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1. ABSTRACT 
 

Insufficient drug safety is one of the major 
reasons for failure of drug candidates in Phase II and Phase 
III clinical trials. Determining toxicity early during the drug 
discovery process can help lower the attrition rate in 
clinical trials and lead to significant cost savings. In silico 
approaches can help to prioritize large numbers of 
compounds quickly and cost effectively in the early phase 
of drug discovery. One form of toxicity is genotoxicity due 
to mutagenicity. In this paper different in silico approaches 
for predicting mutagenicity, in particular in primary 
aromatic amines, are reviewed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Analyses of attrition rates in clinical trials show 
that drug safety is currently one of the major reasons for 
drug candidates to fail in late stage development.  Drug 
safety has been reported to be the reason for 19% of drug 
candidates failing in Phase II clinical trials (1) and 21% of 
drug candidates failing in Phase III clinical trials (2).  An 
analysis for the underlying causes of attrition in clinical 
trials for the period from 1991 to 2000 showed efficacy and 
safety/toxicology as the two major causes, each 
contributing about 30% in 2000 (3).  The analysis also 
showed a major shift in the causes for attrition reported
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Figure 1. Mechanism by which aromatic amines elicit their 
mutagenic potential. 

 
during this time period.  Whereas 
pharmacokinetics/bioavailability was the reason for drug 
failure in 40% of the cases in 1991, in 2000 it only 
contributed in 10% of the cases to drug failure.  This 
indicates that the pharmaceutical industry learned how to 
identify compounds with poor pharmacokinetic properties 
early.  Better assays and better in silico models likely 
contributed to lowering the attrition rate due to poor 
pharmacokinetics/bioavailability.  It can be hypothesized 
that a better understanding of toxicology will lead to more 
predictive assays and more predictive in silico models and 
that over time these would lead to lower attrition rates due 
to safety/toxicology.  Even with the availability of cheaper 
and more predictive experimental assays predictive in silico 
tools will remain important in virtual high throughput 
screening and the prioritization of virtual compounds. 

 
One form of toxicity is genotoxicity.  Here we are 

particularly interested in genotoxins that have the potential 
to cause mutations in the cell’s DNA that increase the risk 
of cancer.  A class of compounds that is particularly prone 
to elicit mutagenicity is that of aromatic amines.  Though 
the mechanism by which aromatic amines cause 
mutagenicity is well understood (4), predicting the 
mutagenicity for this class of compounds by in silico 
approaches is not easy. Experimentally mutagenicity can be 
assessed in vitro using the Ames test (5-7).  A strong 
correlation between compounds that test positive in the 
Ames test and mutagenicity has been established (4).  
However, a negative Ames test result cannot exonerate a 
compound from potential mutagenicity.  Therefore, the 
Ames test of compounds, or more often, that of their 
relevant metabolites, is being used to exclude compounds 
from further development.  In other words, passing the 
Ames test is only a necessary but not a sufficient criterion 
to advance development compounds.  Nevertheless, the 
Ames test is by far the most common mutagenicity test 
used and a requirement by regulatory agencies.  Other 
experimental in vitro assays used to assess genotoxicity are 
the mouse lymphoma assay, chromosome aberration, and in 

vitro micronucleus tests.  
 
The mechanism by which aromatic amines elicit 

their mutagenic potential is summarized in Figure  1.  In a 
first step aromatic amines undergo cytochrome P450 
mediated activation through N-oxidation to form N-
hydroxylamines.  These N-hydroxylamines can then form a 
nitrenium ion either i) directly via N-O bond cleavage, or 
ii) after going through the formation of an acetate or sulfate 
conjugate. 

 
Typically, it takes between 50mg and 100mg of 

highly pure material to conduct the Ames test of a small 
molecule. To reduce cost and time associated with the 
synthesis of compounds and with conducting the Ames test  
and also to reduce the use of animals, as demanded for 
instance by the European REACH legislation (8), a large 
number of in silico approaches has been developed over the 
years to predict the mutagenic potential of chemical 
substances and in particular to predict Ames activity.  These 
methods can be grouped into four main classes: i) structural 
alerts ii) expert system approaches, iii) regressive modeling 
approaches, and iv) ab initio approaches and are 
summarized in Table 1. 

 
3. STRUCTURAL ALERTS AND EXPERT SYSTEM 
APPROACHES 
 

Building on the electrophilic theory by Miller and 
Miller (9) several structural alerts have been developed to 
identify mutagenic chemicals (10-11).  A deeper 
understanding of the mechanisms of carcinogenicity and 
mutagenicity has led to a refinement of structural alerts 
(12) and their incorporation into commercial (13-14) and 
public (15-16) expert systems. 
 

