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1. ABSTRACT 
 

Atopic eczema  (AE) is a chronic inflammatory 
skin disease that is mainly characterized by pruritus and 
epidermal barrier dysfunction. Between 15% and 20% of 
children and 1%–3% of adults are affected worldwide. AE 
is a complex disease triggered by multiple triggers, 
including gene and environmental factors. Impaired skin 
barrier function, modifications of the immune system, and 
hyper-reactivity to environmental stimulation directly cause 
and aggravate AE. In this review, we provide an overview 
of the recent developments and future directions in the 
pathogenesis of AE. 
 
2. INTRODUCTION 
 

Atopic eczema (AE), also known as atopic 
dermatitis (AD), is one of the most common chronic 
inflammatory skin diseases with a strong family 
predisposition occurring worldwide (1,2). Most of the 
patients with AE are infants; the onset is as early as 2–7 
months of age (3). Many people outgrow AE by early 
adulthood, however, according to the theory of Atopic 
March, young children with AE may suffer from airway 
allergy, such as asthma or allergic rhinitis, later in life (4–
7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
AE is a multifactorial skin disorder characterized 

by pruritus, epidermal barrier dysfunction, skin lesions, 
high susceptibility to allergens and microbes, and an 
ongoing course of relapse and remission (8–10). According 
to the nomenclature for AE by the Nomenclature Review 
Committee of the World Allergy Organization, the term AE 
should only be used for eczema patients with elevated total 
serum immunoglobulin E  (IgE) levels >150kU/l and IgE-
specific sensitization to allergens through an IgE-antibody 
determination or skin test (11). Other authorities use the 
term non-atopic eczema with chronic inflammation and 
skin disorder, but with less of a change in IgE antibody 
(12,13).  

 
Complex factors contribute to the development 

of AE. With respect to the genetic aspect, a loss-of-function 
mutation of filaggrin, which is known as an important gene 
in the regulation of the epidermal barrier, may increase the 
risk of AE  (14–17). People with AE often exhibit elevated 
interleukin  (IL)-4, IL-5, IL-9, IL-13, and IL-17levels and 
high-affinity IgE receptors (18–22). In contrast, most AE 
patients have hyper-reactivity to food or aero allergens, and 
are always associated with allergic asthma, rhinitis, 
conjunctivitis, and allergic contact urticaria, and are more 
vulnerable to microbes and viruses (23,24).However, the 
exact pathogenesis and the link between other diseases are 
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far from understood. In this review we discuss the recent 
developments in the mechanism AE and future directions in 
this field. 
 
3. EPIDEMIOLOGY OF AE 
 

Different diagnostic guidelines have been 
proposed for the diagnosis of AE (25).The criteria 
established by Hanifin and Rajka are the most well-
accepted and accurate  (26,27); however, the criteria are 
infrequently used in large epidemiologic studies due to time 
constraints. Questionnaire studies, such as the International 
Study of Asthma and Allergies in Childhood  (ISAAC), 
provide a worldwide method for estimation of the 
prevalence of AE. Although there may be slight deviation 
as the results vary based on the answers of the individual, 
the ISAAC questionnaire still has a strong correlation with 
the findings on clinical examination  (28–31). 
 

Currently, 15%–20% of children and 1%–3% of 
adults are affected with AE worldwide (32,33). According 
to the Scoring of Atopic Dermatitis  (SCORAD), which 
was developed by the European Task Force of Atopic 
Dermatitis  (ETFAD) to determine the severity of AE, the 
majority of patients are classified as ‘mild,’ whereas 10%–
20% of patients are ‘severe,’ and this percentage seems to 
be higher in the adult AE population. Nearly 60% of 
patients experience remission (34). 

 
The prevalence of AE has increased significantly 

in the last decade, reaching >10%of the population in 
developing countries, with a plateau at approximately 20% 
in Western countries (30,35). Nigeria, the United Kingdom, 
and New Zealand have the highest prevalence. Recent 
research has also shown an increase in AE in Korea, Japan, 
and India.  
 
4. MOLECULAR BASIS OF AE 
 
4.1 Genetic factors 

Recent studies have shown that AE has a strong 
family predisposition with a phenotype concordance of 
0.72–0.77 and 0.15–0.23 in monozygotic and dizygotic 
twin pairs, respectively, and is highly heritable (2,36).A 
number of single nucleotide polymorphisms  (SNPs) have 
been described in genes associated with AE, thus 
highlighting the importance of the genetic component in the 
pathogenesis of AE. Moreover, genes involved in 
epidermal barrier differentiation and immune responses 
have been implicated in AE development. 

