1, embryo morphology was a
significant predictor for euploid blastocysts. Day 3 morphology provides individualized, visualized, and prognostic information concern-
ing the euploid nature of a blastocyst. Blastomeres are assigned properties when selecting day 3 embryos for implantation or blastocyst
culturing; thus, the morphology of day 3 embryos provides a guide for selecting euploid embryos and improving in vitro fertilization
outcomes.

Keywords: embryo morphology; PGT; euploid blastocyst

1. Introduction
In past 40 years, in vitro fertilization (IVF) success

rates have remarkably improved [1–3]. However, analy-
sis of embryonic developmental potential remains a sig-
nificant challenge [4–6]. Chromosomal abnormality is the
most common cause for miscarriage, and selection of eu-
ploid embryos for implantation can markedly improve IVF
outcomes [7,8]. Morphologic assessment is the primary
method for embryo selection, the factors used in assessment
include oocyte, zygote, cleavage-stage embryo, and blas-
tocyst. However, this approach cannot evaluate the status
of the embryonic genome [9–12]. Time-lapse microscopy
(TLM) can monitor embryo development over a 24 hour
window without removing the embryo from the incubator.
Due to recently acquired knowledge of embryo develop-
ment dynamics, TLM technology has the potential to be-
come a priority method for embryo selection. However,
concerns are that the needed equipment is expensive and
there is potential harm from 24 hour monitoring of the em-
bryo, thus the use of TLM remains controversial. More-
over, the cost of equipment and consumables will increase
the economic burden on patients seeking IVF [13–16].

Preimplantation genetic testing for aneuploidy (PGT-
A) reduces the time to pregnancy and avoids the transfer of
aneuploidy embryos [17–20]. Early on, IVF centers used
blastomere biopsy on day 3 to identify euploid embryos
[21]. Within the development of blastocysts in culture,
vitrification, trophectoderm (TE) biopsy, and next gener-
ation sequencing (NGS) are wildly used for aneuploid test-
ing [22,23]. Although PGT-A has many advantages for
patients, damage to the trophectoderm (TE) from embryo
biopsy is still unclear [24], and some studies considered that
TE plays a crucial role during embryo development [10,25].
Several studies have demonstrated that blastocyst grading
can predict euploid blastocysts, but the association is weak
or moderate [26,27]. Liu et al. [28] have studied the corre-
lation between day 3 morphologic grading and pregnancy
outcomes in preimplantation genetic testing (PGT) cycles
that underwent blastomere biopsy and found that poor/fair-
quality embryos have a substantially reduced likelihood of
retaining viability after biopsy. However, studies that have
explored the potential correlation between day 3 morpho-
logic grading and euploid blastocysts which have under-
gone trophectoderm (TE) biopsy remains still limited.
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Table 1. Demographics and IVF-PGT cycle characteristics of the 219 patients in 3 groups.
PGT-M PGT-SR PGT-A Total