Structural alerts can be used as an early, coarse 
grained, qualitative indicator for mutagenicity.  A list of 
prominent structural alerts for aromatic amines is shown in 
Figure 2. When using structural alerts it is important to note 
that the absence of a structural alert does not necessarily 
indicate that the compound is safe.  The success of 
structural alerts in predicting mutagenicity is evident by 
their incorporation into commercial expert systems 
routinely used in the pharmaceutical industry and by 
regulatory agencies.  On a set of 564 marketed drugs with 
genotoxicity data Snyder reports accuracy values (rate of 
Ames positives and negatives correctly identified) of 86% 
for DEREK and 92.5% for MC4PC although the 
sensitivities (percentage of Ames positive compounds 
correctly identified) are comparatively low, ranging from 
61.5% for DEREK to 44.7% for MC4PC (18).  For the 
Toxtree structural alerts Benigni et al. report an overall 
accuracy of 79% (19).  To put these numbers into 
perspective it is important to note that the inter-laboratory 
reproducibility of the Ames test is reported to be 80 – 85% 
(19).  For the Toxtree structural alert for primary aromatic 
amines, aromatic hydroxylamines, esters, or amine 
generating groups, Benigni and Bossa report a positive 
predictive value, PPV, (ratio of actual Ames positive 
compounds and compounds predicted to be Ames positive) 
of 81% using the ISSCAN database of chemical
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Table 1. Summary of the different approaches mentioned in this review 
Category Basic Technology Webpage/Comment References 
Structural Alerts 
 Electrophilic theory 9, 10, 11 
 Structural Alerts 12 
 Toxicophores 

No commercial solution 
17 

Expert Systems 

 DEREK Nexus http://www.lhasalimited.org/p
roducts/derek-nexus.htm 13, 18, 20, 21 

 MC4PC http://www.multicase.com/pro
ducts/prod01.htm 14, 18, 20, 21, 40 

 Oncologic http://www.epa.gov/oppt/sf/pu
bs/oncologic.htm 15 

 Toxtree http://toxtree.sourceforge.net/i
ndex.html 16, 12, 19, 20 

 LeadScope http://www.leadscope.com/ 20 

 TOPKAT http://accelrys.com/products/d
iscovery-studio/admet.html 21, 39, 62 

 ToxCheck Novartis in-house system 61 
Regressive Modeling 
 QSAR (Hammett Equation) 22 
 QSAR (logP, HOMO,LUMO) 24 
 QSAR (HOMO, LUMO, Molecular Refractivity) 25, 26, 27 
 AtomPairs, Topological Indices, Principal Component Analysis 28 

 1D-, 2D-, 3D-Descriptors using Support Vector Machines, 
Neural Networks, Genetic Algorithms 29 

 E-States 31 
 Linear Multivariate Regression 31 - 33 
 Partial Least Square 34 
 Multiple QSAR Approaches 

No commercial solution. 
Multiple different approaches 
using different machine 
learning techniques and 
different descriptor engines. 

23, 35, 36, 37, 38, 43, 44, 45 

 LAZAR http://www.in-silico.de/ 
http://lazar.in-silico.ch/predict 41, 42 

Ab initio Approaches 
 Nitrenium Hypothesis (AM1) 46, 47 
 Nitrenium Hypothesis (DFT/B3LYP/6-31+G(d) 48 - 53 
 Nitrenium Hpothesis (AM1, HF, DFT) 54 
 Nitrenium Hypothesis (DFT/B3LYP/6-31G*) 56, 57, 58 
 Nitrenium Hypothesis (various DFT) 

No commercial solution. 
Approaches use quantum 
mechanical calculations with 
various setup and complexity. 

59, 60 
Crowd Sourcing 
 Multiple QSAR Approaches http://www.kaggle.com/ 66 

 
carcinogens (12).  For aromatic mono and dialkylamines 
this number is 67% and for aromatic N-acylamines 76% 
(12).  One could argue that not so much the recall of all 
Ames positive compounds (sensitivity) but rather the 
confidence in an Ames positive prediction (PPV) is more 
useful when predicting Ames test outcomes. Nevertheless, 
attempts have been made to also improve the sensitivity of 
predictions with varied success. Hillebrecht et al. recently 
compared the performance of DEREK, Toxtree, MC4PC, 
and Leadscope in predicting mutagenicity on three different 
datasets (20).  These authors observed a satisfactory 
performance on public data with accuracies ranging from 
66.4 to 75.4%, sensitivities between 65.2 to 85.2%, and 
specificities (percentage of Ames negative compounds 
correctly identified) between 53.1 to 82.9%.  However, there 
was a significant deterioration in sensitivity when these 
methods were applied to the Roche data set.  Though the 
accuracies (73.1 to 85.5%) and specificities (77.5 to 93.9%) for 
the Roche data were as good as or better than for the public 
data set, the sensitivities were only between 17.4 and 43.4%.  
The authors contribute the difference in performance to 
differences in the chemical composition of the data sets.  
Whereas the public data sets are richer in commonly known 
mutagenic structures, such as polycyclic aromatic and nitro 
compounds, this is not the case for the Roche data set.  
Sensitivities, correctly identifying Ames positives, have been

 
reported as generally low for prominent software tools such 
as DEREK, TOPKAT, and MCASE (21).  The related 
general question of the value in predicting Ames with high 
confidence will be picked up again below. 

