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1. ABSTRACT 

 
Regulators of G protein signaling (RGS) proteins 

are a family with more than 30 proteins that all contain an 
RGS domain. In the past decade, increasing evidence has 
indicated that RGS proteins play crucial roles in the 
regulation of G protein coupling receptors (GPCR), G 
proteins, and calcium signaling during cell proliferation, 
migration, and differentiation in a variety of tissues.  In 
bone, those proteins modulate bone development and 
remodeling by influencing various signaling pathways such 
as GPCR-G protein signaling, Wnt, calcium oscillations 
and PTH. This review summarizes the recent advances in 
the understanding of the regulation of RGS genes 
expression, as well as the functions and mechanisms of 
RGS proteins, especially in regulating GPCR-G protein 
signaling, Wnt signaling, calcium oscillations signaling and 
PTH signaling during bone development and remodeling. 
This review also highlights the regulation of different RGS 
proteins in osteoblasts, chondrocytes and osteoclasts. The 
knowledge from the recent advances of RGS study 
summarized in the review would provide the insights into 
new therapies for bone diseases.  

 
2. INTRODUCTION 

 
Bone is a mineralized connective tissue 

consisting of 33% organic matrix. Bone remodeling, cycles 
of bone apposition and resorption, continues throughout life 
(1). Osteoblasts are mononeclear cells, which arise from 
osteoprogenitor cells located in the deep layer of perosteum 
and the bone marrow and are responsible for bone 
formation. In contract, osteoclasts are highly specialized 
multinucleated cells derived from the hematopoietic cell 
precursors in the bone marrow and peripheral blood, and 
are capable of breaking down both the inorganic and 
organic matrix of bone to resorb the bone. Both osteoblasts 
and osteoclasts participate in bone remodeling and are 
affected by a variety of signals during their differentiation 
and function (1).  Signal transduction from the extracellular 
environment across the plasma membrane and into the 
intracellular milieu is a fundamental aspect of cellular 
regulation, and coordinates essential aspects of cell and 
organ homeostasis. G Protein Coupled Receptors (GPCRs), 
also known as seven trans-membrane domain receptors, 
constitute a large protein family of receptors. Those 
receptors perceive many extracellular signals (e.g. 
neurotransmitters, hormones, phospholipids and growth
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Table 1. Classification of RGS protein subfamilies and their members (11) 
Subfamily Members 
RZ RGS17,RGS19,RGS20,RET-RGS1 
R4 RGS1,RGS2,RGS3,RGS4,RGS5,RGS8,RGS13,RGS16,RGS18,RGS21 
R7 RGS6,RGS7,RGS9,RGS11 
R12 RGS10,RGS12,RGS14 
RA Axin, Conductin 
GEF P115-RhoGEF, PDZ-RhoGEF�LARG 
GRK GRK1,GRK2,GRK3,GRK4,GRK4,GRK5,GRK6,GRK8 
SNX RGS-PX1.SMX14,SNX25 
D-AKAP2 D-AKAP2 

 
factors) and transduce them to heterotrimeric G proteins, 
which further transduce those signals intracellularly to 
appropriate downstream effectors and thereby play an 
important role in various signaling pathways (2). GPCRs 
represent important specific targets for a variety of 
physiological functions and therapeutic approaches, such as 
the control of blood pressure, allergic response, kidney 
function, hormonal disorders, neurological diseases, bone 
development, and bone remodeling (3, 4). By binding with 
specific agonists/ligands, GPCRs leads to the rapid 
activation of heterotrimeric G-proteins (binding of GTP) 
and the regulation of intracellular second messengers (e.g. 
cAMP and intracellular Ca2+ levels). The expressions of 
multiple GPCRs have been found in osteoblasts, 
osteocytes, and osteoclasts which regulate local and 
systemic signaling (3).  