p-value54 patients 91 patients 74 patients 219 patients

519 2PN embryos 976 2PN embryos 506 2PN embryos 2001 2PN embryos

Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range

Age (years) 31.2 ± 4.7 21, 41 31.2 ± 3.6 24, 40 37.4 ± 5.2 27, 45 33.3 ± 5.3 21, 45 <0.01
BMI (kg/m2) 21.1 ± 2.8 16.0, 27.7 21.7 ± 2.8 16.2, 29.2 22.0 ± 2.4 16.9, 30.1 21.7 ± 2.7 16.0, 30.1 NS
FSH ( IU/L) 5.7 ± 1.6 0.4, 9.6 5.8 ± 1.7 3.2, 12.6 6.5 ± 3.0 2.9, 14.2 6.0 ± 2.2 0.4, 16.1 NS
LH ( IU/L) 3.5 ± 1.8 0.4, 9.6 4.0 ± 2.4 0.5, 14.5 3.3 ± 1.5 1.0, 7.5 3.6 ± 2.0 0.4, 14.5 NS
AMH (ng/mL) 3.8 ± 3.2 0.8, 16.3 4.5 ± 3.0 0.5, 17.5 2.9 ± 2.8 0.1, 14.6 3.8 ± 3.1 0.1, 17.5 <0.01
Oocytes retrieved 16.3 ± 7.5 4, 40 16.4 ± 8.5 2, 43 11.0 ± 8.7 2, 41 14.5 ± 8.7 1, 43 <0.01
Mature oocytes 13.2 ± 6.0 3, 27 13.2 ± 7.1 2, 42 8.8 ± 7.2 2, 37 11.7 ± 7.2 2, 42 <0.01
2PN embryos 11.0 ± 5.9 1, 27 11.0 ± 6.0 2, 34 7.2 ± 6.0 1, 31 10.1 ± 6.5 1, 34 <0.01
TE biopsy 4.1 ± 3.3 1, 14 4.2 ± 3.3 1, 20 2.8 ± 3.3 1, 16 3.7 ± 3.4 1, 20 <0.01
Euploid blastocyst 1.8 ± 1.7 0, 7 1.5 ± 1.6 0, 8 1.9 ± 1.9 0, 6 1.7 ± 1.8 0, 8 NS
IVF-PGT, in vitro fertilization preimplantation genetic testing; PGT-M, preimplantation genetic testing for monogenic; PGT-SR, preimplan-
tation genetic testing for structural rearrangements; PGT-A, preimplantation genetic testing for aneuploidy; 2PN, two pronucleus; BMI, body
mass index; FSH, follicle-stimulating hormone; LH, luteinizing hormone; AMH, anti-Müllerian hormone; TE, trophectoderm; SD, standard
deviation; NS, no significance.

A total of 219 women who have at least one blastocyst
available for biopsy participated in this study. 811 biopsied
blastocysts obtained from 2001 embryos underwent aneu-
ploidy screening using a NGS platform, and on days 1 and 3
morphologic grading was recorded. We observed that mor-
phologic grading on day 3, but not day 1, was a significant
predictor for euploid embryo identification.

2. Materials and Methods
2.1 Study Design

219 PGT cycles which come from 219 patients were
performed between 2017 and 2019 at our IVF center in-
cluded in this retrospective cohort study. Patients in PGT
cyclewho have obtained at least one biopsied blastocyst and
agreed to participate this study were included. Patients did
not obtained any biopsied blastocysts and refused to par-
ticipate this study were excluded. Total 2001 two pronu-
cleus (2PN) embryos formed after intracytoplasmic sperm
injection (ICSI) and all the 2PN embryos were assigned for
blastocyst culturing. At last, 811 biopsied blastocysts were
obtained from 219 women. All patients who participated in
this study were divided into 3 groups, PGT-A, preimplanta-
tion genetic testing for monogenic (PGT-M) and preimplan-
tation genetic testing for structural rearrangements (PGT-
SR), based on the results of genetic counselling. PGT-A pa-
tients underwent at least two spontaneous miscarriages or at
least once miscarriage indicating abnormalities in chromo-
somal structure. The mean age of patients assigned to PGT-
A was 38 years old and had implantation failure ≥3 times.
PGT-M patients were assigned based on both members of
the couple are the recessive monogenetic disorder gene car-
riers, or one of them is dominant monogenetic disorder pa-
tient. PGT-SR patients, or their husband, exhibits a chromo-

somal rearrangement. Principal information gathered dur-
ing the PGT cycle is presented in Table 1. Morphologic
assessments were performed from day 1 to day 6 after fer-
tilization and all embryos underwent non-selective culture
until day 5 or day 6. Blastocyst quality graded ≥3BB were
biopsied prior to vitrification. Blastocyst quality graded
<3BB did not considered biopsying and vitrification.

