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Abstract

Background: Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynaecologic malignancy. It has been demonstrated that
the immune cell infiltration (ICI) pattern plays a critical role in the tumour progression of UCEC.Methods: To further investigate the
immune microenvironment landscape of UCEC, we analysed the gene expression data of 539 UCEC patients from The Cancer Genome
Atlas (TCGA) database using CIBERSORT and ESTIMATE for consensus clustering of immune cells. We used the limma package to
compare differentially expressed genes (DEGs) among ICI patterns and constructed a prognostic model using Cox regression to calculate
the risk score of UCEC patients. The immunophenoscore was downloaded to explore the immunotherapeutic effect between low- and
high-risk score patients. Finally, the tumour mutation burden (TMB) was calculated using the somatic mutation data. Results: We
identified two different immune infiltration patterns in 539 UCEC samples, the immune-desert and immune-inflamed phenotypes, which
had distinct prognostic and biological features. We obtained 29 DEGs to construct the ICI-related prognostic model and established a
four ICI-related gene-based prognostic model comprising LINC01871, CXCL13, IGKJ5, and LINC01281. The risk score was associated
with distinct clinical outcomes, ICI, and immunotherapeutic effects. Patients with a low risk score had higher effective immune cells,
which could be classified into the immune-inflamed phenotype. Additionally, patients with a low risk score had a significantly higher
immunophenoscore, suggesting a better immunotherapeutic outcome. Finally, TMB was confirmed to be associated with prognosis,
which was synergistic with the risk score. Conclusions: This study comprehensively analysed the ICI pattern in UCEC patients and
established a four ICI-related gene-based prognostic model to predict prognosis and guide precise immunotherapy strategies.
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1. Introduction

Uterine corpus endometrial cancer (UCEC) is a preva-
lent type of malignant tumour in gynaecology. According
to global cancer statistics in 2020, the incidence of endome-
trial cancer was 4.5%, ranking sixth among women’s can-
cers, and its morbidity and mortality increase annually [1].
In 2020, it was estimated that there would be 65,620 new
cases and 12,590 deaths [2]. In recent years, the incidence
and mortality of UCEC have risen rapidly, particularly in
association with obesity and diabetes [3]. The poor prog-
nosis of UCEC is related to both the molecular subtype and
clinical stage. In 2013, The Cancer Genome Atlas (TCGA)
Research Network classified UCEC into four molecular
subtypes based on genomic and transcriptomic data: poly-
merase epsilob (POLE) ultramutated, microsatellite insta-
bility hypermutated (MSI-H), copy-number low (CNL) and
copy-number high (CNH). The POLE ultramutated subtype
was found to have a better prognosis, whereas the CNH
subtype had the poorest outcome [4]. Patients diagnosed
at later stages are more likely to experience recurrence and

metastasis and have a poor prognosis. The 5-year survival
rate for relapsed patients is 68%, while that for metastatic
patients is only 17% [5]. Although traditional treatments,
such as surgical resection, chemotherapy, and radiotherapy,
have been greatly improved, overall survival (OS) has been
not significantly improved. Therefore, a novel prognosis
prediction and therapeutic response assessment method are
urgently needed to facilitate precision and individualized
treatment.

The tumour microenvironment (TME) consists of an
extracellular matrix secreted by tumour cells, stromal cells,
endothelial cells, immune cells, and tumour-associated
cells. The high heterogeneity of TME phenotypes and can-
cer cell genotypes is one of the factors contributing to clini-
cal treatment sensitivities and outcomes among tumour pa-
tients [6]. TME components interact with tumour cells and
regulate their growth and development. In recent years, in-
creasing evidence has shown that the occurrence, develop-
ment, and metastasis of malignant tumours are associated
with the TME [7–9]. The infiltration of immune cells and
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Fig. 1. The workflow of the study. TCGA, The Cancer Genome Atlas; UCEC, uterine corpus endometrial carcinoma; ICI, immune cell
infiltration; DEGs, differentially expressed genes; ICB, immune checkpoint blockade; IPS, immunophenoscore; TMB, tumour mutation
burden; ROC, receiver operating characteristic.

their interaction with cancer cells form a unique tumour im-
mune microenvironment (TIME) [10]. The immune cell
infiltration (ICI) in the TIME plays a decisive role in pa-
tient prognosis. Many studies have shown that there is sig-
nificant ICI in UCEC tissue, and these immune cells are
involved in tumour development [11]. It has been demon-
strated that patients with high infiltration of CD8+ T cells
and CD45RO+ T cells have a better prognosis in UCEC,
whereas patients with high infiltration of tumour-associated
macrophages have a worse prognosis [12]. Moreover, ICI
has also been reported to play an important role in im-
munotherapy for UCEC [13,14]. Therefore, a deeper under-
standing of the landscape of ICI in UCEC may improve the
precision of prognosis prediction and reveal optimal treat-
ment strategies.