 
G proteins are a family of intracellular proteins 

that act as mediators of proliferation, differentiation, and 
apoptosis in multiple cell types (5). G proteins are 
composed of three non-identical subunits, Gα (33-35 kDa), 
Gβ (~35 kDa) and Gγ (~15 kDa) (6). The kinetics of G-
protein signaling are regulated by regulators of G protein 
signaling (RGS) proteins that act as scaffolds to help 
assemble signaling complexes (7) and as GTPase activating 
proteins (GAPs) on Gα subunits. RGS proteins regulate 
heterotrimeric G proteins by increasing the rates at which 
their subunits hydrolyze bound GTP and return to the 
inactive state (8).  Hence, the G-protein activity cycle is 
sequentially regulated by RGS proteins, and is critical for 
the rapid activation and inactivation of cellular responses 
(8). 

 
The RGS protein family has more than 30 family 

members (9).  Sequence and structure analysis suggests that 
mammalian RGS proteins are divided into nine subfamilies 
including RZ/A, R4/B, R7/C, R12/E, GEF/F, GRK/G, 
SNX/H and D-AKAp2/I (8, 10) as shown in Table 1 (11). 
Those proteins specifically and selectively regulate G 
protein mediated receptors, ion channels, and other 
signaling events (11). Many studies have demonstrated that 
RGS proteins serve as key modulators in neurons (12, 13), 
the cardiovascular system (14, 15), inflammatory disorders 
(16, 17), and cancer (18). The importance of RGS proteins 
in bone has been addressed in recent years. Here, we 
reviewed current findings outlining the regulation of RGS 
gene expression, and RGS proteins in the regulation of G 
protein and GPCRs. We further summarized the various 
signaling pathways that are either dependent upon or 
related to RGS function in bone development and 
remodeling, and the role of RGS proteins in the regulation 
of bone cell differentiation and function.  

 
3. REGULATION OF RGS GENE EXPRESSION  

 
Increasing evidence has demonstrated that RGS 

proteins are regulated through multiple mechanisms, 
including the regulation of GPCR signaling, bacterial LPS, 
proinflammatory cytokines, and cell stress conditions. 
Additionally, the detrimental effects of cell stress under 
certain conditions such as hyperoxia, hypoxia/ischemia, 
mechanical stress, and drug treatment also influence the 
RGS expression (19).  

 
3.1. G-protein-mediated pheromone signaling 

Some studies showed that RGS gene expression 
is negatively and/or positively regulated by G-protein-
mediated pheromone signaling. For example, Gq/Gi-
coupled agonists can increase the expression of several 
RGS genes, such as RGS2, RGS4, and RGS16 (19). 
Interestingly, angiotensin II (Gq/Gi-coupled agonists) has a 
dual effect on RGS2 expression. Short-term angiotensin II 
(ANG II) stimulation for one day in fibroblasts increases 
RGS2 levels. In contrast, prolonged ANG II stimulation (3–
14 days) markedly decreases RGS2 (20). Similarly, 
stimulation of opioid receptors can induce a rapid and 
persistent (8 hours) increase in RGS4 mRNA (21). While 
Gs/cAMP-coupled agonists increase RGS2 expression, but 
inhibit the expression of RGS3 (22), RGS4 (22, 23), RGS5 
(24), and RGS16 (25) in various cell types. Additionally, 
cAMP reduces mRNA levels of RGS13, and its PKA-
mediated phosphorylation and subsequent stabilization 
maintains high protein levels of the RGS13 protein, likely 
due to protection from proteasomal degradation (26).  

 
3.2. Bacterial LPS and proinflammatory cytokines 

In addition to above mentioned proteins, bacterial 
LPS and proinflammatory cytokines (important mediators 
of the immune response and inflammation) also regulate 
RGS gene expression (19). In immune cells, LPS variably 
affects the expression of RGS proteins, depending on the 
RGS and the cell type (19). For example, LPS down-
regulates RGS2 mRNA in macrophages (27, 28), but up-
regulates RGS1 expression in dendritic cells and 
macrophages (27, 29). IFN-β induces the expression of 
RGS1 in peripheral blood mononuclear cells, monocytes, T 
cells, and B cells (30), and stimulates the expression of 
RGS2 and RGS16 in mononuclear leukocytes (31, 32).  