 
Kazius et al. constructed a data set of 4337 

compounds with curated experimental Ames data (17).  
Their data set had 2401 compounds classified as mutagens 
and 1936 non-mutagens.  From this data set the authors 
derived 29 toxicophores, structural alerts that are related to 
genotoxicity.  For their data set a generic aromatic amine 
structural alert showed an accuracy of 79% when 
compounds were considered that had additional alerts 
besides the aromatic amine functionality and 67% when 
considering compounds that only had the primary aromatic 
amine alert.  The accuracy could be significantly improved 
when a specific aromatic amine toxicophore was 
considered.  This approach excludes structures where the 
aromatic ring carrying the amine functionality has a 
substituent consisting of a trifluoromethyl, sulfonamide, 
sulfonic acid, arylsulfonyl, or carboxylic acid or its ester 
derivates (17).  Many of these substituents have strong 
electron withdrawing character, which is also reflected in 
their sigma-constants of the Hammett equation (22) and 
may not be able to help in the stabilization of the positive 
charge on the nitrenium ion.  
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Figure 2. List of structural alerts for aromatic amines in Toxtree (12) and the Kazius’ toxicophores (17). 
 

As structural alerts provide only a coarse grained, 
qualitative indication for mutagenicity, often all primary 
aromatic amines are flagged as potential mutagens.  This 
makes it difficult to get a more nuanced view for this class 
of molecules.  To go beyond structural alerts Quantitative 
Structure Activity Relationship (QSAR) models have been 
developed to predict mutagenicity. 

 
4. REGRESSIVE MODELING APPROACHES 
 

The increased availability of bacterial 
mutagenicity assay data (Ames test) prompted QSAR 
studies to be conducted for more than 20 years.  Predictive 
QSAR models have been reported for a series of chemical 
classes of carcinogens and mutagens including aromatic 
amines, nitroarenes, quinolines, triazenes, polycyclic 
aromatic hydrocarbons, lactones, and aldehydes (23).  The 
interpretability of predictive models as present in all early 
QSAR models, such as pioneered by Corwin Hansch (22), 
has been emphasized for the prediction of mutagenicity as 
well.  Early observations revealed that the mutagenicity of 
aromatic amines depends on factors such as the number and 

nature of aromatic rings, the position of the amine, the type 
and position of other ring substituents, and the size, shape, 
and polarity of the molecules (4).  For instance, it was 
found that the force of conjugation increases from phenyl 
toward higher aryl groups (aniline is a weaker carcinogen 
than benzidine or naphthylamine).  This finding prompted 
the use of a “number of rings” descriptor in early QSAR 
models. Also, due to steric effects, larger non-amino ring 
substituents, especially at the ortho position, decrease the 
mutagenicity of aromatic amines. 

 
Early QSAR attempts with the goal of building 

interpretable models using limited numbers of molecules 
(<100) focused on logP, HOMO (highest occupied 
molecular orbital) and LUMO (lowest unoccupied 
molecular orbital) energies, and ring substitution patterns. 
It was found that lipophilicity measured by logP, especially 
for compounds requiring metabolic activation (logP >1), 
appeared to be an important descriptor, accounting for up to 
50% of Ames activity or mouse carcinogenicity (24).  
HOMO and LUMO energies were calculated with semi-
empirical methods, mostly AM1.  A positive correlation 
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between the HOMO energy and mutagenicity found in 
QSAR models could be rationalized by the easier activation 
of compounds with higher HOMO energies. An inverse 
correlation between mutagenicity and the LUMO energy on 
the other hand is less well understood. 

 
One prominent QSAR model for the prediction of 

mutagenicity of aromatic amines based on the TA100 strain 
of Salmonella typhimurium (+S9) is also available from the 
Organization for the Economic Co-operation and 
Development (OECD) QSAR Toolbox 
(http://www.oecd.org/chemicalsafety/theoecdqsartoolbox.h
tm) and will therefore be outlined here in more detail.  
Benigni et al. derived a series of QSAR models for 
carcinogenicity and mutagenicity related to T98 and T100 
strains of Salmonella typhimurium (16, 25).  Because the 
performance on an internal test set was particularly strong 
for the TA100 model obtained by applying a Canonical 
Discriminant Analysis, we will focus here on this model as 
well. The discriminant derived by Benigni et al reads:  