In this study, we explored the ICI landscape of 539
UCEC samples from the TCGA database. We aimed to
identify immune-associated subtypes by unsupervised clus-
tering of 22 infiltrating immune cells in UCEC and con-
structed a prognostic risk model based on the differentially
expressed genes (DEGs) among the ICI subgroups. By
analysing the correlation between risk score and molecu-
lar subtype, clinical stage, immune score, immune check-
point, and tumour mutation burden (TMB), we aim to pre-
dict which UCEC patients may benefit from immunother-
apy. In summary, our results imply that ICI is of great help
for tumour immunotherapy, and our ICI-related prognos-
tic model can provide a basis for selecting precision im-
munotherapy strategies in UCEC patients. The design and
procedures are shown in Fig. 1.

2. Materials and Methods
2.1 Endometrial Carcinoma Data Collection

We obtained the transcriptomic data and correspond-
ing clinical characteristics of UCECs from the TCGA
database, consisting of a total of 583 UCEC samples. We
excluded normal samples, duplicate samples, and samples
with missing survival times, leaving us with 539 samples
for analysis. The transcriptomic profiles of TCGA-UCEC
in the fragments per kilobase per million (FPKM) were
transformed into transcripts per kilobase million (TPMs).

2.2 Evaluation of Tumour Immune Cell Infiltration

We applied the CIBERSORT package (http://cibersor
t.stanford.edu/) to obtain a fraction matrix of ICI using the
TPM data, which estimated the abundances of 22 tumour
infiltration immune cells (TIICs) [15]. The ESTIMATE al-
gorithm was used to infer the tumour purity and calculate
the immune score and stromal score. Additionally, single-
sample gene set enrichment analysis (ssGSEA) was per-
formed on UCEC samples using the GSVA package (http:
//www.bioconductor.org/) based on the expression levels
of immune-related markers. We then used the “Consen-
susClusterPlus” package (http://www.bioconductor.org/) to
divide the UCEC samples into two subgroups. To en-
sure the stability of the classification, the analysis process
was repeated 1000 times using the unsupervised cluster-
ing “Pam” method. We used the “pheatmap” R package
(https://cran.rstudio.com) to draw the heatmap.
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2.3 Identification of Immune Cell Infiltration-Related
Differentially Expressed Genes

We divided UCEC samples into two ICI clusters based
on the consensus clustering algorithm. Differentially ex-
pressed genes (DEGs) between the different ICI subgroups
were identified by using the “limma” package. The signif-
icance cut-off was set as an adjusted p value < 0.05 and
absolute fold-change >1. Then, gene ontology (GO) anno-
tation was performed by using the “ClusterProfiler” pack-
age (http://www.bioconductor.org/).

2.4 Establishment of the Immune Cell Infiltration-Related
Prognostic Risk Model

The “survival” package was used to perform univari-
ate Cox regression analysis to identify DEGs related to
the OS of UCEC patients. Then, we conducted multi-
variate Cox regression to construct an ICI-related prognos-
tic risk model, and the risk score was calculated by the
following formula for each UCEC patient. Risk score =∑n

i coef (genei) × expr (genei). Coef (genei) was de-
fined as the coefficient of gene i and expr (genei) was de-
fined as the expression of gene i.

2.5 Association between the Risk Score and Molecular
Subtypes and Clinical Phenotypes

According to the molecular classification method
based on TCGA [16], we divided the 539 UCEC patients
into four molecular subtypes: POLE, MSI-H, CNL and
CNH. To investigate the correlation between the risk score
and molecular subtypes, we generated box plots using
GraphPad Prism v8.0.2 software (GraphPad Software, Inc.,
San Diego, CA, USA) and performed unpaired t tests to de-
termine statistical significance. We used the same method
to examine the relationship between risk score and clinical
stage, survival status, and age groups.

2.6 Association between the Risk Score and Tumour
Immune Environment

We divided the 539 UCEC patients into two groups
based on the median risk score. To explore the correlation
between the risk score and TIME, we used the Wilcox test
and drew box plots to demonstrate the difference in TIME
between the low- and high-risk groups.