 
3.3. PTH and TSH  

The expression of RGS proteins is also regulated 
by PTH signaling (33, 34). For example, RGS2 expression 
is increased by PTH stimulation in osteoblasts. Moreover, 
the expression of RGS2 mRNA is rapidly and transiently 
increased 2-to 5-fold by injection of PTH in femoral 
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metaphyseal spongiosa of young male rats (33). 
Thyrotropin (TSH) signaling is also involved in the RGS 
regulation (35). The expression of RGS2 mRNA is 
significantly up-regulated within 1 hour after TSH 
stimulation in human thyroid primary cultures and reaches 
a maximum after 4 hours (35).  Co-expression of RGS2 and 
TSH receptor in COS-7 cells inhibits TSH-G(q)alpha 
signaling, implying that RGS 2 is involved in TSHR-
induced G(q) signal transduction (35). 

 
4. RGS PROTEINS IN THE REGULATION OF 

SIGNALING PATHWAYS 
 
4.1. RGS proteins and GPCR-G protein signaling 

GPCRs transduce signals by coupling to 
heterotrimeric (α-, β-, γ-subunit-containing) GTP-binding 
(G) proteins that regulate effector molecules (36). RGS 
proteins have a conserved RGS core domain of 
approximately 120 amino acids that is necessary and 
sufficient for binding to Gα subunits (9). There are four 
principal Gα proteins (Gs, Gi, Gq/11, G12/13). The structures 
of G subunit reveal a conserved protein fold composed of a 
helical domain and a GTPase domain that undergoes 
conformational changes when binding GTP and GDP (37). 
One critical regulatory point in the G-protein cycle is the 
deactivation of G-proteins by GTP hydrolysis that is 
enhanced by GTPase activating proteins (GAP) − RGS 
proteins (8). RGS proteins are capable of accelerating 
GTPase activity up to 1000-fold to promote GTP 
hydrolysis by α subunit of heterotrimeric G proteins, 
thereby inactivating G protein and rapidly switching off 
GPCR signaling (38). In addition to functioning as a 
deactivator for G proteins, Zhong et al. found that high 
concentrations of receptors lead to saturation of GDP-GTP 
exchange making GTP hydrolysis rate-limiting and local 
depletion of inactive heterotrimeric G-GDP, which is 
reversed by RGS GAP activity. RGS enhances receptor-
mediated Gi protein activation even as it deactivates the Gi 
protein (39). Therefore, the authors proposed that RGS can 
constrict the spatial range of active G protein around some 
receptors to limit the spill-over of G protein signals to more 
distant effector molecules, thus enhancing the specificity of 
Gi protein signals (39, 40). Beside the GAP role of RGS 
proteins, RGS12 was recently found to function as a 
Ras/Raf/MEK scaffold to regulate nerve growth factor 
(NGF)-mediated neurite outgrowth in PC12 cells by 
facilitating the coordination of H-Ras, B-Raf, and MEK2 
and prolonging extracellular regulated kinases (ERK) 
activation (24).  Additionally, RGS4 (41) and RGS3/5(42) 
were also found to regulate activation of ERK as well as 
Gq-mediated PLCβ. Gβγ released by Gi is also able to 
activate PLCβ-PKC signaling and can be distinguished 
from Gq-activated PLCβ by Gi specific inhibitor PTX 
(pertussis toxin) (43) and Gq specific inhibitor (44). PLCβ 
seems to have paradoxical roles, being both an effector and 
a GAP for Gαq/11 (2, 45).  