 
Filaggrin, derived from filament aggregation 

protein, is a major protein that facilitates terminal 
differentiation of the epidermis and formation of the skin 
barrier (16). A loss-of-function mutation in the filaggrin 
gene  (FLG) has been demonstrated as the most significant 
genetic factor for the development of AE.  

 
FLG is located in the epidermal differentiation 

complex on chromosome 1q21 (37), with other genes 
encoding loricrin and S100 calcium-binding proteins. The 
product of FLG is profilaggrin, a large, insoluble 

polyprotein which is expressed in terminally differentiating 
keratinocytes in the outermost layers of the human 
epidermis. Profilaggrin is the major constituent of 
keratohyalin granules in the stratum granulosum. 
Profilaggrin can be dephosphorylated and cleaved by 
several endoproteases to produce the functional monomeric 
filaggrin (38–41).  

 
In mice, loss-of-function mutations of FLG result 

in the absence or reduction of the FLG protein and lead to a 
compromised skin barrier that allows the entry of allergens, 
then triggers immunologic responses. Previous studies have 
shown that nearly 25%–50% of AE patients have FLG loss-
of-function mutations (42,43). The down regulation of FLG 
leads to a defective skin barrier, which allows external 
antigens to penetrate the epidermis and initiate immune 
responses. Since Smith et al.  (44) first discovered the two 
loss-of-function mutations, R501X and 2282del4, in 2006, 
3321delA, E2422X, S3247X, and R2447 mutations have 
been identified. The mutations vary within the population 
and geographic regions and can also occur in patients with 
ichthyosis vulgaris, psoriasis, asthma, and allergic rhinitis 
(45,46).  

 
In addition, many AE-associated genes important 

for inflammation and atopy have been identified. 
Chromosome 5q31–33 harbors genes, including IL-3, IL-
4,IL-5,and IL-13, and granulocyte-macrophage colony-
stimulating factor  (GM-CSF),which encode Th2 cytokines 
and regulate IgE production. The 590C/T mutation of the 
IL-4 gene promoter region increases the transcriptional 
activity of IL-4, resulting in upregulated pro-inflammatory 
factors, such as IL-19, IL-20, IL-1α, and IL-25, and 
downregulated antimicrobial factors, such as interferon  
(IFN)-γ, S100s, and Toll-like receptors. Polymorphic 
variants of IL-13  (R130Q and R110Q) have been shown to 
be associated with atopy.IL-4 and IL-13 can also 
downregulate FLG expression in patients with AE (47,48).  

 
Signal transducer and activator of transcription 6  

(STAT6), encoded on chromosome 12q13–24, is a 
downstream factor of IL-4 and IL-13.IL-4 and IL-13 can 
activate STAT6 by a phosphorylation process, making 
STAT6 able to translocate to the nucleus and bind to target 
genes to regulate its expression (49–51).Activation of 
STAT6in AE patients may contribute to the elevated serum 
IgE level and impaired epidermal barrier. Vladich et al.  
(52) demonstrated that an IL-13  (R130Q) mutation can 
induce the phosphorylation and activation of 
STAT6.Moreover, a very recent study showed SNPs in IL-
13  (rs20541) and STAT6  (rs1059513) have a combined 
effect on the risk of eczema, which revealed the gene–gene 
interaction in AE. 

 
Many other genes, such as SPINK5, 

NOD1,NOD2,CCL17,IL-18,CTLA4, and PHF11, also 
have strong relationships with AE development. There is 
still much work to be done to better understand the 
consequences of those mutations and the 
pathophysiology of AE. 
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4.2. Skin barrier dysfunction 
The epidermis not only functions as a physical 

barrier, but also an active immunologic organ. It is the first 
barrier to protect individuals from microbes, allergens, 
viruses, and toxins from the outer environment. Dry skin 
and skin lesions, the most significant phenotypes of 
patients with AE, mainly result from lack of function of the 
epidermal barrier. 

 
The stratum corneum  (SC), the uppermost layer 

of the skin, consists of flattened keratinocytes, and lipids 
play a key role in the protective function of the skin. 
During epidermal differentiation, keratinocytes move from 
a proliferative cell type in the basal cell layer to flat, dead 
cell remnants  (corneocytes) in the SC. Lipids, such as free 
fatty acids and cholesterol encompass the corneocytes and 
protect the skin from water loss (53). 
 