2.7 Association between the Risk Score and
Immunotherapy

Research has demonstrated that the expression levels
of certain key genes related to immune checkpoint block-
ade (ICB) may be correlated with the clinical outcomes of
immune checkpoint inhibitor blockade therapy. To inves-
tigate the potential role of the risk score in immunother-
apy, we analysed the correlation between the risk score and
the expression levels of ICB-related genes. Here, we focus
on the six key ICB genes, namely, PD-L1 (CD274), PD-
1 (PDCD1) [17], PD-L2 (PDCD1LG2), TIM-3 (HAVCR2),
CTLA-4 [18], and IDO1 [19], that have been reported in

previous studies. Additionally, we further compared the
correlation between nine inflammation-related genes (TNF,
TBX2, PRF1, IFNG, CD8A, CLCL9, CXCL10, GZMA,
and GZMB) [20] and the risk score. To evaluate the
potential impact of immunotherapy predicted by the risk
score, we also analysed the correlation between the im-
munophenoscore (IPS) and the risk score of UCEC patients.
The IPS data for UCEC patients are available for download
from The Cancer Immunome Atlas (TCIA).

2.8 Construction of the Prognostic Nomogram
To enhance the interpretability of the prognostic risk

model and facilitate patient evaluation, we developed a
nomogram using the “rms” R package, which integrates
the risk score and age to estimate OS at 1, 3, and 5 years.
The nomogram assigns a score to each factor based on their
respective contribution to the outcome variable and sums
them to obtain the total score. To validate the prognostic
value of the nomogram, we used calibration and receiver
operating characteristic (ROC) curves.

2.9 Tumour Burden Mutation Analysis
To reveal the intrinsic link between the TIME and

somatic mutations, we conducted an analysis to assess
the correlation between TMB and risk score. Somatic
mutation data were obtained from the TCGA database,
and the “maftools” package (http://www.bioconductor.org
/) was utilized to calculate the number of somatic non-
synonymous point mutations in each sample, which corre-
sponded to the TMB. Furthermore, we generated separate
waterfall plots for the low- and high-risk groups to visually
display the distribution of gene mutations among patients
in each risk score group.

2.10 Statistical Analysis
All statistical analyses were conducted using R ver-

sion 4.1.0 (University of Auckland, Auckland, New
Zealand). The fraction of 22 TIICs was calculated using the
“CIBERSORT” package in R. The Wilcoxon test was used
to compare differences between two groups. DEGs were
identified using the “limma” package in R. Survival analy-
sis was performed by the Kaplan-Meier (K-M) method, and
comparisons between groups were made using the log-rank
test. The “survivalROC” and “timeROC” packages were
used to generate the ROC curve. GSEA was performed
using GSEA software version 4.1.0 (Broad Institute, Inc.,
Cambridge, MA, USA).

3. Results
3.1 Identification of Two Immune Cell Infiltration Patterns

To further analyse the TIME in UCEC, we calculated
the level of 22 immune cells in a total of 539 samples. Based
on the ICI profile, the 539 samples were classified into dif-
ferent subtypes using the “ConsensusClusterPlus” package.
To ensure sample equilibrium and clustering stability, we
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chose k = 2 (Supplementary Fig. 1), resulting in the di-
vision of samples into two ICI patterns, ICI Cluster A (329
samples) and ICI Cluster B (210 samples). We drew a com-
prehensive heatmap to further describe and explore the re-
lationship between ICI patterns and clinical phenotypes, in-
cluding age and survival status (Fig. 2A). Furthermore, we
conducted Kaplan‒Meier survival analysis to compare the
prognosis of the two ICI subgroups and found that ICI Clus-
ter B had a better prognosis than ICI Cluster A, although
the difference was not statistically significant (p = 0.31,
Fig. 2B).

To further investigate the association between im-
mune scores and infiltrating immune cells, we compared
the TIME between the two clusters. Our analysis revealed
that ICI Cluster B displayed higher levels of plasma cells,
CD8+T cells, activated state CD4+T cells, follicular helper
T cells, regulatory T cells, and M1 macrophages, as well as
high stromal and immune scores. These findings are con-
sistent with previous studies showing that the abundance
of these immune cells significantly correlates with antitu-
mour immune status [21]. Furthermore, we compared the
correlations between immune cells and the immune score,
stromal score, and ESTIMATE score (Fig. 2C,D). Among
these immune cells, plasma cells, CD8+ T cells, activated-
state CD4+ T cells, regulatory T cells, andM1macrophages
were significantly and positively correlated with immune
scores. Therefore, we defined ICI Cluster B as immunoin-
flammatory. In contrast, most immune cell infiltrates were
significantly lower in ICI Cluster A, except for resting-
state CD4+ T cells, M0 macrophages, activated-state den-
dritic cells, higher levels of neutrophils, and lower stro-
mal and immune scores. Resting-state CD4+ T cells, M0
macrophages, and activated-state dendritic cells were sig-
nificantly and negatively correlated with immune scores.
Therefore, ICI Cluster A can be considered the immune
desert type.

