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Abstract

Background: The coronary no-reflow (NR) phenomenon is an independent predictor of major adverse cardiac events (MACEs). This
study aimed to establish a clinical and comprehensive nomogram for predicting NR in acute myocardial infarction (AMI) patients after
primary percutaneous coronary intervention (pPCI).Methods: The multivariable logistic regression analysis was performed to determine
the NR-related factors. A nomogram was established via several clinical and biochemical factors, and the performance was evaluated
via discrimination, calibration, and clinical factors. Results: The study consisted of 3041 AMI patients after pPCI, including 2129
patients in the training set (70%) and 912 patients in the validation set (30%). The NR event was 238 in the training set and 87 in the
validation set. The level of N-terminal prohormone B-type natriuretic peptide (NT-proBNP), basophil count (BASO), neutrophil count
(NEUBC), D-dimer, hemoglobin (Hb), and red blood cell distribution width (RDW.CV) in NR patients showed statistically significant
differences. In the training set, the C-index was 0.712, 95% CI 0.677 to 0.748. In the validation set, the C-index was 0.663, 95% CI 0.604
to 0.722. Conclusions: A nomogram that may predict NR in AMI patients undergoing pPCI was established and validated. We hope this
nomogram can be used for NR risk assessment and clinical decision-making and significantly prevent potentially impaired reperfusion
associated with NR.

Keywords: no-reflow (NR); acute myocardial infarction (AMI); primary percutaneous coronary intervention (pPCI); prediction nomo-
gram

1. Introduction
Assessing coronary flow is the top priority after it

has been verified that there is no residual stenosis follow-
ing primary percutaneous coronary intervention (pPCI) for
an acute myocardial infarction (AMI). Many of the well-
known risk factors associated with the no-reflow (NR) phe-
nomenon are common risk factors for cardiovascular dis-
eases, such as smoking, hypertension, dyslipidemia, dia-
betes, and hemodynamic instability [1–3]. However, there
is no general consensus on the correct prevention and man-
agement of NR. Recently, the application of clinical mod-
els to predict outcomes has received increased attention in
healthcare and medical research [4]. The models have the
potential to significantly improve the accuracy of predict-
ing cardiovascular risk following various interventions [5].
However, almost no predictive nomogram model has fo-
cused on coronary flow in AMI patients. In this study, we
constructed an integrated and comprehensive nomogram
model composed of demographics, medical history, and
biochemical features and assessed the discrimination and
calibration of a developed model of the NR phenomenon in

AMI patients after pPCI in an attempt to identify and poten-
tially prevent impaired reperfusion as quickly as possible.

2. Methods
2.1 Study Design

This was a single-center, retrospective, observational
study. From January 2016 to December 2021, consecu-
tive AMI patients admitted to the cardiology department
of Xi’an Jiaotong University First Affiliated Hospital were
enrolled. The inclusion criteria included a confirmed diag-
nosis of AMI, which was defined according to the electro-
cardiograms (ECGs), blood tests, and coronary angiogra-
phy, according to the American College of Cardiology [6].
The exclusion criteria were (1) severe systemic disease, in-
cluding but not limited to shock, cardiac arrest, malignant
arrhythmias, coma, malignant tumor, respiratory failure re-
quiring ventilatory support, renal failure requiring urgent
dialysis, and bacterial sepsis with hemodynamic instability;
(2) unwillingness to participate; (3) the patient was over the
age of 75 years.
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Fig. 1. Data analysis workflow. AMI, acute myocardial infarction; PCI, percutaneous coronary intervention; ROC, receiver operator
characteristic; DCA, decision curve analysis; AUC, area under the curve.

Medical records were collected from the Biobank
Xi’an Jiaotong University First Affiliated Hospital. Written
informed consent was obtained from all participants with
ethical committee approval from the First Affiliated Hos-
pital of Xi’an Jiaotong University, and the study was con-
ducted in accordance with the Declaration of Helsinki.