2.2 Embryo Culture

All were oocytes placed in Quinn’s Advantage Fer-
tilization Medium (ART-1020, Origio, Pasadena, CA,
USA) supplemented with 5% human serum albumin (HSA)
(90165, Irvine Scientific, Santa Ana, CA, USA) under oil
(10029 Ovoil, Vitrolife, Gothenburg, Sweden). Intracy-
toplasmic sperm injection (ICSI) was conducted approxi-
mately 4 hours after oocyte retrieval and after this, oocytes
were returned to the incubator for culture. Embryos were
cultured up to the blastocyst stage in 6% CO2 and 5% O2.
All embryos were transferred into G1 medium (10128, Vit-
rolife, Gothenburg, Sweden) from day 1 to day 3, and sub-
sequently transferred into G2 medium (10132, Vitrolife,
Gothenburg, Sweden) from day 3 to day 6.

2.3 Morphologic Assessment

All embryo assessment followed the Istanbul consen-
sus or Gardner’s system for grading human blastocysts. Zy-
gote assessment was performed at 17 ± 1 hour post-ICSI.
The morphological parameters for zygote scoring on day 1
were number of pronuclei and pronuclear pattern and based
on these criteria only 2 pronuclei zygotes was considered
for further culture. The pronuclear pattern was classified
into 4 categories, Z1, Z2, Z3, and Z4 based on pronuclear
appearance. Day 3 cleavage-stage embryo scoring was per-
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formed at 68 ± 1 hour post-ICSI, and morphological pa-
rameters assessed included blastomere number, degree of
fragmentation, and size and shape of blastomeres. Degree
of fragmentation is the percentage of the volume of the em-
bryo occupied by chromosomal fragments, specifically, (1)
<10% fragmentation; (2) 20–30% fragmentation; (3) 20–
30% fragmentation, (4) >50% fragmentation. Symmetry
is defined as the size and shape of the blastomeres within
cleavage-stage embryo, specifically, (1) even division; (2)
<20% difference; (3) 20–50% difference; (4) >50% dif-
ference. Day 5 and day 6 morphological evaluation of
blastocysts included the stage (early, expanding, expanded,
hatching or hatched) as well as the quality of the inner cell
mass (ICM) and trophectoderm (TE). All embryonic grad-
ing was individually recorded and reviewed in real-time by
two senior embryologists [28–31].

2.4 TE Biopsy and Aneuploidy Testing
Blastocyst quality was assessed prior to TE biopsy.

Only blastocyst quality of ≥3BB were considered for TE
biopsy. All biopsy procedures were performed on the
heated stage of a Nikon IX-70 microscope (CIE, Nikon,
Chiyoda, Tokyo, Japan) equipped with micromanipulation
tools. Detailed procedures have been outlined in a previ-
ous report from our group [12]. For TE biopsies, blasto-
cysts were transferred into microcentrifuge tubes contain-
ing 2 mL phosphate buffered saline (PBS), and this was fol-
lowed by multiple displacement amplification (MDA) us-
ing REPLI-g Single Cell kit (10534, Qiagen, Hilden, North
Rhine-Westphalia, Germany). The biopsies were stored at –
20℃ for one week if MDAwas not performed. Preimplan-
tation genetic testing for aneuploidy was performed using
the MiSeq NGS platform (Illumina) following the manu-
facturer’s protocol. Details of this analysis are outlined in
Supplementary Fig. 1.

2.5 Statistical Analysis
Student’s t-tests or Mann-Whitney U tests were con-

ducted to assess statistically significant differences. Con-
tinuous variables are shown as mean ± standard deviation
(SD). Binary logistic analysis was conducted to investigate
embryo euploidy and embryonic morphology by defining
the binary response parameter as either euploid (1) or aneu-
ploid (2). Categorical variables are provided with 95% con-
fidence interval (CI). Univariate analysis was conducted to
compare euploid embryo rate in different groups. p < 0.05
was considered statistically significant and statistical anal-
yses were performed using SPSS 19 (IBM SPSS, Chicago,
IL, USA).

3. Results
3.1 Demographics and IVF Cycle Characteristics in the
Study Population

From January, 2017 to December, 2019, data from
2001 2PN embryos which originated from 219 patients, in

219 PGT cycle, were included in this study. The 219 pa-
tients and 2001 2PN embryos were divided into 3 groups
based on data gathered. Specifically, 54 patients and 519
embryos were placed in the PGT-M group, 91 patients and
976 embryos were placed in the PGT-SR group, and 74 pa-
tients and 506 embryos were placed in the PGT-SR group.
IVF-PGT cycle information and patient demographics are
outlined in Table 1.

