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Abstract

Background: This study aims to identify biomarkers through the analysis of genomic data, with the goal of understanding the potential
immunemechanisms underpinning the association between sleep deprivation (SD) and the progression of COVID-19. Methods: Datasets
derived from the Gene Expression Omnibus (GEO) were employed, in conjunction with a differential gene expression analysis, and
several machine learning methodologies, including models of Random Forest, Support Vector Machine, and Least Absolute Shrinkage
and Selection Operator (LASSO) regression. The molecular underpinnings of the identified biomarkers were further elucidated through
Gene Set Enrichment Analysis (GSEA) and AUCell scoring. Results: In the research, 41 shared differentially expressed genes (DEGs)
were identified, these were associated with the severity of COVID-19 and SD. Utilizing LASSO and SVM-RFE, nine optimal feature
genes were selected, four of which demonstrated high diagnostic potential for severe COVID-19. The gene CD160, exhibiting the
highest diagnostic value, was linked to CD8+ T cell exhaustion and the biological pathway of ribosome biosynthesis. Conclusions: This
research suggests that biomarkers CD160, QPCT, SIGLEC17P, and SLC22A4 could serve as potential diagnostic tools for SD-related
severe COVID-19. The substantial association of CD160 with both CD8+ T cell exhaustion and ribosomal biogenesis highlights its
potential pivotal role in the pathogenesis and progression of COVID-19.
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1. Introduction
The COVID-19 pandemic represents an unparalleled

worldwide health emergency, profoundly impacting popu-
lations worldwide with an alarming surge in infections and
fatalities (https://coronavirus.jhu.edu/map.html). This cri-
sis presents monumental challenges to healthcare systems,
economies, and social structures. While most individuals
experiencemild symptoms, approximately 20%develop se-
vere symptoms [1–3]. Severe COVID-19 is typically char-
acterized by severe respiratory dis-tress, multi-organ fail-
ure, acute respiratory distress syndrome (ARDS), and pneu-
monia. Among them, ARDS emerges as one of the prevail-
ing and consequential outcomes in severe cases of COVID-
19 infection, leading to damaged alveoli, fluid accumula-
tion in the lungs, and impaired gas exchange, resulting in
severe respiratory distress and hypoxemia. Severe COVID-
19 can also lead to multi-organ failure, particularly affect-
ing vital organs such as the kidneys and heart, which can be
life-threatening [4]. Although the precise mechanisms un-
derlying the progression of COVID-19 are yet to be com-
pletely comprehended, traditional risk factors such as older
age (>60 years), smoking, heart disease, diabetes, obe-
sity, HIV/AIDS, and cancer are associated with the highest
risk of severe COVID-19 [5–7]. It has been revealed that

severe COVID-19 is attributed to immune dysregulation,
leading to persistent viral presence, lung injury, acute res-
piratory distress syndrome, and systemic inflammation [8],
rather than a beneficial antiviral immune response to the in-
fection. Therefore, the management and control of severe
COVID-19 require attention to immune system modulation
and restoration.

In modern society, short sleep duration and sleep de-
privation (SD) have become common trends. With ex-
tended working hours, the quality of sleep has declined,
becoming a global health issue. Extensive evidence sug-
gests that inadequate sleep (less than 6 hours per night)
and chronic sleep deprivation are closely associated with
chronic diseases, viral infections, overall health status, and
mortality rates [9–15]. Research indicates that people who
experience subpar sleep quality have an increased vulnera-
bility to SARS-CoV-2 infection than those who enjoy supe-
rior sleep quality [16–20]. Obstructive sleep apnea (OSA),
the predominant sleep-associated respiratory condition, re-
sults in recurrent arousals and ensuing sleep deficiency.
Numerous studies have demonstrated the association be-
tween OSA and adverse outcomes of COVID-19, particu-
larly with ICU admission, mechanical ventilation, and mor-
tality rates [21–23]. SD elevates the likelihood of expe-
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riencing severe COVID-19, and may result in endocrine
disruption, excessive activation of inflammatory cytokines,
and immune system imbalance [18,24]. This process ex-
acerbates the dysregulation of the hypothalamic-pituitary-
adrenal (HPA) axis, subsequently triggering an elevation in
cortisol secretion, which in turn impairs immune function,
culminating in a diminished immune response [25]. Within
the immune system, CD8+ T cells, as integral immunoreg-
ulatory cells, play an indispensable role in the recognition
and eradication of viral infections [26,27]. Sleep depri-
vation may perturb the functionality and redistribution of
these cells within the body, thereby indirectly attenuating
the immune response to COVID-19 and escalating the risk
of severe disease manifestation. This molecular-level un-
derstanding not only offers a novel perspective in elucidat-
ing the correlation between sleep quality and the severity of
COVID-19, but also highlights the imperative of incorpo-
rating sleep management into public health strategies.