2.2 Clinical Data Collection
Detailed medical histories were collected from the ad-

mitted patients. Demographic (age, sex), medical history
(hypertension, diabetes mellitus), and biochemical mark-
ers (routine blood tests, basic metabolic panel, and coag-
ulation function studies) were evaluated immediately after
the patient’s admission to the hospital and prior to percuta-
neous coronary intervention (PCI). NR was defined as the
absence of effective myocardial tissue perfusion after coro-
nary artery recanalization (thrombolysis in myocardial in-
farction (TIMI) flow grade = 0) without obvious spasm, dis-
section, and residual stenosis [7]. Every patient suspected
of coronary artery spasm received an intracoronary injec-
tion of nitroprusside/nitroglycerin to determine whether the
spasm persisted and altered blood flow. According to the
angiographic studies, two cardiologists defined NR after
pPCI independently.

2.3 Development and Assessment of the Nomogram
Demographics, medical history, and biochemical

markers were evaluated using univariable logistic regres-

sion. Variables with p < 0.2 after the univariable logistic
analyses were included in the multivariable logistic analy-
sis with three selection procedures (forward, backward, and
stepwise) and nomogram construction. The score formula
for total points was calculated from the nomogram system.
The nomogram was used to formulate the best-fit regres-
sion model with the minimum Akaike’s information crite-
rion. Receiver operator characteristic (ROC) curve analy-
sis was used to evaluate the nomogram performance predic-
tion. The calibration of the nomogramwas assessed via cal-
ibration curves, and its goodness-of-fit was evaluated by the
Hosmer–Lemeshow test. A decision curve analysis (DCA)
was used to assess the clinical usefulness of the nomogram.

2.4 Statistical Analysis
R software (version 4.2.1, R Foundation for Statisti-

cal Computing, Vienna, Austria) with caret, rms, pROC,
calibrate, rmda, and dca packages was used to perform all
statistical analyses. Continuous variables were translated
into categorical variables according to the standard normal
range. All count data were expressed as rate (%). Univari-
ate logistic regression and multivariate logistic regression
were used to select risk factors.

A p-value < 0.05 was considered statistically signifi-
cant.
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Table 1. Clinical characteristics of the patients selected as predictors for the nomogram.
Training set Validation set

Level All Reflow No reflow p value All Reflow No reflow p value
(0 = no, 1 = yes) n = 2129 n = 1891 n = 238 n = 912 n = 825 n = 87

Smoking (N (%)) 0 904 (42.5) 789 (41.7) 115 (48.3) 0.061 382 (41.9) 342 (41.5) 40 (46.0) 0.485
1 1225 (57.5) 1102 (58.3) 123 (51.7) 530 (58.1) 483 (58.5) 47 (54.0)

NT-proBNP (median [IQR]) 9.38 [7.63, 11.06] 9.29 [7.49, 10.88] 10.37 [8.54, 12.23] <0.001 9.34 [7.43, 10.93] 9.22 [7.34, 10.86] 10.45 [8.76, 11.78] <0.001
UA (N (%)) 0 1830 (86.0) 1643 (86.9) 187 (78.6) 0.001 779 (85.4) 710 (86.1) 69 (79.3) 0.124

1 299 (14.0) 248 (13.1) 51 (21.4) 133 (14.6) 115 (13.9) 18 (20.7)
Ccr (N (%)) 0 1937 (91.0) 1743 (92.2) 194 (81.5) <0.001 832 (91.2) 758 (91.9) 74 (85.1) 0.050

1 192 (9.0) 148 (7.8) 44 (18.5) 80 (8.8) 67 (8.1) 13 (14.9)
TSH (N (%)) 0 1994 (93.7) 1775 (93.9) 219 (92.0) 0.336 871 (95.5) 790 (95.8) 81 (93.1) 0.387

1 135 (6.3) 116 (6.1) 19 (8.0) 41 (4.5) 35 (4.2) 6 (6.9)
Hb (N (%)) 0 1955 (91.8) 1764 (93.3) 191 (80.3) <0.001 858 (94.1) 785 (95.2) 73 (83.9) <0.001

1 174 (8.2) 127 (6.7) 47 (19.7) 54 (5.9) 40 (4.8) 14 (16.1)
D-dimer (N (%)) 0 1658 (77.9) 1510 (79.9) 148 (62.2) <0.001 696 (76.3) 639 (77.5) 57 (65.5) 0.018