3.2 Assessment of Morphology Effects on Blastocyst
Euploidy by Logistic Regression Analysis

We assessed the effects of different morphological
factors on blastocyst euploidy using logistical regression
analysis, and measured euploid blastocyst development at
day 5 or day 6. In day 3 blastocysts, blastomere num-
ber, symmetry grading, and fragmentation grading were in-
cluded in the logistic repression analysis. The results out-
lined in Table 2 indicate that blastomere number had the
strongest association with blastocyst euploidy (odds ratio
(OR) = 1.156, 95% CI = 1.103–1.121, p < 0.01). This was
followed by association with blastomere symmetry (OR =
0.710, 95% CI = 0.591–0.852, p < 0.01), and blastomere
fragmentation (OR = 0.624, 95% CI = 0.504–0.774, p <

0.01). However, neither day 1 pronucleus (PN) pattern (p
> 0.05) or PGT indication (data not shown) failed to show
any association with blastocyst euploidy.

Table 2. Logistic regression analysis of the indicated variables
associated with euploid blastocyst in 219 patient PGT cycles.

Parameter OR 95% CI p value

PN pattern 0.976 0.832–1.145 NS
Blastomere number 1.156 1.103–1.121 <0.01
Blastomere symmetry 0.710 0.591–0.852 <0.01
Fragmentation 0.624 0.504–0.774 <0.01
PGT, preimplantation genetic testing; PN, pronucleus; OR,
odds ratio; CI, confidence interval; NS, no significance.

3.3 Univariate Analysis of Blastomere Number, Symmetry,
and Fragmentation Analysis in Different PGT Groups

We next analyzed the association between blastomere
number and euploid blastocysts in the three PGT groups.
Embryos were divided into 9 sub-groups based on blas-
tomere number in each group (Fig. 1A). In the PGT-M
group, 9 day 3 blastomere embryos obtained the highest
rate of euploidy, followed by ≥12 and 8 blastomere em-
bryos, specifically, 0.364, 0.346, and 0.310, respectively
(Fig. 1A and Table 3). In the PGT-SR group, ≥12 day
3 blastomeres had the highest euploidy rate, followed by
8 and 7 blastomere embryos, 0.220, 0.188, and 0.177, re-
spectively (Fig. 1A, Table 3). In the PGT-A group, 8 blas-
tomere day 3 embryos also displayed the highest euploidy
rate, followed 9 and≥12 blastomere embryos, 0.293, 0.262,
and 0.242, respectively (Fig. 1A, Table 3). Finally, we an-
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alyzed the total data of all three groups and found that day
3 ≥12 blastomere embryo represented highest euploid rate
followed 8 and 9 blastomere embryos 0.260, 0.248, and
0.241 (Fig. 1A, Table 3). In regards to embryo symme-
try we noted that as the blastomere difference increased,
the euploid rate decreased (Fig. 1B, Table 3). Similar re-
sults were obtained from fragmentation analysis (Fig. 1C,
Table 3); specifically, embryos within fragmentation<10%
displayed the highest rate of euploidy. Further, as increas-
ing fragmentation was observed, the euploid rate commen-
surately decreased. All euploid rates for different embryos
from the three PGT groups and combined group scoring is
provided in Table 3.

Fig. 1. Univariate analysis of day 3 morphological grading
factors in PGT embryos. Univariate analysis of day 3 embryo
blastomere number (A), symmetry grading (B) and fragmentation
grading (C) in PGT-M (red), PGT-SR (blue), PGT-A (green) and
PGT total (black).