 
Some studies have shown that mutation of 

upstream genes of RGS proteins such as G protein or 
GPCR have severe skeleton phenotypes (36). Deficiency of 
Gαs in osteoblasts impairs bone formation due to the 
reduced differentiation of osteoblasts through inhibiting 

adenylyl cyclase in cAMP-PKA pathway (46), suggesting 
that Gαs stimulates adenylyl cyclase. In contrast, Gαi 
inhibits the activity of adenylyl cyclase by antagonizing 
Gαs-mediated increases in adenylyl cyclase activity in 
osteoblasts(47). Transgenic expression of a constitutively 
active Gi-coupled GPCR in osteoblasts leads to marked 
trabecular osteopenia (48), consistent with the concept of 
Gi-coupled signaling and opposing Gs-mediated trabecular 
bone formation. Millard et al. (49) investigated the skeletal 
effects of blocking Gi-coupled signaling in osteoblasts in 
vivo by transgenic expression of the catalytic subunit of 
pertussis toxin (PTX) under control of the collagen Iα 2.3-
kb promoter. The mice show increased periosteal bone 
formation and cortical thickness which correlates with 
associated with expanded mineralizing surfaces.  

 
4.2. RGS proteins and Wnt signaling  

Mounting studies have shown that RGS proteins 
such as Axin play critical roles in the regulation of Wnt 
signaling pathway (50-53). Wnt signaling cascade regulates 
cell proliferation, differentiation, and motility, and plays a 
critical role in development (54). Wnts/β-catenin pathway 
is commonly called the canonical Wnt pathway. In bone, 
the canonical pathway plays a substantial role in the control 
of bone formation and bone remodeling (55).  This pathway 
is mediated by β-catenin which goes into phosphorylation 
and ubiquitination when there is no Wnt binding. Inhibition 
of β-catenin phosphorylation prevents its degradation, and 
thus results in an increase in its cytoplasmic concentration 
(50). Wnts/β-catenin subsequently contribute to the 
proliferation and survival of osteoblasts (56).  

 
Axin2, an atypical RGS protein that serves as a 

molecular scaffold for a β-catenin destruction complex, has 
been shown to be a key negative regulator of bone 
remodeling (50-53). Yan et al. reported that deletion of 
axin2 causes a significant increase in bone mass that results 
from a significant increase in osteoblast proliferation and 
differentiation, and a decrease in osteoclast differentiation 
(50). They further found that axin2 negatively regulates 
osteoblast differentiation and bone remodeling through the 
beta-catenin-BMP2/4-Osx signaling pathway in 
osteoblasts. Hey et al. recently found that axin interacts 
with N-cadherin to negatively regulate Wnt signaling 
through β-catenin degradation, resulting in impaired 
osteoblast differentiation. By analyzing the N-cadherin 
transgenic mice using a Col12.3-N-cadherin-construct, they 
further found that increased β-catenin degradation induced 
by N-cadherin-LRP5 interaction inhibits osteoblast 
function and bone formation and delays bone mass 
acquisition in vivo (57). Additionally, Regard et al. 
reported that activating Gα mutations can interact with axin 
to potentiate Wnt/β-catenin signaling. Furthermore, they 
found that removal of Gαs led to reduced Wnt/β-catenin 
signaling and decreased bone formation (58). It was also 
found that Wnt signaling is negatively influenced by GRK2 
activity in bone-forming osteoblasts and therefore may be 
suggested for increasing bone formation (59). 

 
4.3. RGS proteins and PTH signaling  

Of several systemic hormones and local factors 
affecting bone remodeling during adult life, PTH may be 
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one of the most important factors in bone homeostasis (60, 
61). RGS proteins are instrumental in the regulation of 
PTH. It is well known that PTH regulates cell 
differentiation and function through GPCRs in two 
principal target organs: kidney and bone (62, 63). By 
binding with its GPCR, PTH can modulate both Gαs-
regulated adenylate cyclase and Gαq-regulated 
phospholipase C, resulting in the activation of 
cAMP/protein kinase A (PKA) and protein kinase C 
(PKC)/Ca2+ dependent cellular processes and 
transcriptional responses (64, 65). The relative activation of 
adenylate cyclase and phospholipase C depends mainly on 
the duration and magnitude of activation of the Gαs and 
Gαq protein subunits. RGS proteins, as GAP proteins, have 
been shown to accelerate the inactivation of G proteins by 
enhancing their GTPase activity (10), and therefore play 
critical role in PTH signaling.  