 
ω = -2.85 HOMO +1.84 LUMO + 0.70 MR2 + 0.69 MR3 + 
1.90 MR6 + 3.36 Idist            (1) 
 
where HOMO and LUMO descriptors were calculated as 
reported previously by Debnath et al. (24).  Molar 
Refractivity (MR) contributions of ring substituents in 
positions 2, 3, and 6 to the amino group were used.  Idist is 
set to 1 for compounds with crowded substituents on 
positions 3’-, 4’-, and 5’- of 4-aminobiphenyl and 0 
otherwise.  The model was derived from a set of 47 
nonmutagens (ω1) and 64 mutagens (ω2).  The 
discriminant threshold was found to be 25.04.  The mean 
calculated ω values for the nonmutagens and mutagens 
were 26.09 and 23.99, respectively.  Applying an external 
test set of 22 nonmutagens and 25 mutagens yielded an 
accuracy of 81%, a sensitivity of 86% and a specificity of 
72%.  Recently, Benigni et al. reported attempts to enhance 
selectivity and specificity (26).  Particularly noteworthy is 
the finding that hydrophobicity alone, as measured by logP, 
had no discriminating power for mutagens and 
nonmutagens in TA100 and TA98.  In contrast, 
hydrophobicity was observed as an important factor in 
modulating potency for biologically actives as well as for 
describing carcinogenicity in mice. 
 

In addition to predicting mutagenicity of aromatic 
amines as measured by salmonella, models for the 
prediction of mouse carcinogenicity have been reported.  
Recently, Franke et al. outlined a model for aromatic 
amines that predicts carcinogenicity in mice as defined by 
(27): 

 
BRM = log (MW/TD50) +3                                             (2) 

 
where MW is the molecular weight and TD50 is the dose 
producing tumors in 50% of the test animals in mg/kg body 
weight.  Using Discriminant Analysis, the authors divided 
the data set into active carcinogens (BRM > 2.5) and 
inactive or weak carcinogens (BRM <2.5).  A simple 
discrimination function was found to separate carcinogens 
from non-carcinogens: 

ω = -1.2 logP + 0.96 MR2 – 1.17 HOMO.                        (3) 
 
The model derived from 33 carcinogens and 41 non-
carcinogens classified 86% of the compounds correctly in 
cross validation. The equation teaches that the risk of 
carcinogenicity increases with hydrophobicity, HOMO 
energy, and decreases with the size of ortho ring 
substitutions. 
 

In addition to using few interpretable descriptors 
to build QSAR models, early authors started to build black 
box models using topological descriptors such as atom 
pairs and topological indices in combination with principal 
component analyses (28).  More recently, Leong et al. 
reported a study of modeling TA98 +S9 mutagenicity of a 
combination of data sets of aromatic amines previously 
published, thereby attempting to increase the structural 
diversity among the data set (29).  Leong et al. used a set of 
more than 200 1D, 2D, and 3D descriptors along with a 
variety of predictive modeling techniques including support 
vector machines, hierarchical support vector regression 
(HSVR), a neural network, and genetic function algorithm.  
The authors used variable selection techniques such as 
Genetic PLS and recursive feature elimination, an 
algorithm we have recently used in our own work as well 
(30), reducing the number of descriptors used in the most 
predictive HSVR approach to between 6 and 9 descriptors 
per model.  It is particularly noteworthy, and speaks for the 
power of the variable selection algorithm, that a series of 
descriptors used in prominent mutagenicity models 
mentioned above are preferred by the automated variable 
selection method as well, among them the HOMO energy, 
logP, molar refractivity of ortho and meta position 
substituents of aromatic amines, and the presence or 
absence of three or more fused rings.  Leong at al. 
demonstrated that both for the training set of 97 aromatic 
amines and the test set of 25 aromatic amines the HSVR 
approach performed better than a series of previously 
attempted QSAR models of aromatic amine mutagenicity 
including principal component analysis and E-state 
descriptors (31), Linear Multivariate Regression (31-33), 
Partial Least Square (PLS) (34),  and others (35-38).  
Predicting mutagenicity for sets of noncongeneric samples 
of compounds that would be suitable for predicting the 
mutagenicity of any class of compounds has been 
incorporated in  several popular commercial (TOPKAT 
(39), Multicase (40)) and freely available (LAZAR) 
systems (41, 42). 

 
A large number of studies attempting to predict 

Ames activity of compounds including but not limited to 
aromatic amines has been published in recent years.  A 
publicly available benchmark data set for in silico 
prediction of Ames mutagenicity comprising ~6500 
compounds was introduced in 2009 (43).  This data set has 
prompted an increased number of predictive modeling 
studies mostly deriving black box models of Ames activity 
(20, 44).  Particularly noteworthy is an analysis by Sushko 
et al. that analyzed the influence of applicability domain 
(AD) and distance to model (DM) on the accuracy of 
mutagenicity predictions of aromatic amines (45).  For a set 
of 30 different Ames models it was demonstrated that the 
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application of AD and DM concepts help significantly to 
increase the discrimination between reliable and unreliable 
predictions.  The authors showed also that the uncertainties 
of in silico predictions are related to the variability of 
experimental measurements.  The best Ames predictive in 
silico models analyzed by Sushko et al. (45) exhibited a 
performance that mirrored the inter-laboratory accuracy of 
the Ames test. 