Ceramides, the dominant lipids, make up 
approximately 50% of the human SC. Lipids play an 
important role in determination of the permeability barrier 
and water reservoir of the epidermis. The balance of 
ceramides is regulated by three sphingolipid hydrolysis 
enzymes, in which β-glucocerebrosidase  (GlcCDase) and 
sphingomyelinase  (SMase) contribute to the synthesis, 
whereas ceramidase is for the degradation of ceramides 
(54,55). Thus, the expression and activity of these enzymes 
could be factors involved with AE. Researchers have 
discovered that AE patients exhibit reduced levels of 
ceramides, especially ceramide-1, although one study 
showed no change in ceramide levels in uninvolved atopic 
skin. Hara et al. (56) have shown that a deficiency in 
ceramides is linked to the high expression of 
sphingomyelin deacylase, which can compete with SMase 
or GlcCDase for a common substrate, sphingomyelin or 
glucosylceramide.In contrast, the skin of AE patients is 
frequently colonized by bacteria, especially Staphylococcus 
aureus. The bacteria are likely to secrete significantly more 
of the ceramidase, but less of the sphingomyelinase in all 
skin types of AE than healthy patients (57). Faster 
degradation results, but less synthesis of ceramides and 
thus a decreased amount of ceramides. 

 
In addition, several proteases located in the SC 

are associated with AE patients. Proteases not only act as 
enzymes that conduct hydrolysis of peptide bonds, but also 
signaling molecules that contribute to increased 
desquamation and skin barrier dysfunction. Serine protease  
(SP) can mediate pro-inflammatory effects through 
protease-activated receptor-2  (PAR-2), induce the 
secretion of pro-inflammatory cytokines, and result in skin 
barrier disruption. Three SPs (stratum corneum 
chymotryptic enzyme [SCCE], stratum corneum tryptic 
enzyme [SCTE], and stratum corneum cathepsin-L-like 
enzyme [SCCL]) have been identified in SC and are 
important for desquamation (58,59). The mutation of an 
AACC insertion in the 3′UTR of the SCCE gene has been 
described in some patients with AE (60). This mutation 
may result in a change in SCCE activity and people with 
this mutation are more than two times as likely to develop 
AE as individuals with the normal allele. Moreover, soaps 
and other detergents can increase skin pH, leading to 

increased activity of both endogenous and exogenous 
proteases, which is suspected to induce abnormalities in SC 
integrity and permeability barrier homeostasis (61). 

 
In contrast, the serine protease inhibitor, Karzal 

type 5  (SPINK5), is expressed in epidermis and the 
product of SPINK5, lymphoepithelial Kazal-type-related 
inhibitor  (LEKTI), is a protease inhibitor which inhibits 
SCTE and SCCE. Mutation of SPINK5 has been implicated 
in Netherton syndrome, a rare skin disease characterized by 
greatly elevated IgE levels with atopic manifestations. 
Several studies have shown that SNPs of SPINK5 are 
associated with AE patients and the subsequent severe 
inflammation (62–64). 

 
4.3. Immune system abnormalities 

The deficient skin barrier of AE patients 
facilitates the entry of infectious microbes and allergens 
into the skin where they encounter immunocompetent cells 
and initiate rapid innate and adaptive immune responses. 
Alterations in both innate and adaptive immunity have been 
described in AE. 

 
4.3.1. Innate immunity 

Innate immunity is the first host barrier and 
antigen-non-specific defense mechanisms can be activated 
immediately or within several hours after exposure to 
virtually any foreign agent. The components of innate 
immune system always focus on pattern-recognition 
receptors  (PRRs), pathogen-associated molecular patterns 
(PAMPs),and antimicrobial peptides  (AMPs). PRRs play a 
pivotal role in the induction of the innate immune system, and 
can respond to highly conserved PAMPs shared by many 
classes of pathogens, including bacterial cell-wall products  
(such as LPS), peptidoglycan  (PGN), and lipoteichoic acid  
(LTA), the fungal cell wall product zymosan, and viral double-
stranded RNA. To discriminate these PAMPs, numerous PRRs 
have been identified and characterized, such as toll-like 
receptor  (TLRs), C-type lectin receptors  (CLRs), CD14, 
double-stranded RNA binding kinase, and nucleotide-binding 
oligomerization domain  (NOD; 65–67).Stimulation of PRRs 
by PAMPs will initiate a signal transduction cascade that leads 
to the release of AMPs, cytokines, and chemokines, which are 
important for the recruitment of effector leukocytes or have 
direct antimicrobial effects to limit the infection.  