1 471 (22.1) 381 (20.1) 90 (37.8) 216 (23.7) 186 (22.5) 30 (34.5)
PT (N (%)) 0 34 (1.6) 33 (1.7) 1 (0.4) 0.207 17 (1.9) 16 (1.9) 1 (1.1) 0.919

1 2095 (98.4) 1858 (98.3) 237 (99.6) 895 (98.1) 809 (98.1) 86 (98.9)
TT (N (%)) 0 1911 (89.8) 1692 (89.5) 219 (92.0) 0.269 801 (87.8) 720 (87.3) 81 (93.1) 0.159

1 218 (10.2) 199 (10.5) 19 (8.0) 111 (12.2) 105 (12.7) 6 (6.9)
BASO (N (%)) 0 2110 (99.1) 1879 (99.4) 231 (97.1) 0.001 904 (99.1) 818 (99.2) 86 (98.9) 0.001

1 19 (0.9) 12 (0.6) 7 (2.9) 8 (0.9) 7 (0.8) 1 (1.1)
NEUBC (N (%)) 0 862 (40.5) 738 (39.0) 124 (52.1) <0.001 338 (37.1) 300 (36.4) 38 (43.7) 0.22

1 1267 (59.5) 1153 (61.0) 114 (47.9) 574 (62.9) 525 (63.6) 49 (56.3)
MONBC (N (%)) 0 1704 (80.0) 1521 (80.4) 183 (76.9) 0.229 710 (77.9) 651 (78.9) 59 (67.8) 0.025

1 425 (20.0) 370 (19.6) 55 (23.1) 202 (22.1) 174 (21.1) 28 (32.2)
RDW.CV (N (%)) 0 2037 (95.7) 1826 (96.6) 211 (88.7) <0.001 867 (95.1) 787 (95.4) 80 (92.0) 0.251

1 92 (4.3) 65 (3.4) 27 (11.3) 45 (4.9) 38 (4.6) 7 (8.0)
MCHC (N (%)) 0 2021 (94.9) 1789 (94.6) 232 (97.5) 0.081 850 (93.2) 764 (92.6) 86 (98.9) 0.048

1 108 (5.1) 102 (5.4) 6 (2.5) 62 (6.8) 61 (7.4) 1 (1.1)
NT-proBNP, N-terminal prohormone B-type natriuretic peptide; Ccr, creatinine; TSH, thyroid stimulating hormone; Hb, hemoglobin; PT, prothrombin time; TT, thrombin time; BASO, basophil count; NEUBC,
neutrophil count; MONBC, monocyte count; RDW.CV, red blood cell distribution width; MCHC, mean corpuscular hemoglobin concentration; UA, uric acid; N, the value of percentage; n, numbers; IQR,
interquartile range.
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Table 2. Selected variables as predictors for the nomogram according to the multivariable logistic analysis.

Variables
Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

NT-proBNP 1.25 1.18–1.33 <0.001 1.14 1.58–1.82 <0.001
UA 1.81 1.29–2.53 <0.001 1.3 1.14–2.52 0.19
Ccr 2.67 1.85–3.86 <0.001 1.53 1.18–2.89 0.06
TSH 1.33 0.8–2.2 0.27 0.99 0.67–1.93 0.97
Hb 3.42 2.37–4.93 <0.001 1.7 0.01–0.02 0.02
D-dimer 2.31 1.72–3.03 <0.001 1.82 2.29–4.38 <0.001
PT 4.21 0.57–30.84 0.16 3.11 0.1–5.31 0.27
TT 0.74 0.45–1.21 0.23 0.73 2.57–7.29 0.23
BASO 4.74 1.85–12.18 <0.001 4.34 0.2–1.4 <0.001
NEUBC 0.59 0.45–0.77 <0.001 0.53 0.91–1.69 <0.001
MONBC 1.24 0.9–1.7 0.2 1.26 1.58–3.26 0.21
RDW.CV 3.59 2.25–5.75 <0.001 2.22 0.36–1.05 <0.001
MCHC 0.45 0.2–1.05 0.06 0.61 0.72–4.01 0.25
Smoking 0.77 0.58–1 0.05 0.93 0.85–1.53 0.60
NT-proBNP, N-terminal prohormone B-type natriuretic peptide; Ccr, creatinine;
TSH, thyroid stimulating hormone; Hb, hemoglobin; PT, prothrombin time; TT,
thrombin time; BASO, basophil count; NEUBC, neutrophil count; MONBC,
monocyte count; RDW.CV, red blood cell distribution width; MCHC, mean cor-
puscular hemoglobin concentration; UA, uric acid; OR, odds ratio; CI, confidence
interval.