 
Accumulating evidence has shown that PTH-

induced RGS2 expression in osteoblasts involves PTH 
signal transduction via its GPCRs (33, 66, 67). PTH binds 
to its PTH/PTHrP receptor (68) to activate cAMP/PKA- 
and PKC/Ca2+- dependent signal transduction via Gs-and 
Gq/11- proteins (67). Pulsatile PTH treatment causes A 4- to 
10-fold lower RGS2 abundance, compared to a continuous 
PTH exposure (69). Moreover, functional analysis with 
RGS2 overexpression suggests that RGS2 down-regulates 
PTH- and forskolin-induced cAMP production in 
osteoblasts (34) and limits Gs signaling (70). Further 
studies showed that the basal levels of endogenous RGS2 
do not appear to regulate Gs or Gq signaling in osteoblasts 
(70). Using Forskolin treatment of wild-type osteoblasts to 
activate Gs signaling, suppresses Gq-dependent 
accumulation of inositol phosphates and nucleotide-
stimulated calcium release that does not occur in RGS2 (-/-
) osteoblasts. Conversely, activation of Gq signaling 
suppresses PTHrP-dependent cAMP accumulation in wild 
type but not in rRGS2 (-/-) osteoblasts. Those findings 
demonstrate that up-regulation of RGS2 contributes to 
cross-desensitization of Gs- and Gq-coupled signals (70). 
Additionally, Miles et al. (33) confirmed that the 
expression of RGS2 mRNA is rapidly and transiently 
increased by human PTH in both metaphyseal (4-to 5-fold) 
and diaphyseal (2- to 3-fold) bone, as well as in cultured 
osteoblast cultures (2- to 37-fold). In vitro, forskolin and 
dibutyryl cAMP can similarly elevate RGS2 mRNA. They 
further found, in vivo, different PTH analogs affect RGS12 
gene expression. PTH analogs, such as 1-31 and 1-38 
(which stimulate intracellular cAMP accumulation, PTHrP, 
and prostaglandin E2) induce RGS2 mRNA expression; 
whereas PTH analogs, such as 3-34 and 7-74 (which do not 
stimulate cAMP production) have no effect on RGS2 
expression. In tissue distribution analysis, RGS2 is widely 
expressed in all examined tissues including heart, spleen, 
liver, skeletal muscle, kidney, and testis, and significantly 
expressed in two nonclassical PTH-sensitive tissues: brain 
and heart. After PTH injection, RGS2 mRNA expression is 
up-regulated in rat bone but not in any of the other 
examined tissues. Those findings demonstrate that RGS2 is 
regulated by PTH, prostaglandin E2, and PTHrP, 
suggesting increased RGS2 expression in osteoblasts may 
be one of the early events influencing PTH signaling(33).   

Besides PTH signaling, some studies have shown 
that other factors also regulate PTH-mediated RGS2 
expression and function. Ueno et al. (31) reported that 
RGS2 gene expression markedly increases with PTH 
infusion and its expression is dose-dependently suppressed 
by treatment of 1,25(OH)2 D3. Their results suggest that 
1,25 (OH)2 D3 inhibits PTH-mediated G protein signaling. 
Homme et al. (71) further studied the influence of vitamin 
D and dexamethasone on PTH-induced RGS2 expression in 
osteoblast-like cells. By determining RGS2 gene 
transcription rate, they found that the transcription rate is 
increased by 35% with 1, 25-(OH)2D3 and decreased by 
63% with dexamethasone pretreatment, demonstrating that 
glucocorticoids and vitamin D inversely regulate PTH-
induced RGS2 expression via a transcriptional mechanism. 
Additionally, PTH secretion by parathyroid cells responds 
to changes in extracellular calcium through signaling by the 
calcium-sensing receptor (CaR) (72, 73). Koh et al. (74) 
found that RGS5 is selectively up-regulated in parathyroid 
adenomas relative to normal glands. Transient expression 
of RGS5 in cells stably expressing CaR results in dose-
dependent abrogation of calcium-stimulated inositol 
trisphosphate production and ERK1/2 phosphorylation. 
Furthermore, they found that RGS5 knockout mice display 
significantly reduced plasma PTH levels, which is 
consistent with attenuated opposition to CaR activity. 
Collectively, their data suggest that RGS5 can act as a 
physiological negative regulator of CaR in the parathyroid 
gland. Similarly, PTH-related peptide (PTHrP) was found 
to increase osteogenic proliferation through activation of 
Ras and MAPK signaling pathway, showing that Gq is 
likely involved in that process (75).  