 
Among these PRRs, TLRs are the most 

extensively studied, with 11 identified members  (TLR1–
11). TLRs are expressed on various cells of the innate 
immune system, including macrophages, dendritic cells  
(DCs), neutrophils, and mucosal epithelial and endothelial 
cells. TLRs not only bind to PAMPs, but also recognize 
newly discovered self-molecules released in response to 
tissue damage, which are collectively referred to as 
damage-associated molecular patterns  (DAMPs). Ligand 
recognition induces signal transduction through a myeloid 
differentiation primary response gene-88  (MyD88)-
dependent pathway, activating nuclear factor κB  (NF-κB) 
and resulting in the production of pro-inflammatory 
cytokines. TLR3 and TLR4 use a MyD88-independent 
pathway and activate interferon regulatory factor 3, 
resulting in IFN-β gene expression.  
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Patients with AE have been shown to have 
reduced TLR function. TLR2, compared to most other 
TLRs, can recognize a remarkably broad range of 
PAMPs and is essential for the response to several 
pathogens. As TLR2 can recognize components of S. 
aureus, such as LTA and PGN, studies have indicated 
that TLR2 deficiency may contribute to susceptibility to 
S. aureus and severity of AE. A missense mutation  
(R753Q) of TLR2 occurs ata frequency of 12% in adult 
AE patients and is associated with a more severe 
phenotype, higher serum total IgE levels, and greater 
susceptibility to S. aureus colonization, although there 
is one study that showed opposite results (68–70). 
Patients with AE have a significantly lower expression 
of TLR2, and reduced IL-6, IL-8, and IL-1β pro-
inflammatory cytokines released by macrophages. 
However, one study showed that 
monocytes/macrophages from AE patients with the 
TLR2 R753Q SNP produced significantly more IL-6 and 
IL-12, which may also act as important factors to 
stimulate T cells and thus initiate the adaptive immune 
response (71). 

 
Furthermore, an A-16934T mutation in the 

TLR2 promoter region, which inhibits TLR2 
transcription, was identified with an increased secretion 
of IL-6 and high total serum IgE levels (72). This 
mutation was significantly overrepresented in 
individuals with severe AE  (SCORAD>50) and was 
associated with allergic asthma, hay fever symptoms, 
and recurrent bacterial infections. TLR9, which is found 
within the endosome, can recognize unmethylated CpG 
DNA and intracellular viral antigens. Still, no SNPs 
were found in TLR1, TLR3, and TLR6 with AE (71,73). 

 
NOD, also known as caspase activation and 

recruitment domain  (CARD) are intracellular receptors 
which can recognize PAMPs, particularly PGN through 
the C-terminal leucine-rich repeat  (LRR) region and 
trigger the downstream signaling pathway via activation 
of NF-κB. The NOD family includes five members, 
among which NOD1 and NOD2 are the most prominent. 
Keratinocytes express NOD1 and NOD2 can produce 
IL-6 after stimulation with PGN and AMP, and human 
β-defensin (HBD) 2 after stimulation with NOD2-
specific ligand muramyl dipeptide. Furthermore, NOD1 
is located on chromosome 7p14–p15, a region linked to 
atopy, whereas NOD2 is located on chromosome 16q12, 
a locus associated with several autoimmune diseases. 
SNPs of NOD1  (rs2907748, rs2907749, and rs2075822) 
as well as a NOD2 variant  (R702W)are significantly 
associated with AE and asthma. Moreover, NOD2-
deficient mice have impaired clearance of S. aureus 
after subcutaneous or intraperitoneal infection (74–76). 
Whether or not NOD2 SNPs are correlated with 
increased susceptibility to epicutaneous S. aureus 
infections in patients with AE needs to be addressed. 

 
In addition, CD14 and mannan-binding lectin  

(MBL) can respond to PAMPs and have also been 
shown to be associated with AE development (77). 
These factors not only contribute to the innate immune 

system in patients with AE, but also adaptive immunity, 
which highlights the importance of further study. 