To further assess the value of ICI subgroups in pre-
dicting prognosis, we conducted Kaplan‒Meier survival
analysis based on the different ICI subgroups. The results
showed that regulatory T cells and CD8+ T cells enriched
in ICI Cluster B were associated with a longer survival time
and a good prognosis (Fig. 2E,F). In contrast, a high level of
monocytes, which were enriched in ICI Cluster A, showed
a poor prognosis (Fig. 2G).

Furthermore, we compared the expression levels of
six key immune checkpoint blocking genes (PD-1, CTLA-
4, TIM-3, IDO1, PD-L1, and PD-L2) in the two ICI clusters
(Fig. 3). Our analysis revealed that the expression levels of
ICB-related genes were significantly higher in ICI Cluster
B than in ICI Cluster A, suggesting that ICI cluster B may
be more suitable for immunotherapy.

3.2 Establishment of the Immune Cell Infiltration-Related
Prognostic Signature

Using the limma package, we identified 29 DEGs be-
tween the two ICI clusters, which were defined as ICI-

related genes (Table 1). We performedGO enrichment anal-
ysis with the ICI-related genes and found that most biolog-
ical functions were related to the immune response, such
as immunoglobulin production, humoral immune response,
immunoglobulin complex, and immunoglobulin receptor
binding (Supplementary Fig. 2). We then performed uni-
variate Cox and multivariate Cox regression analyses to
identify the ICI-related genes associated with OS and to es-
tablish a prognostic risk model. Finally, an optimal prog-
nostic model was obtained: risk score = (0.9842 × expr
(LINC01871)) + (1.0121× expr (LINC01281)) + (0.9983×
expr (CXCL13)) + (0.9990× expr (IGKJ5)). Kaplan‒Meier
analysis revealed that a high level of the four genes was sig-
nificantly associated with longer survival time (Fig. 4).

To further validate the prognostic role of risk scores,
risk curves and scatter plots were constructed according to
the survival status of each sample (Fig. 5A,B). The risk
curves and scatter plots visualized the risk scores and sur-
vival status of TCGA-UCEC patients, illustrating that pa-
tient death was closely associated with high-risk scores. Pa-
tients were divided into high- and low-risk groups with the
median risk score as the cut-off. The Kaplan‒Meier sur-
vival curve showed that the low-risk group had a longer sur-
vival time (p < 0.001, Fig. 5C). Additionally, we analysed
the correlation between the risk score and molecular sub-
types and clinical stages. We found that the POLE andMSI-
H subtypes had a significantly lower risk score, while the
CNH subtype had a significantly higher risk score (Fig. 5D).
These findings suggest that the POLE and MSI-H subtypes
had a better prognosis, and the CNH subtype had a worse
prognosis, which is consistent with a previous report [16].
The stage III and stage IV groups had a higher risk score
than the stage I and stage II groups, implying that early di-
agnosis is beneficial to prognosis (Fig. 5E). Moreover, we
analysed the correlation between the risk score and clini-
cal phenotypes (survival status and age). We found that
the deceased group had a significantly higher risk score
(Fig. 5F), but there were no significant differences between
age groups (Fig. 5G).

3.3 Association between the Risk Score and Tumour
Immune Environment

As the risk score was calculated by the ICI-related
prognostic model, we further explored the differences in
the tumour immune environment between the high- and
low-risk groups. Our results showed that the risk score
was negatively correlated with the level of various immune
cells closely related to the antitumour immune response, in-
cluding plasma cells, CD8+ T cells, activated state CD4+
T cells, follicular helper T cells, regulatory T cells, and
M1 macrophages (Fig. 6A). Patients with low risk scores
had higher stromal scores, immune scores, and ESTIMATE
scores than patients with high risk scores (Fig. 6B). The
ssGSEA results showed that both ICI and immune signal
enrichment were significantly higher in the low-risk group
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Fig. 2. The landscape of ICI in UCEC. (A) Heatmap of immune cells in UCEC patients. (B) K-M curves for the OS of UCEC patients
in two ICI clusters. (C) The levels of immune cells, immune scores, and stromal scores in two ICI clusters. (D) Correlation of immune
cells and immune scores. (E–G) OS analysis between patients with different infiltration levels of immune cells. (E) CD8+ T cells. (F)
Regulatory T cells. (G) Monocytes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. OS, overall survival;
NK, natural killer; K-M, Kaplan-Meier.
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Fig. 3. The expression levels of six ICB genes in two ICI clusters. (A) PD-1. (B) PD-L1. (C) PD-L2. (D) CTLA-4. (E) TIM-3. (F)
IDO1. **p < 0.01; ****p < 0.0001. ICB, immune checkpoint blockade.