In the field of bioinformatics, gene microarray and
RNA sequencing (RNA-seq) are two important biotech-
nologies used for studying gene expression. Each of them
has its own advantages and disadvantages. Gene microar-
ray technology has matured over the years and has a wealth
of tools and algorithms for processing and analyzing mi-
croarray data. On the other hand, RNA sequencing is highly
sensitive and can detect all transcripts, including newly dis-
covered transcripts, genes, and non-coding RNA. By com-
bining these two types of data, the quality of the data and
gene expression can be more accurately assessed. Genomic
data are widely used to aids in pinpointing crucial genes
and distinguishing signal cascades implicated in the pro-
gression of COVID-19. This approach facilitates a more
profound understanding of the cellular and molecular pro-
cesses at play. The latest bioinformatics research has un-
veiled those genes such as PLK1, CDC6, and KIF2C, along
with their associated immune pathways, could potentially
serve as therapeutic targets for COVID-19 within the pe-
ripheral blood mononuclear cells (PBMCs) of subjects af-
flicted with SARS coronavirus 2. However, there is cur-
rently no reported analysis of gene expression data regard-
ing the interplay between SD and the severity of COVID-
19. It is worth noting that long-term SD can lead to in-
creased levels of inflammatory activity markers and abnor-
mal immune cell counts, which is consistent with observa-
tions in future populations at risk of developing viral dis-
eases. Therefore, it is crucial to evaluate and determine the
differences in immune cell pro-portions to reveal the po-
tential mechanisms underlying the association between SD
and the severity of COVID-19.

Our study leverages publicly available databases to
obtain whole-genome data from Peripheral BloodMononu-
clear Cells (PBMC), facilitating the uncovering of co-
expressed differentially expressed genes (co-DEGs) in SD
and COVID-19 cases. We employ LASSO and SVM-RFE
machine learning techniques to identify biomarkers affili-

ated with severe COVID-19 diagnosis in the context of SD.
Furthermore, we utilize the CIBERSORT algorithm and
single-cell sequencing analysis to investigate the interrela-
tion between these diagnostic biomarkers and the constitu-
tion of immune cells. Lastly, GSEA was utilized for GO
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
annotations on the differential analysis results to better un-
derstand the potential immunological reactions between SD
and severe COVID-19.

2. Materials and Methods
2.1 Data Source

Utilizing “Coronavirus COVID-19” and “Sleep De-
privation” as primary keywords, we meticulously searched
the Gene Expression Omnibus (GEO) and Human Cell
Atlas (HCA)databases to procure relevant datasets [28,
29]. To ensure the integrity and robustness of our data,
we exclusively selected high-throughput datasets featur-
ing over 50 COVID-19 patients. The datasets incor-
porated into our study include GSE215865, GSE37667,
and GSE213313 from the GEO database, along with the
EGAD00001007959 dataset from the HCA. The datasets
utilized in this study have been summarized in a table (Ta-
ble 1).

Table 1. The datasets utilized in this study along with their
thorough and detailed information.

Dataset Type Size Platform

GSE215865 RNA-seq 266 GPL24676
GSE213313 Microarray 83 GPL21185
EGAD00001007959 CITE-seq 228 GPL24676
GSE37667 Microarray 18 GPL570

Gene symbols in the GSE37667 and GSE213313
datasets were converted from probes according to the probe
annotation files in each dataset. Gene symbols in the
GSE215865 dataset were converted using the gene anno-
tation file for GRCh38 (Human). Subsequently, we em-
ployed the “limma” package in R for normalizing the ex-
pression matrix, thereby generating a Normalized gene ex-
pression matrix [30]. The workflow diagram of this study
is illustrated in a schematic diagram (Fig. 1).

2.2 Selection and Functional Enrichment Analysis of
DEGs

In our research, we leveraged the “limma” package,
effective for large datasets and suitable for chip and RNA-
seq data, to detect DEGs in severe COVID-19 and SD sam-
ples. Recognizing the nuanced gene expression variations
in sleep deprivation, we defined significant DEGs with a
p-value < 0.05 and fold change (FC) >1.5. Visualization
tools, such as a volcano plot and heatmaps, illustrate DEGs
distribution and gene expression. Enrichment analysis, em-
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Fig. 1. The workflow diagram of this study was adopted for the identification and subsequent validation of diagnostic biomarkers
specific to severe COVID-19 related to SD.DEG, Differentially Expressed Genes; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; SD, sleep deprivation.

ploying the “clusterProfiler” package [31], was conducted
for GO and KEGG pathway analyses. Gene set function
and interaction analysis was performed with GeneMANIA,
which identifies related genes using diverse functional as-
sociation data, including protein/genetic interactions, path-
ways, co-expression, co-localization, and domain similar-
ity, providing a detailed view of gene relationships and
functions [32]. Results from the Gene Set Enrichment
Analysis (GSEA) were analyzed based on set thresholds of
p-value < 0.05, and five pathways were selected for visu-
alization from each enriched result set.

2.3 Diagnostic Biomarker Identification

The study seeks to identify crucial diagnostic
biomarkers that distinguish between non-severe and
severe COVID-19 patients. The “glmnet” and “e1071”
packages are used to execute Least Absolute Shrinkage
and Selection Operator (LASSO) regression analysis and
Support Vector Machine Recursive Feature Elimination
(SVM-RFE) analysis. LASSO regression reduces predic-
tion errors through k-fold cross-validation, pushing certain
regression coefficients to zero and including only non-zero
coefficients in the final model. SVM-RFE is a sequential
backward selection algorithm that scores each feature,

removes the lowest scoring feature, and retrains the model
in each iteration, ultimately selecting the necessary number
of features. The biomarkers identified by both algorithms
were visualized with Venn diagrams.

2.4 Assessing the Diagnostic Value of Severe COVID-19
Biomarkers

We conducted Receiver Operating Characteristic
(ROC) curve analysis on all datasets using the “pROC”
package and displayed the results by the same package
to evaluate the accuracy and diagnostic capability of the
biomarkers [33].