 
4.3.2. Adaptive immunity 

The adaptive immune system, also known as 
the acquired immune system, which consists of highly 
specialized, systemic cells and processes, eliminates or 
prevents pathogen growth (78).Acquired immunity is 
triggered when a pathogen evades the innate immune 
system in vertebrates (79,80). Acquired immunity 
creates immunologic memory after an initial response to 
a specific pathogen, leading to an enhanced response to 
subsequent encounters with that same pathogen.The 
cells functioning in the acquired immune system are T 
and B lymphocytes (81).T cells are intimately involved 
in cell-mediated immune responses, whereas B cells 
play a large role in the humoral immune response. 
Immediately after recognizing foreign antigen in the 
cellular context, the acquired immune response is 
activated. The foreign antigen presented by DCs or 
macrophages induces a complex response, in which 
CD8+ T lymphocytes directly kill the pathogens, the 
helper T cells secrete numerous cytokines, such as IFN-
γ, to clear the pathogens (82), and B cells produce 
antibodies to recognize and neutralize specific 
pathogens. 

 
Many inflammatory skin diseases are thought 

to be mediated by T cell activation and proliferation in 
the skin (83). T cells are one of the major elements of 
adaptive immunity and have acritical role in the 
pathogenesis of AE (84).The migration of memory and 
effector T cells to the inflamed skin plays an essential 
role in the development of atopic skin inflammation. 
The initial phase of AE is predominated by T helper 
type 2  (Th2) cytokines, then switches to a more chronic 
Th1-dominated eczematous phase (85). As such, AE is a 
biphasic disease. It has been shown that AE patients 
exhibit characteristic features of dramatic Th2 
polarization with high levels of IL-4, IL-5, and IL-13 in 
the acute phase in both lesional and non-lesional skin in 
combination with a predominance of Th2 cytokines in 
the blood (86,87). Increased mRNA expression of IFN-
γ, IL-5, IL-12, and GM-CSF is observed in patients with 
chronic AE, whereas mRNA expression for Th1 
cytokines, such as IFN-γ and IL-12,is not detectable in 
acute AE skin lesions. Based on the different cytokines 
elaborated during the chronic phase of disease, biphasic 
AE suggests the initiation of acute skin inflammation by 
Th2 cytokines and maintenance of chronic inflammation 
by Th1 cytokines. DCs contribute to allergic 
sensitization and maintenance of inflammation with the 
Th2-to-Th1 switch. 

 
An increase number of peripheral blood 

CD4+CD25+regulatory T  (Treg) cells have been 
demonstrated in AE patients compared to healthy 
controls (88,89). Treg cells control the activation of 
autoreactive and T effector cells and are crucial for the 
maintenance of peripheral tolerance to self-antigens.The 
balance between Th2 cells and allergen-specific Treg 
cells appears to be decisive in the development of 
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allergy. It has been shown that Treg cells from AE 
patients markedly inhibit the activation of IL-4-
secreting Th2 cells and IFN-γ-secreting Th1 cells 
stimulated with antigen in vitro (90,91). 

 
In addition to T cells, B cells are also involved 

in the process. Enhanced IgE production by B cells 
occurs in AE patients. The effective production of IgE 
in atopic disease by B cells depends on support by Th2 
cells. B cells play a critical role in antigen-specific 
CD4+ T-cell proliferation and Th2 and IL-17 responses 
in a murine model of AE (86,87). CD19 expression of B 
cells has been found to play an important role in AE. 
Compared to T cells, however, the role of B cells in AE 
needs further exploration. Taken together, the important 
role of the adaptive immune system in AE has been 
clarified, which provides targeted therapies for the 
treatment of AE (86,87). 
 
5. MICROBES AND FOOD ALLERGY IN AE 
 

AE is frequently complicated by recurrent skin 
infections with bacterial, viral, and mycotic pathogens. 
The role of microbial superinfections has not been fully 
elucidated, but there is a general consensus that bacterial 
superinfections, in part due to impaired innate 
immunity, play a critical role in the clinical course of 
skin lesions (92).S. aureus colonization of both lesional 
and clinically uninvolved skin in AE has been 
demonstrated to increase significantly and exacerbate 
the disease (57). Greater than 90% and 76% S. aureus 
colonization has been demonstrated in lesional and non-
lesional skin of AE patients, respectively, whereas 
<10%S. aureus colonization is associated with healthy 
skin (93–95).A previous study concluded that S.aureus 
colonization is both a cause and a consequence o 
allergic skin inflammation. Patients developing AE 
exhibit impaired skin barriers, increased synthesis of 
extracelluar matrix adhesions for S.aureus, reduced skin 
lipid content, increased skin surface pH, and defective 
innate immune responses, which lead to a significant 
increase in S.aureus colonization (96). In contrast, the 
exotoxins secreted by S.aureus are superantigens which 
could be recognized by large numbers of different T 
cells via interaction with the major histocompatibility 
complex  (MHC) II and β-chain of the T cell receptor. 
Skin immune response activating and cytokines 
releasing  (tumor necrosis factor (TNF)-α, IFN-γ, IL-1, 
IL-4, and IL-12) can in turn cause severe inflammation  
(97). Moreover, anti-inflammatory agents can reduce 
skin S.aureus colonization and is recommended for AE 
control. 