4. Discussion
Embryo selection and euploid embryo transplantation

are critical steps for improving pregnancy rates following

IVF. In this study, 811 biopsied blastocysts, which were
obtained from 2001 2PN embryos in 219 patients, were in-
cluded in our analysis. As outlined, patients were divided
into 3 groups, PGT-M, PGT-SR and PGT-A based on clin-
ical indications. We found several euploid embryo pre-
dictors within IVF preimplantation genetic testing (PGT)
morphologic data. Day 5 or day 6 blastocysts with quality
≥3BB underwent TE biopsy followed by MDA and NGS-
based euploid screening of DNA isolated from these blas-
tocysts. After statistical analysis, results showed that day
3 embryonic blastomere number (OR = 1.315, p < 0.01),
blastomere fragmentation (OR = 0.900, p< 0.01) and blas-
tomere symmetry (OR = 0.621, p < 0.01) are predictive
of euploid blastocysts, with blastomere number being the
strongest factor associated with blastocyst euploidy. How-
ever, a 2PN pattern in day 1 embryos did not exhibit a statis-
tically significant association with blastocyst euploidy. A
previous study by Tesarik et al. [32] demonstrated simi-
lar results; however, these findings were opposite to those
reported by Faramarzi et al. [31,33]. We speculate that
because the 2PN pattern was evaluated by using different
methods and different investigators, these differences may
account for these disparate results.

Maternal age is a critical factor for blastocyst eu-
ploidy. This factor can affect the blastocyst euploid rate
[34]. Advanced age patients in IVF treatment usually ob-
tained lower quality embryos and clinical pregnancy rate
and higher miscarriage rate than the younger patients [35].
Average percent euploid embryos increased from ~60% to
~75% between maternal ages 22 and 28, dipping to ~60%
by age 35, followed by a steady decline to ~40% by age 40
until reaching ~10% by age 45 [36–38]. In our study, the
maternal age distribution in these 3 groups is significantly
different and results showed that PGT-A group being the
oldest (Table 1). Otherwise, chromosome abnormality is
also a factor can not be ignored in blastocyst euploidy. Such
as Balanced translocations, Robertsonian translocations, in-
sertions, and inversions are abnormalities that change the
natural order of chromosomal segments. The carriers of
above abnormalities are typically asymptomatic but more
easily produce chromosomal copy number abnormal ga-
mete. This result will make infertility problems, increase
the possibility of miscarriage, fetal anomalies and affect
offspring’s intelligence [39–41]. On the other hand, most
of patients in PGT-M group do not have the infertility, and
their blastocyst have relative high euploid rate. So, we an-
alyzed the results in different group to avoid the impact of
different group clinical indications on the final results (Ta-
ble 1).

We examined the effect of blastomere number on pre-
dicting embryonic euploidy in three groups. 9 blastomere
embryos received the highest euploidy rate in the PGT-M
group, but 8 blastomere embryos received the highest eu-
ploidy rate in the PGT-SR and PGT-A groups. It is com-
monly viewed that 7–9 blastomere embryos are considered

4

https://www.imrpress.com


Table 3. Embryo euploid rate at different cleavage-stage embryo grading in 3 PGT groups.
PGT-M PGT-SR PGT-A PGT-M+SR+A

Blastomere
number

Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

≤4 87 1 0.011 143 3 0.021 59 0 0.000 289 4 0.014
5 53 5 0.094 88 5 0.057 41 2 0.049 182 12 0.066
6 60 6 0.100 126 10 0.079 45 6 0.133 231 22 0.095
7 66 14 0.212 147 26 0.177 73 11 0.151 286 51 0.178
8 155 48 0.310 303 57 0.188 188 55 0.293 646 160 0.248
9 44 16 0.364 84 14 0.167 42 11 0.262 170 41 0.241
10 20 3 0.150 32 4 0.125 19 4 0.211 71 11 0.155
11 8 1 0.125 12 1 0.083 6 1 0.167 26 3 0.115
≥12 26 9 0.346 41 9 0.220 33 8 0.242 100 26 0.260

Symmetry
Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

1 257 60 0.233 459 77 0.168 282 69 0.245 998 206 0.206
2 173 33 0.191 328 43 0.131 153 20 0.131 654 96 0.147
3 87 10 0.115 185 9 0.049 69 9 0.130 341 28 0.082
4 2 0 0.000 4 0 0.000 2 0 0.000 8 0 0.000