2.5 Investigation of Immune Cell Infiltration

Cell type scores for each sample in the GSE215865
dataset were sourced from the Mount Sinai COVID-
19 Biobank (https://www.synapse.org/). These cell type
scores were computed using Transcripts Per Million (TPM)
as input, in accordance with the procedures suggested by
CIBERSORT, and measurements from all technical repli-
cates were amalgamated when calculating batch control
sample TPMs. The reference signature matrix LM22
employed contains comprehensive RNA-seq data from
PBMCs.
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In R, we employed the CIBERSORT package (version
0.1.0) and conducted 1000 permutations to ascertain the
relative enrichment level of specific immune cell popula-
tions in each sample within the GSE213313 and GSE37667
datasets [34]. This was achieved by referencing immune
cells in the LM22 gene signature to estimate the relative
abundance of 22 lymphocyte subtypes in each sample. To
compare the proportion differences of immune cells in sam-
ples from different groups, we performed a Wilcoxon test
on the abundance of 22 immune cells across various sample
groups.

2.6 Single-Cell RNA Sequencing (scRNA-seq) Data
Generation, Quality Control, and Filtering

The cell annotation table, which includes quality con-
trol metrics and cell type in-formation, was gathered from
the original publication. We excluded cells with low-
complexity libraries (cells where transcripts aligned with
fewer than 200 genes), cells that are likely dead or apop-
totic (with over 15% of transcripts coming from mitochon-
dria), and cells with high-complexity libraries (cells where
transcripts aligned with more than 6500 genes). Through
this rigorous filtering process, we ensured the high quality
of the selected cells, ultimately obtaining 68,395 cells for
subsequent analysis.

2.7 Unsupervised Cell Clustering and Subclustering
Analysis

After eliminating mitochondrial and ribosomal genes
that could interfere with cell clustering analysis, we used
the Python library SCANPY to screen for 2000 highly vari-
able genes (HVGs) [35], which will be used for further
clustering analysis. Subsequently, we employed scvi-tools
(single-cell variational inference tools) to create a Varia-
tional Autoencoder (VAE) model instance targeted at all
CD8+ T cells [36]. This toolkit is highly effective in end-
to-end analysis of single-cell omics data, particularly adept
at addressing library size and batch effect issues in single-
cell RNA sequencing. This model has two hidden layers,
30 latent variables, and assumes that the gene expression
data follows a negative binomial distribution.

We leveraged this pre-established scVI model as a ro-
bust initial starting point to expedite the training of subse-
quent SCANVI models. This enabled us to carry out more
detailed subclustering analysis to identify differing tran-
scriptional states within major cell types.

3. Results
3.1 Identification of DEGs

Fig. 1 depicts the comprehensive data processing
workflow utilized in our study. We employed the voom-
limma process to identify DEGs between the non-severe
and severe COVID-19 cohorts. Additionally, in the SD
dataset, we also performed screening between healthy in-
dividuals and SD patients. Volcano plots and heatmaps

were used to visually demonstrate the distribution of differ-
ences (Fig. 2A,B and Supplementary Table 1). From the
GSE215865 dataset of COVID-19 samples, we identified
3313 upregulated DEGs. In the GSE37667 dataset of SD
samples, we identified 34 upregulated DEGs (Fig. 2C). Fur-
thermore, we identified 3270 downregulated DEGs from
the GSE215865 dataset of COVID-19 samples and 68
downregulated DEGs from the GSE37667 dataset of SD
samples (Fig. 2C).

3.2 GO KEGG and GeneMANIA Analysis

Our research identified 41 common DEGs by in-
tersecting sets of upregulated and downregulated genes.
To understand the biological roles and characteristics of
these DEGs, we conducted GO analysis and KEGG path-
way enrichment analysis. The GO analysis indicated that
these genes are primarily involved in biological processes
like “leukocyte-mediated immune response”, are predom-
inantly localized to the “cytoplasmic vesicle lumen”, and
are enriched in the molecular function of “carbohydrate
binding” (Fig. 3A). KEGG pathway analysis suggested
that these DEGs are associated with pathways such as
“NK cell-mediated cytotoxicity” (Fig. 3B). The output
from GeneMANIA includes the functions of related core
genes and their interactions, all of which are associated
with specific aspects of the immune system, particularly
lymphocyte-mediated immune responses and cellular cyto-
toxicity (Fig. 3C). Furthermore, they are all closely related
to the CD160 gene.

3.3 Identification of Diagnostic Biomarkers

To evaluate the potential of differentially expressed
genes (DEGs) as diagnostic biomarkers between the se-
vere and non-severe COVID-19 cohorts, we employed two
different machine learning strategies, LASSO and SVM-
RFE, using the GSE215865 dataset. Firstly, we applied
the LASSO logistic regression algorithm to the 41 com-
monly identified DEGs after parameter tuning and cross-
validation, resulting in the selection of 10 COVID-19-
related feature genes (Fig. 4A,B). Subsequently, we em-
ployed the SVM-RFE algorithm to further screen the 41
DEGs, ultimately identifying 25 genes as-sociated with
COVID-19 (Fig. 4C). Through the comprehensive anal-
ysis of these two machine learning algorithms, we fi-
nally determined 9 optimal feature genes (CD160, KLRB1,
LSM7, LIPT1, MYADM, QPCT, SIGLEC17P, SLC22A4,
and ZNF32) (Fig. 4D). Given the high sensitivity of second-
generation sequencing data, in order to build a more accu-
rate diagnostic model in chip data, we decided to further re-
duce feature genes. We selected the four most significantly
different feature genes (CD160, QPCT, SIGLEC17P, and
SLC22A4) for model construction, and performed a differ-
ential analysis of the transcription levels of these four genes.
in the validation set (Fig. 4E and Supplementary Fig. 1).
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Fig. 2. This interpretation focuses on DEGs related to severe COVID-19 and SD. (A) The GSE215865 dataset, visualized via volcano
plot and heatmap, displays 6583 DEGs from COVID-19 Peripheral Blood Mononuclear Cells (PBMC) samples, with 3313 up-regulated
and 3270 down-regulated genes. (B) The GSE37667 dataset, likewise presented, unveils 102 DEGs in SD PBMC samples, comprising 34
up-regulated and 68 down-regulated genes. (C) A Venn diagram reveals 10 concurrently up-regulated and 31 mutually down-regulated
genes in both datasets, indicating molecular correlation between the conditions.
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Fig. 3. SD-related severe COVID-19 for functional enrichment analysis. (A) Shared targets are analyzed via Gene Ontology (GO).
(B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment evaluates these common targets. (C) The analysis of GeneMANIA
results revealed the functions and interactions of core genes.