 
Malassezia is a monophyletic genus of fungi 

that belongs to the normal cutaneous flora. Fourteen 
species are currently recognized, among which M. 
sympodialis has been reported to be associated with AE 
and can also cause systemic infections (98). Of adult AE 
patients, 30%–80% are reactive to M. sympodialis in 
terms of specific IgE and T cell reactivity. Products, 
such as zymosan, can be recognized by TLR2 and 
activate mast cells, leading to the release of potent 

inflammatory mediators, such as histamine, proteases, 
chemotactic factors, cytokines, and arachidonic acid 
metabolites (99). In addition, M. sympodialis can 
activate mast cells to release cysteinyl leukotrienes, 
enhance the mast cell IgE response, modulate MAPK 
activation, and alter IL-6 production by signaling 
through the TLR2/MyD88 pathway. Thus, it may have 
effects on inflammation and itching in AE (100,101). 

 
In contrast, extracelluar vesicles secreted by 

M. sympodialis containing antigens and allergens from 
the fungi can induce a significantly higher IL-4 response 
in AE patients. All of this evidence indicates M. 
sympodialis may have a role in pathogenesis and 
severity of AE (102). 

 
In addition, clinical studies have revealed that 

>50% of all children with AE can experience 
exacerbations triggered by certain foods (103–105).Food 
allergy and AE often occur in the same patient. While 
different foods affect people differently, it has been 
shown that foods, such as cow’s milk and hen’s eggs, 
can directly provoke flares of AE, particularly in 
sensitized infants, whereas inhaled allergens and pollen-
related foods are of greater importance in older children, 
adolescents, and adults. Three patterns of cutaneous 
reactions to food may occur in patients with AE upon 
oral challenge. The first pattern commonly occurs a few 
minutes after ingestion of food, without exacerbation of 
AE, with the onset of gastrointestinal, respiratory, and 
cardiovascular symptoms. In the second pattern, pruritus 
occurs soon after ingestion of food, with subsequent 
scratching leading to an exacerbation of AE. In the third 
pattern, exacerbations of AE occur after 6–48 h; these 
exacerbations are termed late reactions (106-109). 
Reliable markers for the identification of patients with 
food-responsive eczema are still lacking. Based ona 
straightforward history, diagnosis of immediate 
symptoms provoked by a food may be evident, which is 
further confirmed by diagnostic tests to detect food-
specific IgE antibody. Determination of the role played 
by food allergy in patients with AE is more difficult and 
may require additional diagnostic maneuvers, including 
elimination diets and oral food challenges (107,110). 
Further investigations and clinical studies need to be 
conducted to clarify the relationships between foods and 
AE. 
 
6. CONCLUSION 
 

AE is a common skin inflammatory disease with 
complex genetic and environmental factors that affects an 
increasing number of people worldwide. Fortunately, 
efforts from scientists have provided us much evidence in 
understanding this disease. Gene mutations, skin barrier 
abnormalities, dysfunction of the innate and adaptive 
immune systems, microbes, and allergens are important 
factors for the development and exacerbation of AE  
(Figure 1).These findings not only allow us to develop a 
precise definition of AE, but also have a great impact on 
clinical therapy. However, more studies are needed to 
discover interactions between those factors and the 
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subsequent signaling 

 
 
Figure 1. Important factors for the development and exacerbation of AE: Gene mutations, skin barrier abnormalities, dysfunction 
of the innate and adaptive immune systems, microbes, and allergens.  
 
transduction pathways. It is hoped that specific biomarkers 
can be identified to reflect the detailed pathogenesis for 
AE, which is important in providing an early diagnostic 
strategy and targeted therapy for affected individuals.   
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