 
5. AB INITIO APPROACHES 
 

Besides the QSAR approaches described above a 
series of ab initio approaches to predict the Ames activity 
of aromatic amines have been developed.  The term ab 
initio in this context means that the mutagenic potential of a 
substance is assessed from first principals using the 
underlying mechanism that leads to the mutagenic 
behavior.  The advantage of these types of methods is that, 
at least in principal, they do not need training on a set of 
compounds with associated mutagenicity reads, but rather 
calculate the mutagenic potential directly.  Based on 
Scheme 1, Ford and Griffin used the semi-empirical AM1 
method to calculate the energies for the different chemical 
entities (46-47).  For a small set of food compounds the 
authors were able to develop a model that showed that the 
stability of the nitrenium ion of a primary aromatic amine 
correlates with the Ames activity.  These authors showed 
that only the formation of the nitrenium ion, as described in 
Equation (4), varied significantly with the nature of the aryl 
moiety.  Other steps such as the formation of 
hydroxylamine (Equation 5) and its hydrolysis (Equation 6) 
can be neglected.  

 

              (4) 
         (5) 

       (6) 
  (7) 

 
By calculating enthalpic energy differences 

relative to baseline aniline (Equation 7) Ford and Griffin 
were able to develop a predictive model for the Ames 
activity of primary aromatic amines showing a correlation 
between the Ames activity and the stability of the nitrenium 
ion.  

 
Building on the basic idea that the stability of 

nitrenium ions can be used as a predictor of mutagenicity 
for aromatic amines, others have since developed more 
refined methods in particular by applying higher levels of 
ab initio quantum mechanical theory than the originally 
used semi-empirical AM1 function and by considering 
other intermediates like the acetyl sulfonyl esters.  Using 
the Density Functional Theory (DFT) employing the 
B3LYP hybrid functional with the 6-31+G(d) basis set 
Borosky calculated N-O bond dissociation energies for the 
N-hydroxy, N-acetoxy and N-sulfate derivatives of aniline 
and the N-acetoxy esters for a set of 17 aromatic and 
heteroaromatic amines.  The mutagenic activity was found 
to increase when a more negative charge developed at the 
exocyclic nitrogen of the nitrenium ion and when the 
nitrenium ion stability increased (48).  The correlations 
between experimental mutagenicities and calculated 

nitrinium ion stabilities were generally better within a 
series of closely related compounds.  A larger study of 43 
aromatic and heteroaromatic amines confirmed these earlier 
findings (49).  In a series of papers Borosky et al. showed 
that DFT calculated relevant reactive ion stabilities can be 
used to correlate the mutagenic potential of other 
compound classes like polyaromatic hydrocarbons (50-53).  

 
Our previous work (54) validated the nitrenium 

hypothesis on a subset of 257 primary aromatic amines 
taken from the larger set assembled by Kazius et al. (17).  
We calculated the relative stability differences of the 
nitrenium ions for a series of Ames positive and Ames 
negative aromatic amines using different levels of quantum 
mechanical theory, AM1, ab initio Hartree Fock, and ab 
initio DFT/B3LYP.  Already at the AM1 level of theory an 
overall accuracy of 85.6% was achieved. The performance 
was comparable to that achieved by DEREK, which 
showed an overall accuracy of 84.0%, and higher than that 
of MC4PC with 73.3%.  For this data set MC4PC showed a 
much lower sensitivity of 66.0% compared to 91.3% for the 
nitrenium hypothesis.  Using a consensus approach, 
combining the classification results from the nitrenium 
stability calculations with those from DEREK and the 
toxicophore approach by Kazius et al. (17), resulted in an 
improvement in accuracy to 95.8%, while maintaining a 
coverage of 74.3% of the data set.  Figure 3 illustrates that 
a good separation between the Ames positive and Ames 
negative classes can be achieved by calculating the ∆∆E 
value from Equation 7 at the AM1 level of theory. 
 

A detailed analysis of the structural diversity 
within the data set of 257 primary aromatic amines showed 
that the nitrenium hypothesis performed very well for 
aromatic amines with fused aromatic ring systems.  All 15 
compounds in the data set containing four or five fused ring 
systems were correctly predicted to be Ames positive and 
out of the 80 compounds with three fused rings only seven 
were incorrectly predicted, three false negatives and four 
false positives.  The observation that four of the incorrectly 
classified compounds were anthraquinones could point to 
the fact that for this class issues other than the stability of 
the nitrenium ion lead to the observed Ames activity.  