3.4 Confirmation of Diagnostic Biomarkers

Upon the analysis and establishment of models using
LASSO regression and SVM-RFE algorithms, we calcu-
lated the risk score for each sample based on the diagnostic
results and logCPM values: Risk Score = [(–0.68974068)
× logCPM values of CD160] + [(–0.18536128)× logCPM
values of SIGLEC17P] + [(0.48630619) × logCPM values
ofQPCT] + [(0.58664717)× logCPMvalues of SLC22A4].
ROC analysis indicated that these four biomarkers exhib-

ited strong diagnostic performance in COVID-19 samples,
with an area under the curve (AUC) of 0.824 (95% CI:
0.770–0.874) for CD160, 0.738 (95% CI: 0.676–0.797)
for SIGLEC17P, 0.694 (95% CI: 0.629–0.755) for QPCT,
and 0.792 (95% CI: 0.736–0.846) for SLC22A4 (Fig. 5A).
In terms of risk score, the GSE215865 dataset demon-
strated high discriminative capability with an AUC of 0.857
(95%CI: 0.809–0.900) (Fig. 5B). To confirm the diagnostic
value of these four biomarkers, we utilized the GSE213313
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Fig. 4. Machine learning algorithms used for gene identification. (A,B) Coefficient profile plot of Least Absolute Shrinkage and
Selection Operator (LASSO) regression and deviance plot from cross-validation. (C) Support Vector Machine - Recursive Feature
Elimination (SVM-RFE) selects and visualizes biomarkers. (D) Genes identified by both methods. (E) Differential analysis of DEGs in
the GSE213313 validation set. All gene significances marked: *p < 0.05; **p < 0.01; ***p < 0.001.

dataset, and the results showed robust diagnostic capabili-
ties for the feature biomarkers (AUC 0.756, 95%CI: 0.646–
0.854) (Fig. 5B). A heatmap generated from a risk score-
based model showcased the model’s high sensitivity and
specificity, highlighting its potential use in COVID-19 sce-
narios (Fig. 5C).

3.5 Immune Cell Infiltration in COVID-19 Samples

Utilizing the GSE215865 dataset and deconvolution
of the immune cell subtype expression matrix, our study
investigates the diversity among immune cell subtypes in
COVID-19, offering a broad view of the immune response
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Fig. 5. The discernment and predictive power of the SD related severe COVID-19 diagnostic biomarker model. (A) In the
GSE215865 dataset, the diagnostic performance of biomarkers is exhibited. (B) The risk score model demonstrates distinguishing capa-
bilities for severe COVID-19 in two datasets. (C) Unsupervised clustering analysis confirms the consistency of the model across the two
datasets.

in this context. In the severe COVID-19 group, the pro-
portions of monocytes, resting memory, CD8+ T cells,
CD4+ T cells, T follicular helper cells, resting NK cells,
resting mast cells, and M1 macrophages were significantly
reduced, while the proportions of neutrophils, memory B
cells, and M0 macrophages were notably increased as op-
posed to the non-severe COVID-19 group (Fig. 6A). The
heatmap displays the layout of immune cells between the
two groups (Fig. 6B), and the bar chart, exposes the vari-
ations in the abundance of immune cells between the non-
severe and severe COVID-19 groups (Fig. 6C). These find-
ings offer new perspectives on the immune response mech-
anisms associated with COVID-19.

3.6 Confirmation of Immune Cell Infiltration
The study confirms shared characteristics of immune

cell distribution between SD and severe COVID-19 sam-
ples using the GSE213313 dataset. It was observed that
in the severe COVID-19 group, the fractions of CD8+
T cells and resting memory CD4+ T cells were substan-
tially lesser, whereas the proportion of neutrophils was
higher (Fig. 7A,B). This result aligns with findings from
the GSE215865 dataset. Further CIBERSORT analysis on
the GSE37667 dataset highlighted a significant notable in
the proportion of CD8+ T cells in the SD group versus the
healthy control group (Fig. 7C,D). These observations sug-
gest that immune cells, especially CD8+ T cells, could play
a vital role in the pathological processes induced by SD.
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Fig. 6. Differences in the distribution of immune cells in severe and non-severe cases in the GSE215865 dataset. (A) Box plot
illustrates the differential analysis of relative abundance of immune cells. (B) Heatmap depicts the distribution of 22 types of immune
cells. (C) Bar chart detailing the abundance of these 22 types of immune cells is provided. Statistically significant differences are denoted
as follows: *p < 0.05; **p < 0.01; ***p < 0.001.