Table 1. Differentially expressed genes between the two ICI clusters.
Gene logFC AveExpr t p value adj.p.Val B

IFNG 0.690138 4.619117 13.77466 3.43 × 10−37 3.16 × 10−33 73.68758
LINC02446 0.642649 4.549493 12.79338 6.62 × 10−33 2.16 × 10−29 63.93433
LINC01871 0.536552 4.811053 12.56105 6.49 × 10−32 1.63 × 10−28 61.68009
RTP5 0.510671 4.106001 12.02844 1.11 × 10−29 1.81 × 10−26 56.59841
CXCL13 0.564699 5.388636 11.63992 4.38 × 10−28 5.64 × 10−25 52.97128
LINC01281 0.51517 4.183521 11.33138 7.71 × 10−27 8.70 × 10−24 50.14149
IGLC6 0.555786 4.302542 10.47021 1.79 × 10−23 1.31 × 10−20 42.49629
IGKV1.8 0.612746 4.640868 9.63965 2.16 × 10−20 1.11 × 10−17 35.50488
IGKV1D.12 0.537981 4.131287 9.47581 8.36 × 10−20 3.86 × 10−17 34.17319
IGLV3.1 0.547847 5.174836 9.304659 3.38× 10−19 1.38 × 10−16 32.79948
IGLC7 0.587786 4.819901 9.109792 1.62× 10−18 6.01 × 10−16 31.25746
IGHV1.24 0.552303 5.045554 8.980839 4.51× 10−18 1.55 × 10−15 30.25016
IGKV1.12 0.512237 4.152039 8.842155 1.34 × 10−17 4.24 × 10−15 29.17869
IGKV1.9 0.529306 5.143034 8.767901 2.39 × 10−17 7.12 × 10−15 28.6101
IGKV1D.16 0.517931 4.363243 8.593826 9.17 × 10−17 2.40 × 10−14 27.29129
IGHV3.20 0.550608 4.550816 8.549534 1.29 × 10−16 3.22 × 10−14 26.95891
IGLV1.36 0.535547 4.607999 8.54105 1.37 × 10−16 3.40 × 10−14 26.89539
IGKJ5 0.520335 4.383708 8.474194 2.28 × 10−16 5.53 × 10−14 26.39655
IGHV2.70 0.571032 4.700231 8.465907 2.43 × 10−16 5.84 × 10−14 26.33492
IGLV7.43 0.517652 4.898322 8.364099 5.23 × 10-16 1.23 × 10−13 25.58161
IGHV1.69D 0.527484 5.041317 8.31834 7.37 × 10−16 1.66 × 10−13 25.2453
IGLV3.27 0.539226 4.720764 8.213847 1.60 × 10−15 3.38 × 10−13 24.48266
IGKV1.17 0.511528 5.01979 8.088337 4.04 × 10−15 8.00 × 10−13 23.57654
IGKV1.16 0.503234 5.066696 8.022742 6.51 × 10−15 1.26 × 10−12 23.10732
IGHV1.3 0.515697 4.404484 7.997288 7.84 × 10−15 1.48 × 10−12 22.92604
IGLV9.49 0.531905 4.728355 7.870241 1.96 × 10−14 3.51 × 10−12 22.02805
IGHV1.69 0.511032 4.838856 7.788804 3.50 × 10−14 5.95 × 10−12 21.45843
IGLV4.60 0.520134 4.652707 7.764731 4.16 × 10−14 6.93 × 10−12 21.29095
IGKV2D.29 0.510528 4.673165 7.564385 1.70 × 10−13 2.51 × 10−11 19.91324
logFC, log(fold change).
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Fig. 4. Kaplan‒Meier OS curves of four ICI-related genes. (A) LINC01871. (B) LINC01281. (C) CXCL13. (D) IGKJ5. Patients
with high expression of ICI-related genes showed a good prognosis (red curves), while patients with low expression of ICI-related genes
showed a poor prognosis (blue curves).

than in the high-risk group (Fig. 6C). The heatmap exhibited
the enrichment of the immune features of the patients in the
high-risk and low-risk groups correspondingly (Fig. 6D).
Based on these results, the high-risk and low-risk groups
exhibited significantly different ICI phenotypes. Patients
with low risk scores showed an immune-inflamed pheno-
type with a large number of immune cell infiltrates, while
patients with high risk scores showed an immune desert
phenotype with less immune infiltration. These findings in-
dicated that the risk score was closely related to the TIME
and may play an important role in immunotherapy.