Fragmentation
Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

Embryo
number

Euploid
number

Euploid
rate

1 350 84 0.240 585 97 0.166 342 76 0.222 1277 257 0.201
2 93 14 0.151 234 29 0.124 101 20 0.198 428 63 0.147
3 67 2 0.030 136 3 0.022 53 2 0.038 256 7 0.027
4 9 0 0.000 21 0 0.000 10 0 0.000 40 0 0.000

the best choice for transplantation; however, in this study
embryos with≥12 blastomeres proved to be a better choice
when compared to 7 or 9 blastomere embryos. Compaction
is a critical morphological event of day 3 embryos. It typ-
ical occurs on ≥10 blastomere embryo and then the em-
bryo develop into morula stage [42]. Previous study have
demonstrated that, day 3 morula stage embryo have better
development competence than day 3 cleavage stage embryo
[43]. In all case, morula stage embryo associate with higher
pregnancy and implantation rate than cleavage stage em-
bryo [44,45]. So, the result that embryo ≥12 blastomere
have higher euploid rate is reliable. The influence of sym-
metry and fragmentation is not similar in each group. Our
results showed that, symmetry has the strongest influence in
PGT-M group (Fig. 1B), but fragmentation has the strongest
influence in PGT-A group (Fig. 1C). The underlying mech-
anism need further study.

Recently, a variety of technologies for euploid blasto-
cyst screening have been developed. Preimplantation ge-
netic testing for aneuploidy is an attractive technology that
has the potential to increase IVF success rates [17]. How-
ever, the association of TE or blastomere biopsy and im-
pairment of embryonic development remains controversial,
as well as biopsy increasing the time exposure out of incu-
bator [18,19]. Day 5 or day 6 blastocyst scoring has been

confirmed as a feasible method for embryo selection, but
blastocyst scoring cannot be applied to embryos only cul-
ture for 3 days, and approximately 40% of embryos fail to
reach blastocyst stage. Alternatively, day 3 embryo scoring
systems involve more variables than the blastocyst scoring
system, so day 3 embryo assessment likely offers moremor-
phologic information than either day 5 or day 6 embryos.

Time-lapse microscopy is a novel technology for opti-
mizing embryo selection. Many studies have demonstrated
that some parameters of embryo kinetics are useful for em-
bryo selection, but a gold standard in the field is still lack-
ing [46–48]. Potential embryo damage from exposure to
camera lamplight every 5 mins remains unclear [13–15].
Recent attention has focused on developing non-invasive
approaches for PGT such as analysis of cell-free DNA in
blastocoelic fluid or culture medium [49]. Although nonin-
vasive methods decrease embryo impairment, the accuracy
and specificity of these noninvasive approaches require im-
provement [50,51].

There are a number of limitations in this study. Ad-
ditional data is required to confirm the benefit by applying
the conclusion of our study for the IVF cycle. We would
further assess the impact of day 3 embryo morphology on
the rates of clinical pregnancy, implantation, miscarriage,
and live birth. We found as showed in Table 1 that the eu-
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ploid embryo number per patient in PGT-M group is less
than PGT-A group. The main reason for this finding may
be the limited sample size.

5. Conclusions

In conclusion, this study confirmed that day 3 embry-
onic blastomere number, symmetry, and fragmentation are
statistically significant predictors of euploid blastocysts. In
contrast, the 2PN pattern in day 1 embryos was not associ-
ated with blastocyst euploidy. 8 blastomere or blastomere
number ≥12, even division embryos with fragmentation
≤10 in day 3 embryos represent a best choice for either
blastocyst culture or day 3 implantation. And we first re-
port the euploid rate of blastocyst which derived from day 3
moular stage embryo. The impact of blastomere symmetry
is greater than fragmentation and gives a good suggestion
for embryo selection. We believe that this study will pro-
vide a rapid, efficiency and cost-effective method for se-
lecting high developmental potentiality embryo to improve
outcomes of IVF.
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