3.7 Co-Relation between Diagnostic Biomarkers and
Immune Cell Types

Next, this study found a positive link between CD160
and CD8+ T cells in the GSE215865 dataset, emphasizing
the need for additional research. Consistent changes were
also observed in the GSE213313 and GSE37667 datasets.
Moreover, in the investigation of expression correlation,
CD160 showed a positive link with the genes of most im-
mune checkpoint markers (Supplementary Fig. 2). To fur-

ther validate our hypothesis, we conducted in-depth analy-
sis of large-scale single-cell data from the patients afflicted
with COVID-19. The results revealed thatCD160 showed a
significant increase in expression in CD8+ T cells and NK
cells. In contrast, the expression of QPCT, SIGLEC17P,
and SLC22A4 did not show a similar trend (Fig. 8A–D).
These findings suggest a crucial role of CD160 in the regu-
lation of CD8+ T cells during the SD-induced COVID-19
process.
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Fig. 7. Differences in the distribution of immune cells in the GSE213313 dataset and GSE37667 dataset. (A,C) box plot illustrates
the differential analysis of relative abundance of immune cells. (B,D) heatmap depicts the distribution of 22 types of immune cells.
Statistically significant differences are denoted as follows: *p < 0.05; **p < 0.01.

3.8 The Role of CD160 in CD8+ Effector T Cells

Further analysis aims to elucidate the potential func-
tional mechanisms of CD160 in CD8+ T cells. Moreover,
through quality-controlled clustering of CD8+ T cells, we
identified ten subgroups of CD8+ T cells (Fig. 9A–C). Sub-
sequently, we scored each cell subgroup using a curated
gene set representing T-cell functionality (Supplementary
Table 2) and, in combination with marker genes for each
cell cluster (Supplementary Table 3), categorized CD8+
T cells into five major types: Effector T cells, Tis-sue-
Resident Memory T cells, Stress-Responsive cells, Tran-
sitional Effector T cells, and Naive T cells. We found that

CD160 exhibited the highest correlation with T-cell exhaus-
tion and was primarily expressed in CD8+ Effector T cells
(Fig. 9D–G). There-fore, we speculate that CD160 may
play a significant role in CD8+ T cells through pathways
associated with exhaustion.

3.9 CD160 and COVID-19-Related Immune Pathways
To delve deeper into the immune pathways linkedwith

CD160 in COVID-19 samples, we conducted pathway en-
richment analysis on the gene set exhibiting high CD160
expression (Supplementary Table 4 and Supplementary
Table 5). From the GO biological process results, we noted
a positive correlation between CD160 and the T cell re-
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Fig. 8. The expression level ofCD160 is correlated with the enrichment of immune cells in the GSE215865 dataset andGSE213313
dataset and GSE37667 dataset. (A,B) The GSE215865 dataset and GSE213313 dataset and GSE37667 dataset reveals a correlation
between CD160 expression levels and CD8+ T cell levels. (C) Distribution of biological diagnostic markers in immune cells. (D)
Distribution of different immune cell types.
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Fig. 9. Molecular Landscape of CD160 in CD8+ T Cells. (A) The Uniform Manifold Approximation and Projection (UMAP) view of
10 CD8+ T cell clusters. (B) Heatmap illustrating the expression of 18 curated gene signatures across CD8+ T cell clusters. The heat
map was generated based on the scaled gene signature scores. (C) Marker gene expression across defined T cell clusters. The bubble
size is proportional to the percentage of cells expressing a gene, and the color intensity is proportional to average scaled gene expression.
(D) Based on the expression of 18 curated gene sets and marker genes in CD8+ T cell clusters, T cells are categorized into: Effector
T cells, Native-like T cells, Resident Memory T cells, Stress Response T cells, Transitional Effector T cells, and Unknown. (E) The
heatmap depicts the expression characteristics of the 18 curated gene path-ways in six cell populations within CD8+ T cell clusters:
Effector T cells, Native-like T cells, Resident Memory T cells, Stress Response T cells, Transitional Effector T cells, and Unknown. (F)
The distribution of CD160 across the six cell populations. (G) The correlation of CD160 with Exhaustion.
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ceptor signaling pathway as well as ribosome biogenesis
(Fig. 10A). This implies a prospective role of CD160 in
the regulation of T cell signal transduction and intracellular
protein synthesis processes. In the cellular component re-
sults, we found a positive correlation between CD160 and
T cell receptor complex, cytoplasmic ribosome, and plasma
membrane receptor complex, suggesting the potential role
of CD160 in the assembly or functional regulation of these
cellular structures (Fig. 10B). In the molecular function re-
sults, we discovered a positive correlation between CD160
and MHC protein complex binding and ribosomal struc-
tural constituents, further indicating the potential impor-
tance of CD160 in immune responses and protein synthe-
sis (Fig. 10C). Additionally, in the KEGG pathway analy-
sis results, we found a positive correlation between CD160
and IgA production, ribosome, and cell adhesion molecule
path-ways, suggesting its potential involvement in immune
processes and cell interactions related to these pathways
(Fig. 10D). These results provide insights into the poten-
tial immune pathways ofCD160 in COVID-19 samples and
offer important clues for further unraveling its biological
functions.