3.4 Association between the Risk Score and
Immunotherapy

In this study, we analysed ICB-related genes and
inflammation-related genes to assess tolerance and im-
munoreactivity in patients with different risk scores
(Fig. 7A). Almost all genes were significantly upregulated
in patients with a low risk score, except for TBX2 and TNF.
These results imply that patients with a low risk score have
better tolerability and immunoreactivity. To further reveal

the potential role of the risk score in the ICB treatment of
UCEC patients, we examined the correlation between the
six key ICB genes and the risk score and drew pie charts
(Fig. 7B). We found that the expression of all six genes
was significantly negatively correlated with the risk score
(Fig. 7C–H). These results suggest that the risk score may
play an important role in predicting the response to ICB
treatment in UCEC patients.

Two subtypes of IPS, IPS-PD1-positive and IPS-
CTLA4-positive, were used as proxies for immunother-
apy response in UCEC patients to assess the effect of im-
munotherapy predicted by risk scores (Fig. 7I–L). Our re-
sults showed that the IPS-CTLA4 and PD1 blockade score,
IPS-CTLA4 blockade score, IPS-PD1 blockade score, and
IPS score were significantly higher in the low-risk group.
This indicates that patients with low risk scores are more
suitable for immunotherapy.

3.5 Construction of the Prognostic Nomogram

We constructed a nomogram to predict the 1-, 3-, and
5-year OS of UCEC samples using the risk score and age
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Fig. 5. Evaluation of the ICI-related prognostic model. (A) Distribution of the risk score for each patient. (B) Survival status for each
patient. Red points correspond to surviving patients, and blue points correspond to deceased patients. (C) Survival analysis between
patients with different risk scores. (D) Risk score in different molecular subgroups. (E) Risk score in different clinical stages. (F) Risk
score in the surviving and deceased groups. (G) Risk score in different age groups. *p < 0.05; **p < 0.01; ****p < 0.0001; ns, not
significant.

(Fig. 8A). To validate the performance of the prognostic
nomogram, we plotted calibration curves (Fig. 8B–D). Fur-
thermore, we drew an ROC curve to further evaluate the
constructed prognostic model, and the area under curve
(AUC) values of 1-, 3-, and 5-year OS were 0.642, 0.658,
and 0.716, respectively (Fig. 8E). These results indicate that
the model had high sensitivity and specificity.

3.6 Potential Association between the Risk Scores and
Tumour Mutation Burden

It has been reported that high levels of TMB are asso-
ciated with high infiltration of CD8+ T cells [22]. CD8+
T cells recognize tumour neoantigens and induce an im-
mune response to destroy tumour cells. Therefore, TMB
may serve as a prognostic factor for the effectiveness of
the response to antitumour immunotherapy. In our study,
we assessed the TMB levels in patients with both low and
high risk scores and found that patients with a low risk score
had a higher TMB (Fig. 9A). Additionally, our correlation

analysis revealed a significant negative correlation between
TMB and the risk score (Fig. 9B), indicating that a lower
risk scoremay be associatedwith higher TMB and thus with
a better response to antitumour immunotherapy.

Then, we divided the patients into two groups based on
their TMB levels. Kaplan‒Meier survival analysis showed
that patients with high TMB had a greater probability of
survival (Fig. 9C). To further assess the prognostic value of
the risk score and TMB, we evaluated the synergistic effect
of these two factors in predicting the survival of patients
with UCEC (Fig. 9D). Patients with both a high TMB and
low risk score exhibited the best survival probability, while
patients with a low TMB and high risk score had the worst
survival probability. These findings suggest that the risk
score may serve as an independent prognostic factor and
may be utilized to predict the clinical outcome of antitu-
mour immunotherapy.

We also analysed the distribution of mutations be-
tween the low- and high-risk groups. The integrated so-
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Fig. 6. Association between the risk score and TIME characteristics. (A) Immune cell infiltrating abundances in the low- and high-
risk score groups. (B) Differences in stromal score, immune score, and ESTIMATE score between the low- and high-risk score groups.
(C) Difference in immune functions between the low- and high-risk score groups. (D) Heatmap of immune cell infiltrating abundances
between the low- and high-risk score groups. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns, not significant; TIME, tumour
immune microenvironment.

matic mutation landscape was used to visualize the muta-
tion patterns of the top 20 most frequently mutated driver
genes (Fig. 9E,F). The mutation profile of significantly mu-
tated genes showed a higher mutation rate of TP53 (41% vs.
33%) in the high-risk group and a higher mutation rate of
TTN (49% vs. 27%) and KMT2D (35% vs. 18%) in the
low-risk group. These findings provide deeper insight into
the intrinsic link between the risk score and somatic muta-
tions in UCEC immunotherapy.