3. Results
3.1 General Characteristics

The study consisted of 3041 AMI patients who under-
went PCI. These patients were divided into the training set
(2129 (70.0%) and the validation set (912 (30.0%)) (Fig. 1).
The clinical data, including medical history, examination,
laboratory data, and information on cardiac angiographic
procedures, are summarized in Supplementary Table 1.
The clinical factors for predictors used in the nomogram
are included in Table 1. The mean age was 62 in the train-
ing set and 62 in the validation set. Males accounted for
80.4% and 80.6% in the training and validation set, respec-
tively. A total of 1626 (76.4%) were diagnosed with acute
ST-segment elevated myocardial infarction (STEMI) in the
training set and 699 (76.6%) in the validation set. In the
two sets, 557 and 270 patients suffered from anterior, 370
and 168 patients from inferior posterior, 343 and 133 pa-
tients from high lateral, and 356 and 128 patients from in-
ferior wall and right ventricle MI (Supplementary Table
1). The NR event was 238 in the training set and 87 in the
validation set. The level of N-terminal prohormone B-type
natriuretic peptide (NT-proBNP), creatinine (Ccr), basophil
count (BASO), hemoglobin (Hb), and D-dimer in NR pa-
tients was statistically significantly different in the reflow
group both in the training set and validation set (Table 1).

3.2 Nomogram Construction

From the multivariate analyses with three selection
procedures (stepwise, forward, and backward), we obtained
the best-fit model, which contains 14 variables from the

backward selection process (Fig. 2). Among these vari-
ables, NT-proBNP (OR 1.25, 95% CI 1.18 to 1.33, p =
0.003), Hb (OR 3.42, 95% CI 2.37 to 4.93, p = 0.015), D-
dimer (OR 2.31, 95% CI 1.72 to 3.03, p < 0.001), BASO
(OR 4.74, 95% CI 1.85 to 12.18, p = 0.003), neutrophil
count (NEUBC) (OR 0.59, 95%CI 0.45 to 0.77, p< 0.001),
and red blood cell distribution width (RDW.CV) (OR 3.59,
95% CI 2.25 to 5.75, p = 0.003) were independently as-
sociated with NR after pPCI (Table 2). This nomogram is
displayed in Fig. 2. The nomogram formula, which could
be used to calculate the total point, is as follows:

score = 7.14 × proBNP + 23.99 × Ccr + 33.84 × D-
dimer + 63.89× PT – 17.90× TT + 82.54× BASO –35.90
×NEUBC+ 13.10×MONBC+44.78×RDW.CV– 28.22
×MCHC+ 29.92×Hb – 0.60×TSH+ 14.77×UA+ 4.35
× smoking + 65.28

3.3 Evaluation of the Nomogram

The C-index in the training set was 0.712, indicat-
ing that the prediction model was valuable in clinical prac-
tice (Fig. 3A). The p-value of the Hosmer–Lemeshow test
was 0.211 (>0.05), reflecting a good prediction accuracy.
Fig. 4A displays the ROC curve (area under the curve, AUC
= 0.712, 95% CI 0.677 to 0.748). The DCA curve for the
training set is shown in Fig. 5A, suggesting that the nomo-
gram could provide an overall net benefit for predicting NR
after pPCI.

In the validation set, the C-index was 0.663. Fig. 3B
shows the calibration curve. Fig. 4B shows the ROC curve
of the validation set (AUC 0.663, 95% CI 0.604 to 0.722).
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Fig. 2. The nomogram for the prediction of reflow in AMI patients after PCI. proBNP, prohormone B-type natriuretic peptide; Ccr,
creatinine; PT, prothrombin time; TT, thrombin time; BASO, basophil count; NEUBC, neutrophil count; MONBC, monocyte count;
RDW.CV, red blood cell distribution width; MCHC, mean corpuscular hemoglobin concentration; Hb, hemoglobin; UA, uric acid; TSH,
thyroid stimulating hormone; AMI, acute myocardial infarction; PCI, percutaneous coronary intervention. The value “1” stands for above
the standard normal range, and “0” means in the standard normal range.