3.10 Role of CD160 in Ribosome-Related Signaling
Pathways

Numerous studies have indicated the impact of viral
infections on the ribosome [37]. COVID-19, an illness in-
duced by the RNA virus SARS-CoV-2, depends on the host
cell’s ribosome for protein synthesis. The ribosome is a
complex composed of multiple subunits that function to
translate mRNA into proteins. During the process of cel-
lular growth and development, ribosome biogenesis plays a
crucial role as the biological process responsible for gener-
ating ribosomes [38]. Therefore, we investigated the cor-
relation between CD160 and genes involved in the ribo-
some and its biogenesis pathways, obtained from theKEGG
database. The results depicted in pathwaymap show a close
correlation between CD160 and genes encoding small sub-
unit proteins (such as L2, S20e, L23Ae) and large subunit
proteins (such as S5e, S23e, L30e, L7Ae) involved in pro-
tein synthesis processes and functional regulation and sig-
naling transduction in the ribosome (Fig. 11A,B). Further-
more, another pathway map displays a significant correla-
tion between CD160 and genes involved in the formation
of pre-90s ribosome components (such as CK2A, UTP22,
Rrp7), rRNA modification (such as NOP1, SUN13, DKC1,
NHP2, GAR1), and splicing-related genes (such as UTP24,
Rnt1, EMG1, Bms1, KRE33) during ribosome biogenesis
(Fig. 11C,D).

3.11 Functional Analysis of CD160

Our study thoroughly examines the role of CD160
in COVID-19 progression, utilizing 266 samples from the
GSE215865 dataset. Based on CD160’s median expres-
sion, samples were divided into two groups, leading to the

identification of 3403 upregulated and 2619 downregulated
genes (Fig. 12A,B and Supplementary Table 6). Further
GO and KEGG analyses demonstrated a significant associ-
ation betweenCD160 expression and T cell receptor signal-
ing pathway regulation, implying CD160’s potential influ-
ence on the immune response to COVID-19 and its possible
therapeutic value (Fig. 12C,D). The research enriches the
understanding of COVID-19’s molecular mechanisms and
lays a foundation for future studies.

4. Discussion
Recent studies suggest that there might be intercon-

nections between different diseases, making the explo-
ration of these relationships a crucial area for future re-
search [39,40]. COVID-19, a respiratory illness caused
by the SARS-CoV-2 virus, is primarily transmitted through
droplets and contact [41]. Symptoms following infection
include fever, cough, shortness of breath, and in severe
cases, it can lead to pneumonia, respiratory failure, multi-
organ damage, and even death [41,42]. Sleep plays a cru-
cial role in maintaining the dynamic balance of the human
immune system, while SD could disrupt the function of im-
mune cells, increasing susceptibility to diseases [19,28,43].
Therefore, the identification of biological markers related
to SD in COVID-19, and the analysis of their association
with immune cell enrichment is of great importance for im-
proving the prognosis of COVID-19.

In this research, utilizing the GSE215865 dataset,
we pinpointed 6583 DEGs be-tween non-severe and se-
vere COVID-19 PBMC samples. Additionally, from the
GSE37667 dataset, we identified 102 DEGs between SD
and healthy control PBMC samples. From these, we pin-
pointed 41 common DEGs between severe COVID-19 and
SD. Through LASSO and SVM-RFE analysis, we short-
listed CD160, SIGLEC17P, QPCT, SLC22A4, and vali-
dated their diagnostic potential as biomarkers using ROC
analysis and predictive modeling. Applying the CIBER-
SORT algorithm, we discovered a de-crease in CD8+ T
cells in both severe COVID-19 and SD samples, mirror-
ing the change in the diagnostic biomarker CD160. Im-
portantly, according to our findings, there was a signif-
icant positive association between CD160 and CD8+ T
cells, and CD160 also correlated positively with genes as-
sociated with most immune checkpoint markers. We per-
formed GSEA analysis based on GO and KEGG pathways
on the gene set exhibiting high CD160 expression. From
the GO database, considering biological processes, cellular
components, and molecular functions, we discovered that
CD160 was positively correlated with T cell receptor sig-
naling pathways and ribosome biosynthesis, T cell recep-
tor complexes, plasma membrane receptor complexes, and
cytoplasmic ribosomes, as well as MHC protein complex
binding and ribosomal structural constituents. In the KEGG
database, we found CD160 positively associated with the
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Fig. 10. CD160 and COVID-19-related immune pathways. (A–C) Gene Set Enrichment Analysis (GSEA) analysis of Biological
Process (BP), Cellular Component (CC), and Molecular Function (MF) pathways related to DEGs with high CD160 expression in the
Gene Ontology (GO) database. (D) GSEA enrichment analysis of pathways associated with DEGs displaying high CD160 expression in
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

cellular network of IgA production, ribosome, cell adhesion
molecules, and various metabolic, signaling, and biological
pathways.

We also performed single gene GO and KEGG anal-
ysis for CD160, revealing a strong correlation between
DEGs in low and high expression samples of CD160 and
T cell receptor signaling pathways, particularly in the reg-
ulation of T cell activation responses. These samples were
categorized based on median cut-off values. Previous re-
search indicates that cancer, developmental disorders, and
viral infections can affect ribosome production [40–42,44].
COVID-19 is an illness triggered by the SARS-CoV-2
virus, an RNA virus that depends on the ribosomes of the
host cell for its protein production [38,45,46]. Thus, we
investigated the relationship between CD160 and genes in-

volved in ribosomal synthesis in the KEGG database. The
results showed a high correlation between CD160 and ribo-
some function in protein synthesis and signal transduction.
To further substantiate our hypothesis, we conducted an in-
depth analysis of large-scale single-cell data from COVID-
19 patients. Throughout our comprehensive analysis, we
observed a notable overexpression of CD160 in both CD8+
T cells and Natural Killer (NK) cells, with a particularly
elevated expression level in the effector subpopulation of
CD8+ T cells. Importantly, through a correlation analy-
sis focused on T cell functionality, CD160 displayed a ro-
bust association with T cell exhaustion. This immunologi-
cal state of T cell exhaustion has garnered increasing atten-
tion in recent years due to its critical role in chronic inflam-
mation and cancer therapy. Against this backdrop, the pro-
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Fig. 11. CD160’s role in ribosome-related pathways. (A) Ribosome signaling network from KEGG. (B) Heatmap illustrating the
gene expression within the ribosome pathway, stratified by levels of CD160 expression. (C) Ribosome synthesis signaling network from
KEGG. (D) Heatmap illustrating the gene expression within the ribosome synthesis pathway, stratified by levels of CD160 expression.