4. Discussion
Endometrial cancer is a prevalent morbidity and ma-

lignant tumour in females. Its occurrence and development
are regulated by various mechanisms, many of which are
related to the TME [23]. The high heterogeneity of tumour
microenvironmental phenotypes and cancer cell genotypes
leads to different clinical treatment sensitivities and distinct
clinical outcomes. Therefore, we need to seek a new treat-
ment strategy to increase host antitumour immunity during
esophageal cancer (EC) treatment. Immune-based antitu-
mour therapy has made significant breakthroughs in a va-
riety of cancers [24], and studies have demonstrated that
infiltrating immune cells have an important impact on tu-

mour progression and antitumour immunity [25,26]. This
study aimed to analyse the immune microenvironment of
UCEC through omics data and construct the first ICI-related
prognostic model to monitor the prognosis and response to
immunotherapy in UCEC patients.

Previous studies have shown that the level of immune
cells associated with immune activation affects the clinical
outcome of immunotherapy [27,28]. This study verified
that the prognosis of UCEC is related to the immune mi-
croenvironment and found that patients with high levels of
CD8+ T cells and regulatory T cells have a better survival.
Furthermore, the immune microenvironment of UCEC can
be divided into two different types: immune-inflamed phe-
notype and immune-desert phenotype. We can calculate the
immune scores of different phenotypes to predict the prog-
nosis of UCEC. This is the first study to establish immune
microenvironment typing of UCEC, which is expected to
be used in immunotherapy.

This study divided the 539 samples into two groups
with distinct immune phenotypes. The K-M curves showed
that ICI Cluster B had better OS than ICI Cluster A, al-
though this difference was not statistically significant. This
may be due to the limitation of the sample size. ICI Clus-
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Fig. 7. Correlation of risk score with immunotherapy. (A) Differences in the expression levels of ICB-relevant genes (CD274,
PDCD1LG2, PDCD1, CTLA4, IDO1, and HAVCR2) and inflammation-related genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG,
PRF1, TBX2, and TNF) between the low- and high-risk score groups. (B–H) Correlation between the risk score and immune check
inhibitors. (I–L) Difference in the IPS score between the low- and high-risk score groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p
< 0.0001; ns, not significant.

ter B had high levels of multiple immune cells, including
CD8+ T cells, regulatory T cells, activated state CD4+ T
cells, follicular helper T cells, and M1 macrophages, with
high stromal and immune scores. These scores have been
reported to be significantly correlated with antitumour im-
mune status [18]. Therefore, we defined ICI Cluster B as
an immune-inflamed phenotype. However, we defined ICI
Cluster A as an immune-desert phenotype, with low stromal
and immune scores.

In addition, we calculated the DEGs between ICI
Cluster B and ICI Cluster A to obtain ICI-related genes.
The results of the GO enrichment analysis based on the
DEGs were mainly related to the immune response, demon-
strating that the DEGs are associated with immunother-
apy. We then constructed a prognostic model to calculate
the risk score of UCEC patients based on four ICI-related
genes (LINC01871, LINC01281, CXCL13, and IGKJ5). K-
M survival analysis showed that the expression of the four
genes was significantly associated with a longer survival
time. LINC01871 has been used to predict the prognosis
of various cancers, including breast cancer, cervical can-

cer, and endometrial cancer [29–31]. Guihai Zhang et al.
[32] identified 4 lncRNAs, including LINC01281, to pre-
dict the prognosis of laryngeal cancer. Jing Ye et al. [33]
reported that cervical cancer patients with high levels of
LINC01281 had better survival. Many studies have shown
that CXCL13 is related to prognosis. For example, Lian-
gliang Liao et al. [34] identified three prognostic mark-
ers, including CXCL13, in colon adenocarcinoma (COAD).
Sidsel C Lindgaard et al. [35] reported that CXCL13, to-
gether with IL-6, PDCD1, and TNFRSF12A, can be used to
discriminate patients with OS <90 days from those with
OS >2 years in advanced pancreatic ductal adenocarci-
noma (AUC = 0.97). IGKJ5 had not been previously re-
ported, suggesting that it may be a new prognostic marker
for UCEC.