Fig. 3. The calibration curves of the nomogram for the training set (A) and the validation set (B). AUC, area under the curve.

The DCA curve is displayed in Fig. 5B. These results sug-
gest that the nomogram had acceptable discrimination and
prediction accuracy in the validation set.

4. Discussion
This study developed a prediction model for the NR

phenomenon in AMI patients after pPCI. Using this clinical
nomogram, eight significant predictors were screened. We
found that impaired cardiac and renal function, increased

uric acid (UA) and thyroid stimulating hormone (TSH) lev-
els, a hypercoagulable state, and abnormal blood cell counts
were predictors of no-reflow.

The pathophysiology of the NR phenomenon is not
fully understood, and various mechanisms have been sug-
gested to explain this phenomenon. In an experimen-
tal study, neutrophil accumulation, coagulation cascade,
and reactive oxygen species-induced endothelial dysfunc-
tion were observed to increase microvascular constric-
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Fig. 4. The receiver operating characteristic (ROC) curves of the nomogram for the training set (A) and the validation set (B).
AUC, area under the curve.

Fig. 5. The decision curve analysis for the risk model for the training set (A) and the validation set (B).

tion [8]. In addition, diabetes, hypercholesterolemia,
metabolic dysfunction, and increased reperfusion injury
were noted in animal models by augmenting endothelial
oxidative stress [9]. Furthermore, certain medications,
such as sodium-dependent glucose transporters 2 (SGLT2)
inhibitors, were observed to modulate microcirculation
through anti-inflammatory effects, potentially enhancing
outcomes for AMI patients [10]. Noteworthy studies in type
2 diabetes mellitus (T2DM) individuals with AMI demon-
strated that SGLT2 inhibitors reduced the risk of adverse
cardiovascular events during both index hospitalization and
long-term follow-up [11]. Interestingly, these inhibitors
exhibited a capacity to mitigate in-stent restenosis-related
events post-AMI [12], possibly through pleiotropic effects

on coronary fibrous cap thickness, consequently reducing
major adverse cardiac events (MACEs) in higher-risk pa-
tients [13].

Apart from the above “classic” metabolic risk factors,
a few novel factors may also play significant roles in NR.
Increased UA levels, which represent the end product of
purine metabolism, are associated with increased mortality
in AMI patients [14]. Yildiz et al. [15] found that elevated
UA levels were an independent predictor for insufficient
coronary blood flow in patients during normal coronary
angiography (0% stenosis), indicating that impaired coro-
nary microvascular regulation may cause NR. Our nomo-
gram further demonstrated that increased UA may account
for NR, most likely due to an increased inflammatory re-
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sponse [16]. Elevated TSH levels, which are associated
with hypothyroidism and decreased thyroid hormone lev-
els, were also shown to be predictive of NR in this model.
This suggests that decreased thyroid metabolism and cat-
echolamine levels manifested by elevated TSH feedback
may affect coronary blood flow in AMI patients.

The coagulation system is vital in the occurrence and
progression of thrombosis in AMI [17]. Both increased pro-
thrombin time (PT) andD-dimer levels were observed in the
NR group, while thrombin time was decreased, all of which
contribute to a hypercoagulable state in NR. Several studies
showed increased serum D-dimer levels, which reflects the
activation of the coagulation system resulting in thrombosis
[18,19] and serves as an indirect prediction of the throm-
botic mass size available for fibrinolysis [20], indirectly re-
flecting the size of thrombus formation [21]. D-dimer lev-
els are significantly higher in patients treated within 12 h of
symptom onset and with higher TIMI thrombus scores [22].
The thrombus burden leading to vascular emboli plays an
important role in the pathophysiology of NR after primary
PCI and occurs in half of the MI patients.