 
One of the appealing characteristics of the 

nitrenium hypothesis is that the ∆∆E value (Equation 7) 
provides a continuous metric, not just a classification, 
which allows for identifying SAR trends.  In the series of p-
halogenated anilines, the mutagenic potential is predicted to 
increase from Ames negative p-bromoaniline, ∆∆E = +4.2 
kcal/mol, to the Ames positive p-fluoroaniline, ∆∆E = -
0.6kcal/mol with the p-chloroaniline having a value in 
between, ∆∆E = +0.6 kcal/mol.  These trends are not 
captured by DEREK, MC4PC, or the toxicophore model of 
Kazius et al. (17).  The ∆∆E value correlates with the 
ability of the substituent to stabilize the positive charge of 
the nitrenium ion.  Thus, p-N,N-dimethylaniline, N-(p-
aminophenyl)-acetamide, p-methoxy-phenylamine, and p-
phenylaniline are all predicted to be Ames positive, 
whereas p-aminobenzamide, p-aminobenzoic acid, p-
aminobenzenesulfonamide, and p-
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Figure 3. Performance of the nitrenium hypothesis on a dataset of 257 primary aromatic amines (54). Left: Distribution of AM1 
calculated ∆∆E values for Ames positive (red bars) and Ames negative compounds (light blue bars). The yellow line marks the 
border between predicted Ames positive compounds (negative ∆∆E values) and predicted Ames negative compounds (positive 
∆∆E values). Right: Fraction of returned Ames positive (red) and Ames negative (light blue) compounds at a given AM1 ∆∆E 
value. At ∆∆E = 0.0 kcal/mol 91% of all Ames positive compounds have a lower ∆∆E and 73% of all Ames negative 
compounds have a higher ∆∆E. Both graphs demonstrate that the nitrenium stability energy separates the Ames positive from the 
Ames negative compounds. 

 
aminobenzenesulfonicacid, which would not stabilize the 
positive charge of the nitrenium ion, are predicted to be 
Ames negative (Table 2).  
 

In a detailed study on designing safe 4-
aminobiphenyls Birch et al. (56) discuss the substituent 
effects for a series of anilines on the stability of nitrenium 
ions for anilines using the Hammett parameter sigma (22).  
These authors show that a phenyl ring with a σp value of -
0.01 stabilizes the positive charge of the nitrenium ion, 
whereas a fluorine atom in the meta position, with σm = 
0.34, is strongly electron withdrawing and thus has a 
destabilizing effect on the positive charge of the nitrenium 
ion.  This finding correlates with their observation that 
many meta fluorinated 4-aminobiphenyls are Ames 
negative (56).  We showed in our own work (54) that 
introducing a methyl substituent on the aniline has a 
stabilizing effect on the nitrenium ion, leading to an 
increased potential to show activity in the Ames assay.  
Thus, 2-methylaniline, 2,5-dimethylaniline, 3,4-
dimethylaniline, and 2,4,6-trimethylaniline are all predicted 
to be Ames positive in agreement with the experimental 
results.  Interestingly, DEREK predicts only the two 
dimethylanilines to be Ames positive.  In contrast to 
methylation, chlorination on the aniline has a destabilizing 
effect.  Thus 4-chloroaniline, 2-chloroanline, 3,5-
dichloroaniline, 2,5-dichloroaniline, 3,4-dichloroaniline, 
3,4,5-trichloroaniline, 2,4,6-trichloroaniline, and 2,3,4-
trichloroanline are all predicted by the nitrenium hypothesis 
to be Ames negative, which with the exception for 4-
choloroaniline is in agreement with the experiment (54).  
These trends are missed by DEREK and the Kazius 
toxicophore.  The opposing effects of methylation and 
chlorination on the Ames activity of anilines correlate with 
their different σ values.  The methyl group has σm and σp 
values of -0.07 and -0.17, respectively, whereas a chlorine 
exhibits a σm = +0.37 and σp = +0.23, in agreement with 

finding the 3,4-dimethylaniline to be Ames positive, and 
the 3,4-dichloroaniline to be Ames negative (54).  We also 
showed that the substituent effects on the nitrenium ion 
stabilities are likely additive (54).  For the 2-methyl-4-
chloroaniline we reported an AM1 calculated ∆∆E = -3.7 
kcal/mol, which is nearly the sum of the calculated ∆∆E 
values for 2-methylaniline, ∆∆E = -4.6 kcal/mol, and for 4-
chloroaniline, ∆∆E = 0.6 kcal/mol.  

 
In a variant of the nitrenium hypothesis Leach et 

al. (57) showed that a strong discrimination between Ames 
positive and Ames negative compounds can be achieved by 
calculating energy differences according to the following 
two equations: 

 
            (8) 

                                 (9) 
 
The discrimination is greater than that achieved 

by other descriptor based models used by these authors 
including, lipophilicity, and HOMO/LUMO energies.  
Instead of using the energy differences derived from 
Equations 8 and 9 directly, in subsequent publications this 
group used the probability to be Ames positive derived 
from Equation 10 (56, 58). 