nounced correlation between CD160 and T cell exhaustion
emerges as a pivotal link connecting short-term sleep depri-
vation to COVID-19. This connection undeniably enriches
our nuanced understanding of the underlying mechanisms
driving both medical conditions.

Blood cells constitute a diverse array of immune
cells, forming the first line of defense against infectious
and pathogenic microorganisms. The SD and COVID-19
samples used in this study were derived from peripheral
blood. Hence, our objective was to explore the poten-

tial of mRNA samples in PBMCs as diagnostic biomark-
ers for SD-associated severe COVID-19. PBMCs repre-
sent an intrinsic circulating cell population, and cytokine
storms constitute an inflammatory characteristic mecha-
nism of PBMCs [47]. Rapid deterioration and high mor-
tality risks associated with COVID-19 are primarily linked
to cytokine storms [48]. Notably, numerous long non-
coding RNAs (lncRNAs) can control cytokine transcrip-
tion [49–51]. Recent transcriptomic studies on PBMCs
from COVID-19 patients indicate markedly elevated ex-
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Fig. 12. Single-gene analysis and enrichment results of CD160. (A) Volcano plot illustrates the significantly differentially expressed
genes between samples with high and lowCD160 expression. (B) Heatmap displays the gene expression conditions between samples with
high and low CD160 expression. (C) KEGG enrichment analysis of differentially expressed genes. (D) Gene Ontology (GO) enrichment
analysis of differentially expressed genes.

pression levels of lncRNA-NEAT1 and lncRNA-TUG1 in
patients with severe COVID-19 [52]. In vivo, lncRNA-
NEAT1 participates in the activation and polarization of
macrophages and T cells [53,54], while lncRNA-TUG1
participates inmacrophage cell cycle regulation and inflam-
matory response modulation [55]. These functions could
potentially influence disease progression.

Recent longitudinal analysis has shown that in severe
COVID-19 cases, there is a consistent elevation of IFN-α
levels in the peripheral blood [56]. This heightened type
I interferon response contributes to the excessive inflam-
mation observed in the progression of severe COVID-19

through various mechanisms [57]. Additionally, circulating
biomarkers are crucial for detecting and managing COVID-
19, and they are significantly involved with immune cells
such as NK cells, macrophages, and CD8+ T cells [58].
In our study, we have identified a set of genes, including
CD160,QPCT, SIGLEC17P, and SLC22A4, as potential di-
agnostic biomarkers for severe COVID-19 associated with
sleep deprivation (SD). Our findings also underscore the
critical role of immune cells, especially CD8+ T cells, in the
progression of the disease. Thus, from a clinical perspec-
tive, these diagnostic biomarkers and their pathway associ-
ations serve as valuable indicators for forecasting the clini-
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cal progression and anti-inflammatory treatment responses
in COVID-19 patients. Their assessment through PBMCs
expression profiling in COVID-19 patients could positively
impact clinical management and therapy choices, aiding in
COVID-19 treatment and offering insights into the biolog-
ical mechanisms of severe COVID-19 linked to SD.

Changes in lifestyle and behavioral patterns in mod-
ern society have led to a significant reduction in sleep du-
ration. Reports suggest that short-term SD can trigger en-
docrine disruption and alterations in the balance of the im-
mune system, resulting in a decreased immune defense and
increased susceptibility to pathogen infection [43]. An ani-
mal study found that sleep and circadian rhythm disruptions
can increase the risk of respiratory infections in mice [59].
Furthermore, clinical studies involving healthcare workers
have shown that each additional hour of sleep can lower
the susceptibility to SARS-CoV-2 infection by 12%, while
those with severe sleep difficulties have an 88% elevated
likelihood of contracting SARS-CoV-2 [60]. SD exerts a
strong modulatory effect on peripheral inflammation levels
of immune responses, rendering the body incapable of ef-
fectively combating pathogen attacks, thus increasing the
risk of infection and disease [61].

Elevated levels of proinflammatory cytokines TNF-
α and IL-6 correlate with in-sufficient sleep duration, and
these are also observed at elevated circulating levels in
COVID-19 patients, particularly in those with severe con-
ditions [62–65]. High levels of these pro-inflammatory cy-
tokines can lead to inflammatory cell death, triggering pro-
cesses such as pyroptosis, apoptosis, and necrosis [66]. As
a primary source of pro-inflammatory cytokines, monocyte
expression levels are regulated by the circadian rhythm [67–
69]. In sleep-deprived populations, blood CD8+, CD4+,
and CD3+ T cell counts are seen to decrease [70]. Stud-
ies have pointed out that, compared to healthy controls,
COVID-19 patients show a significant decrease in total
lymphocyte and CD8+, CD4+, and CD3+ T cells, and NK
cells [71,72].