Several easily calculated hematological indices, in-
cluding the NEUBC, red blood cell distribution width,
mean platelet volume (MPV), neutrophil–lymphocyte ra-
tio (NLR), platelet–lymphocyte ratio (PLR), and RDW–
platelet ratio (RPR), is of prognostic value in STEMI [23]
and may be associated with the pathogenesis of NR. In
our nomogram, NR was associated with increased BASO,
RDWCV, and MONBC and decreased NEUBC, MCHC,
and Hb. Increased RDW.CV represents reduced erythro-
cyte deformability, which may cause microvascular blood
flow resistance, and has been shown to be an indepen-
dent predictor of coronary thrombus burden [24,25]. Sim-
ilar to our results, Chang et al. [26] found that RDW.CV
was also an independent predictor for long-term MACEs
in STEMI patients after pPCI. The association of increased
hypersensitive C-reactive protein (hs-CRP) and RDW.CV
levels in NR [27] suggest that inflammatory and oxidative
stress could be one of the mechanical factors that links ele-
vated RDW.CV and NR by damaging the vessel wall [28].
In addition to decreased hemoglobin concentrations seen
in our model, RDW.CV levels seen in anemia predict an
even worse outcome in patients with acute coronary syn-
dromes [29] and are a potential risk factor for NR [30].
Additionally, increased circulating monocytes could induce
the production of chemotactic factors, such as monocyte-
chemoattractant-protein-1 (MCP-1) and interleukin-8 (IL-
8), which induce the expression of tissue factors, superox-
ide anions, and exerts prothrombotic effects [31]. Further-
more, mechanical obstruction of the microvasculature af-
ter monocyte-induced neutrophil accumulation might also
contribute to the occurrence of NR [32].

In contemporary healthcare and medical research,
there has been a discernible surge in interest in applying
clinical predictive models [4]. Supervised learning has
emerged as a particularly apt approach for tasks charac-

terized by well-defined objectives, given its amenability to
facile quantification through diverse metrics, thereby facil-
itating the straightforward evaluation of accuracy and ef-
ficacy [33,34]. Reinforcement learning (RL) [35], charac-
terized by its adaptive nature, can accommodate dynamic
and evolving environments, rendering it well-suited for sce-
narios where optimal strategies may undergo temporal evo-
lution. Furthermore, RL exhibits the advantage of being
trainable in simulated environments, thereby mitigating the
reliance on extensive real-world datasets [36]. The prospec-
tive utilization of these machine learning models in fu-
ture research holds potential for discerning predictors, con-
structing expansive and diversified patient models, and en-
hancing accuracy in cardiovascular risk prediction [5].

The nomogram can become a simple and intuitive
mathematical model [37]. After calculating the predicted
risk and relative scores, patients with a point score of 322
would have a more than 50% possibility of developing se-
vere NR. A higher score indicates the need for intensive
care, hemodynamic monitoring, and immediate evaluation
of patients to prevent potentially impaired reperfusion.

Our study has several limitations that need to be ac-
knowledged. First, being a single-center study, the cohort
samples might only represent the population of west China.
To enhance the generalizability of our findings, we plan
to conduct an additional validation assessment in a multi-
center study. Second, we observed relatively low C-index
and AUC values in the validation set. We intend to enlarge
the sample size and explore alternativemodeling techniques
to address this in future studies. Since our focus in this study
was primarily on biomedical parameters, we did not assess
the correlation between NR and other factors such as crimi-
nal vessels, balloon-to-door time, or the use of glycoprotein
IIb/IIIa inhibitors. Moreover, we recognize the need for
detailed information on PCI and angiographic procedures
in future research to gain a comprehensive understanding.
Lastly, TIMI flow grade was the primary “standard” assess-
ment for NR in this study. In future studies, we plan to ex-
pand our evaluation by incorporating other criteria, includ-
ing corrected thrombolysis in myocardial infarction frame
count (CTFC) and myocardial blush grade (MBG) assess-
ment, and explore different deep learning models, to deter-
mine better predictors and provide a more comprehensive
analysis of NR.

5. Conclusions
In conclusion, a nomogram to predict the no-reflow

phenomenon in AMI patients after pPCI was developed and
validated in west China. We hope this nomogram can be
used for NR risk assessment and clinical decision-making
in AMI patients, which may more rapidly prevent poten-
tially impaired reperfusion associated with NR following
PCI during an AMI.
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