 

                          (10) 
 
For the classes of 4-aminobiphenyls (56) and 

aminopyrazoles (58) the authors showed an excellent 
agreement between the in silico predicted property to be 
Ames positive and the experimental Ames findings.  The 
nitrenium hypothesis is likely best suited to predict the 
mutagenicity for a series of congeneric compounds as 
pointed out above when we discussed Borosky’s work (49). 
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Table 2. ∆∆E values for primary aromatic amines calculated at the AM1 level of theory using Equation 7 

Compound Name Compound Structure 
∆∆E 
kcal/mol 
AM1 

Predicted 
Ames 
Classification 

Experimental 
Classification1 

Hammett 
σ-value2 

p-N,N-
dimethylaniline NH2N

 

-33.3 positive positive σp -0.83 

N-(p-amino 
phenyl)-acet 
amide NH2N

H

O

 

-21.4 positive positive σp 0.00 

p-methoxy- 
phenylamine NH2O

 

-15.8 positive positive σp -0.27 

p-phenylaniline NH2

 

-13.9 positive positive σp -0.01 

p-aminobenz 
amide 

NH2

O

NH2  

+8.1 negative negative σp 0.36 

p-aminobenzoic acid NH2

O

OH  

+13.2 negative negative σp 0.45 

p-amino 
benzene 
sulfonamide 

NH2SNH2

O

O

 

+16.5 negative negative σp 0.57 

p-amino 
benzenesulfonicacid NH2SOH

O

O

 

+25.1 negative negative 
σp 0.09  

(for ) 

2-methylaniline 
NH2

 

-4.6 positive positive σo -0.17 

2,5-dimethyl 
aniline NH2

 

-6.2 positive positive σo -0.17 
σm -0.07 
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3,4-dimethyl 
aniline NH2

 

-7.0 positive positive σp -0.17 
σm -0.07 

2,4,6-trimethyl 
aniline NH2

 

-14.4 positive positive σo -0.17 
σp -0.17 

4-chloroaniline NH2Cl
 

+0.6 negative positive σp 0.23 

2-chloroanline 
NH2

Cl

 

+1.4 negative negative σ0 0.20 

3,5-dichloro 
aniline NH2

Cl

Cl  

+11.2 negative negative σp 0.37 

2,5-dichloro 
aniline NH2

Cl

Cl

 

+6.5 negative negative σo 0.20 
σp 0.37 

3,4-dichloro 
aniline NH2Cl

Cl

 

+5.1 negative negative σm 0.23 
σp 0.37 

 
The usefulness of the nitrenium hypothesis to 

predict the Ames activity was demonstrated by yet another 
group at Novartis (59-60).  McCarren et al. found the same 
two equations, Equation 8 and 9, to give the best 
discrimination between Ames positive and Ames negative 
compounds.  An analysis of the influence of the molecular 
weight on the discriminative power of the nitrenium ion 
formation energy showed that the separation between Ames 
positive and Ames negative compounds is larger for lower 
molecular weights, MW < 250, than for compounds with 
higher molecular weights, MW >500.  Depending on the 
data set used for validation, these authors showed that 
overall accuracies between 70% and 88% could be

 
achieved for aromatic amines with low molecular weight, 
MW <250, and 55% to 85% for those with molecular 
weights between 250 and 500 (60).  McCarren et al. (60) 
also compared the performance of the nitrenium hypothesis 
to other methods such as ToxCheck (61), a modified 
version of DEREK, TOPKAT (62), and Toxtree (16, 25).  
For the two larger test sets analyzed, ToxCheck, TOPKAT, 
and Toxtree achieve accuracies between 73% and 87% for 
low molecular weight aromatic amines, MW < 250, which 
is similar to what is achieved with the nitrenium 
hypothesis.  ToxCheck and TOPKAT have a much higher 
sensitivity, between 94% and 98% compared to 78% to 
84% for the nitrenium hypothesis.  In another paper 
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McCarren et al. identified that besides the nitrenium ion 
formation energy, the AM1 calculated HOMO energy 
shows a good separation between Ames positive and Ames 
negative compounds (59).  The nitrenium natural charge 
and the anion formation energy lead to much lower 
separation between the Ames positive and Ames negative 
classes.  In this paper the authors also compare the 
performance of the nitrenium ion formation to PLS and 
Random Forest models.  They conclude that the best-
validated and best-performing prediction available for low 
molecular weight aryl amines is the quantum-mechanics 
calculated reaction energy representing the formation of the 
nitrenium ion (59). 

 
A potential difficulty with ab initio in silico 

predictions of the nitrenium ion stability is that they depend 
on the correct identification of the minimum energy 
conformation for each compound.  To verify that the 
calculated geometries represent a minimum energy 
conformation McCarren et al. calculated the vibrational 
frequencies for the compounds in one of their example data 
sets (60).  These calculations require significant additional 
computer time, and they do not guarantee that the geometry 
reflects the global minimum energy conformation for a given 
compound.  For instance, in our own work we observed a ring 
open conformation for the nitrenium ion of 2-aminothiazole 
and bond breaking conformations for other sulfur containing 
molecules (54).  Tautomers can also pose a challenge, and 
would need to be considered separately.  Differences of several 
kcal/mol in the ∆∆E value have been observed for different 
tautomers. Though we did not find a case in our data set where 
these energy differences between tautomers of a molecule 
resulted in a different overall Ames classification, such 
instances cannot be ruled out (54). 