The increase in circulating neutrophils and the de-
crease in lymphocytes are also consideredmarkers of severe
COVID-19 [50,73,74]. This aligns with our findings in SD
and COVID-19 samples. SD exerts deleterious effects on
the immune system, characterized by immune system dys-
regulation and changes in the dispersion of immune cells
in the peripheral circulation. In SD patients, abnormal acti-
vation and release of various immune cells and factors may
lead to an overactive and reactive immune system, resulting
in a cytokine storm.

In the context of this immune dysregulation, if the in-
dividual becomes infected with COVID-19, an excessive
release of inflammatory cytokines could lead to a systemic
inflammatory response, ultimately increasing the risk of se-
vere adverse events associated with COVID-19.

In our research, the diagnostic biomarkers CD160,
QPCT, SIGLEC17P, and SLC22A4 have been identified

as part of the gene set associated with SD-related se-
vere COVID-19. CD160 is a glycosylphosphatidylinosi-
tol (GPI)-anchored cell surface glycoprotein, with an ex-
tracellular domain belonging to the immunoglobulin su-
perfamily (IgSF). It is observed in multiple immune cell
species, including CD8+ T cells, CD4+ T cells, intraep-
ithelial lymphocytes, NK cells, andNKT cells [75–77]. The
two CD160 isoforms, through IgSF, bind with low-affinity
MHC class Imolecules and high-affinity TNF receptor fam-
ilymember HVEM, participating in the regulation of T cells
and NK cells’ activation and proliferation [78–80]. CD160
has been noted to be engaged in the progression of cer-
tain pathologies, including autoimmune diseases, inflam-
matory diseases, and viral infections. For example, cross-
linking of HLA-C with CD160 can induce CD8+ T cells
and activate NK cells’ cytotoxicity and cytokine produc-
tion, thereby promoting antiviral immune responses [74–
76]. SIGLEC17P is an antigen predominantly found on
NK cells, belonging to the transmembrane receptor fam-
ily that binds sialic acid-containing ligands, and primarily
functions within the immune system by regulating gene ex-
pression to affect cell functions [81]. CD8+ T cells and
NK cells have significant contributions in the pathogene-
sis of COVID-19, as they secrete various pro-inflammatory
cytokines in immune responses [72]. In severe COVID-19
cases, however, the activity and number of CD8+ T cells
and NK cells are suppressed, and the precise mechanisms
underlying these clinical manifestations remain unclear.

SARS-CoV-2 is a pathogen that has led to a global
pandemic, making the study of the relationship between
sleep deprivation (SD) and the progression of COVID-19
infection highly significant. Our research has discovered
that in severe COVID-19 cases associated with SD, the
downregulation ofCD160 and SIGLEC17P expressionmay
alter the distribution of immune cells, leading to dysfunc-
tions in NK cells and CD8+ T cells, thereby disrupting
normal immune functions and affecting disease prognosis.
These findings provide new insights into the pathogenesis
of SD-related COVID-19 and underscore the need for fur-
ther in vivo and in vitro experiments to validate this hypoth-
esis and to investigate the relationship between impaired
immune cell functions and the pathophysiological mecha-
nisms of severe SD-associated COVID-19.

Our study offers invaluable insights into the relation-
ship between sleep deprivation (SD) and COVID-19, mark-
ing the first investigation into molecular biomarkers in
blood samples associated with severe COVID-19 related to
SD. The research also uncovered a specific gene, such as
CD160, and its correlation with the severity of COVID-19
and its connection to sleep deprivation. This direct associa-
tion of a particular genewith the disease state is a significant
novel discovery, providing new biomarkers for understand-
ing and treating COVID-19.

Despite the valuable insights bioinformatics brings to
the study of SD-associated severe COVID-19, we acknowl-
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edge certain unavoidable limitations in our current research.
Firstly, the sample size incorporated into the study was rel-
atively limited (GSE37667) enrolling only nine individu-
als, which may lead to instability in the results, particularly
in studies involving complex diseases. Secondly, due to
the heterogeneity between different experimental platforms
and sequencing techniques, technical variations and batch
effects are present, potentially impacting the reliability and
reproducibility of biomarkers. Additionally, our study may
be constrained by the inherent limitations of the algorithms
and statistical methods employed, such as overfitting or in-
sufficient predictive power. Thirdly, our study may be con-
fined to bioinformatics analysis of gene expression, lacking
validation from in vivo and in vitro models, as well as sup-
port from prospective clinical studies. Therefore, we must
place a heightened focus on the rationality of research de-
sign and assurance of data quality to guarantee the reliabil-
ity and reproducibility of our research outcomes.

5. Conclusions
In summary, while sleep disorders represent one of

themost common comorbidities during the COVID-19 pan-
demic, comprehensive research investigating the immuno-
logical connection between the two remains scarce to date.
In a pioneering ap-plication of bioinformatics techniques,
we developed a risk prediction model and subsequently
confirmed the efficacy of CD160, QPCT, SIGLEC17P, and
SLC22A4 as diagnostic biomarkers for severe COVID-19 in
the context of SD. Utilizing the CIBERSORT method, we
identified a positive correlation between CD160 and CD8+
T cells in both SD and severe COVID-19 cohorts. Fur-
thermore, by calculating the AUC scores for the gene set
and conducting correlation tests, we established the connec-
tion between CD160 and CD8+ T cell exhaustion as well
as ribosome-related signaling pathways. The identification
of these diagnostic biomarkers and their association with
pertinent pathways offer new insights into the biological
mechanisms of SD-related severe COVID-19. However,
the direct implications of these findings for clinical ther-
apeutic applications still require further investigation and
validation.
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