For the first time, we constructed an ICI-related prog-
nostic model for UCEC and calculated the risk score us-
ing the gene expression levels. The risk score is not only
related to survival time but also closely related to the im-
mune microenvironment, which may guide the efficacy of
immunotherapy. To explore the role of the risk score, we
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Fig. 8. Evaluation of the risk score in prognosis. (A) A nomogram was constructed using age and risk score to predict the OS of UCEC
patients. (B) 1-year nomogram calibration curves. (C) 3-year nomogram calibration curves. (D) 5-year nomogram calibration curves.
(E) ROC curves for 1-, 3-, and 5-year survival. OS, overall survival; UCEC, uterine corpus endometrial carcinoma; ROC, receiver
operating characteristic; AUC, area under curve.

divided the patients into low- and high-risk groups using
the median score as the cut-off. We observed that the low-
risk group had better survival, indicating that the risk score
may serve as a prognostic marker. We also compared the
ICI patterns between the two groups, and the results showed
that the low-risk group had a high stromal score, immune
score and almost all immune-relevant signatures. These
findings suggest that the low-risk groupmay be an immune-
inflamed phenotype, and the risk score may serve as an im-
munosuppressive indicator. Moreover, we discovered that
the risk score was significantly and negatively correlated
with the expression of six ICB-related genes, indicating that
patients with a low risk score might be more sensitive to
immunotherapy. The immunophenoscore analysis showed

that the low-risk score group had statistically higher IPS-
CTLA4 and PD1 scores, suggesting that patients with a low
risk score had a better response to CTLA4 and PD1 therapy.
These findings signify that the risk score might serve as a
powerful prognostic tool for UCEC patients.

Endometrial cancer can be effectively cured when di-
agnosed at an early stage. However, the treatment options
become limited once the cancer reaches an advanced or
metastatic stage. Tumours with high mutation rates and
mismatch repair deficiency (dMMR) are more responsive
to immunotherapy likely due to the increased expression of
neoantigens that can be recognized by the immune system.
Recent clinical studies have shown that immune checkpoint
inhibitors, such as PD-1/PD-L1 inhibitors, have a signifi-
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Fig. 9. Correlation between the risk score and TMB. (A) Difference in TMB between the low- and high-risk score groups. (B)
Scatterplots depicting the negative correlation between risk score and TMB. (C) Survival analyses for patients with low and high TMB
using K-M curves. (D) Survival analyses for patients stratified by both the risk score and TMB using K-M curves. The waterfall plot of
tumour somatic mutations was constructed using the high-risk score (E) and low-risk score (F). ****p< 0.0001. TMB, tumour mutation
burden.

cant effect on chemotherapy-resistant metastatic EC, espe-
cially in tumours with dMMR [36–38]. However, the re-
lationship between tumour cell mutations and the immune
microenvironment in immunotherapy is not yet clear. In
this study, we aimed to establish an appropriate evalua-
tion system for the TIME and develop a prognostic model.
Our results showed that the POLE andMSI-H subtypes had
lower risk scores, indicating that patients with the POLE
andMSI-H subtypes may be more suitable for immunother-
apy, while those with the CNH type had the highest risk
score. These patients may require combination therapy for
better treatment outcomes. These results were consistent
with the molecular typing of endometrial cancer, where tu-
mours with high mutation rates had the lowest risk score for
ICI, indicating the potential for effective immunotherapy
[38]. Our findings may aid in the clinical decision-making
process for immunotherapy, but further experimental and
clinical validation is needed.

Tumourmutation burden has been reported to be a pre-
dictive indicator of sensitivity to antitumour immunother-
apy in various studies [39,40]. We calculated the TMB
using somatic mutation data, and the results showed that
TMB was significantly and negatively correlated with the
risk score. Patients with a high TMB had better survival
in UCEC, which was consistent with previous reports [41].
The synergistic effect of the TMB and risk score showed
that patients with low risk scores and a high TMB had the
best survival. All the above results demonstrate that the
prognostic model may predict the benefit of immunother-
apy in UCEC.

5. Conclusions
In conclusion, 539 UCEC samples were classified into

two ICI patterns. Different ICI patterns had a distinct im-
mune microenvironment, so we defined them as “immune-
inflamed” and “immune-desert” phenotypes. Moreover, we
established an ICI-related prognostic model to predict the
prognosis of UCEC patients based on the DEGs between
the two ICI patterns. The correlation between the risk score
and expression of ICB genes was used to estimate the treat-
ment effect of UCEC patients. Finally, we demonstrated the
synergistic effect between the risk score and TMB in pre-
dicting prognosis. The ICI-related prognostic model needs
further experimental verification and is expected to be used
to direct precision immunotherapeutic strategies.
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