 
6. DISCUSSIONS AND PERSPECTIVES 
 

For the pharmaceutical industry it is not only 
important to correctly assess the mutagenic potential of the 
final compound but also that of pharmaceutical impurities 
(63).  A recent survey of eight pharmaceutical companies 
indicated that a structural assessment is sufficient to 
conclude that an impurity is non-mutagenic (64).  To be 
confident in such assessment based on computational 
analyses alone,  a high negative predictive value (NPV), i.e. 
a high confidence that a compound that is predicted to be 
Ames negative will also be non-mutagenic experimentally, 
is of particular importance.  The survey by Dobo et al. 
showed a NPV of 94% for the use of in silico tools alone 
(64).  This number increased to 99% when the in silico 
result was coupled with expert evaluation.  Interestingly, 
the NPV value did not change significantly depending on 
whether a company used a single in silico tool or multiple 
tools in combination (64). A very recent survey among five 
pharmaceutical companies further showed the importance 
of coupling an in silico tool with additional expert 
knowledge to reach a high NPV, as it is recommended that 
impurities not showing a structural alert will not need to be 
tested for mutagenicity (65). 

 
While NPV is a most relevant measure for 

compounds that will not be tested as a result of an in silico 

analysis, there are other uses of mutagenicity prediction 
tools where the confidence in predicting that a compound is 
Ames positive (PPV) might be more important.  A NPV or 
PPV maximizing model should be chosen depending on 
whether an advancement or an elimination decision will 
be made for compounds.  Let’s consider how the ‘do no 
harm’ principle, that is often used to assess to what 
degree in silico predictions are applicable, would apply 
to Ames predictions.  In case a decision is to be made on 
advancing a single compound or making a choice among 
a small number of compounds in a later stage of drug 
discovery research, predicting Ames negativity well (high 
NPV) would be of little interest because the advancing 
compound would be tested in Ames anyway for 
regulatory reasons alone.  On the other hand, if in such 
case a compound is predicted Ames positive, the 
confidence in such prediction (PPV) must be very high to 
allow the user to make the decision to eliminate the 
compound from further advancement.  A false positive 
prediction would do the most harm in such case because 
it would potentially exclude a ‘good’ compound from 
further consideration.  In another example, where a user 
prioritizes among a large number of compounds in early 
drug discovery, let’s say an HTS hit set, a high PPV is of 
less use.  In this case it is more important to have a high 
NPV because here decisions about advancing the best 
compounds are being made and one would like to be as 
confident as possible in the Ames negative prediction of 
advancing compounds.  A possible harm could come later 
in form of positive Ames tests of compounds that have 
consumed many resources in the following development 
phase but have to be discarded later due to positive Ames 
test outcomes.  An interesting discussion on the related 
topic of sensitivity and specificity of Ames predictions was 
provided by Snyder and Smith (21).  The authors lament 
the lack of sensitivity (recall of Ames positives) observed 
from using software tools such as DEREK, MCASE, and 
TOPKAT, especially among compounds without structural 
alerts.  They concluded that generally improvements are 
necessary for both predictive values, sensitivity and 
selectivity, to make these in silico tools more useful for 
Ames predictions, especially for compounds without 
structural alerts and those where the Ames activity is due 
to other mechanisms, such as non-covalent DNA 
interactions. 

 
In this review we showed that for the class of 

primary aromatic amines a mechanism based ab initio 
approach, the nitrenium hypothesis, can be used to 
successfully classify Ames positive and Ames negative 
compounds.  The fact that major pharmaceutical companies 
have published on this approach (54, 56-60) is evidence 
that this technology has come a long way since its early 
publications by Ford and Griffin (46-47).  The appealing 
characteristic of this first principal approach is that, unlike 
QSAR methods, it does not rely on the identification of a 
training set.  The successful application also demonstrates 
that a deeper understanding of the underlying chemical 
mechanism has been reached.  Development of more 
mechanism based, ab initio approaches as alternatives to 
QSAR approaches, for predicting the mutagenic potential 
of other compound classes may be desirable. 
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In terms of QSAR modeling there is an emerging 
new trend towards using crowd computing.  We recently 
reported (66) on the successful use of this approach with 
the Kaggle platform for modeling Ames activities using the 
literature set by Hansen et al. (43) as a test case.  The top 
ranked models in the competition had improved 
performance over the benchmarks when applying a logloss 
metric.  A detailed analysis of the model performances with 
different metrics showed that the ranking of the models is 
metric dependent and that differences are overall small.  
The large response and short time frame in which models 
were developed indicate that competitive crowd sourced 
approaches can be an alternative way towards modeling.  
Merck has since used the Kaggle platform for predicting 
molecular activities of chemical compounds (67-68).  
Another example of the successful application of prize-
based contests for gene sequence annotation has been run 
on the TopCoder.com platform (69).  It will be interesting 
to see how these innovative, dynamic, crowd-sourced 
approaches will impact modeling in the future. 
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