 
4.4. RGS proteins and calcium (Ca2+) oscillations  

How Ca2+ oscillations regulate tissue specific 
gene expression and cell differentiation has been an 
unsolved question in cell biology. Several lines of evidence 
have shown that RGS proteins play pivotal roles in 
controlling Ca2+ oscillations and cell differentiation in T 
lymphocytes, neurons, and cardiac myocytes (76-79). 
Interestingly, different RGS proteins have different 
receptor preferences in the regulation of calcium signaling 
and cell differentiation and function (80). In the pancreas, 
for example, the amino-terminal residues allow selective 
interaction between RGS4 and the muscarinic acetylcholine 
receptor (76). Many RGS proteins, including RGS1, RGS2, 
RGS4 and GAIP, as terminators of the active state of G 
proteins, can accelerate the GAP activity of Gαq (8, 38) to 
inactive Ca2+ reuptake and delay Ca2+ spikes for several 
seconds or even minutes. Additionally, the amplitude and 
frequency of changes in cytoplasmic Ca2+ concentrations 
influence the nature of the cellular response. Dolmetsch et 
al. (81, 82) reported that Ca2+ oscillations regulate gene 
expression and cell differentiation in T cells. Rapid 
oscillations stimulate three transcriptional factors (NFAT, 
Oct/OAP, NF-κB), whereas infrequent oscillations activate 
only NF-κB. By differentially controlling the activation of 
distinct sets of transcription factors and the expression of 
different genes, oscillation frequency may direct cells along 
specific developmental pathways (83, 84). These finding 
highlighted that RGS proteins play critical role in the 
regulation of Ca2+ oscillations.  
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Some studies have showed that the components 
of the Ca2+ signal, including IP3 production and Ca2+ fluxes 
across the ER and plasma membranes, regulate the 
frequency and amplitude of Ca2+ oscillations (85).  The 
activation of Gα by against activates PLCβ to generate IP3. 
IP3 releases Ca2+ from the endoplasmic reticulum (ER), 
which is followed by the activation of store-operated Ca2+ 
channels in the plasma membrane and Ca2+ influx. The 
increase in Ca2+ leads to activation of the plasma membrane 
Ca2+ ATPase (PMCA) and sarco/endoplasmic reticulum 
Ca2+ ATPase (SERCA) pumps to remove Ca2+ from the 
cytosol (86). During this process, RGS proteins, as the 
negative regulators of GPCRs signaling, play a central role 
in determining the duration of the stimulated state and 
controlling Ca2+ oscillations by regulating GTPase activity 
of G protein (87). The RGS domain accelerates GTP 
hydrolysis on the G alpha subunit to uncouple receptor 
stimulation from inositol 1,4,5-trisphosphate (IP3) 
production. The C-terminus mediates the interaction with 
accessory proteins in the complex and the N-terminus acts 
in a receptor-selective manner to confer regulatory 
specificity(88). Hence, RGS proteins have both catalytic 
and scaffolding function in regulating Ca2+ signaling. 
Further study from Wang et al. (86) showed that deletion of 
RGS2 regulates the kinetics of IP3 production without 
affecting the peak level of IP3, but increases the steady-
state level of IP3 at all agonist concentrations. Deletion of 
RGS2 decreases the expression of IP3 receptor 1 and IP3 
receptor 3, and then reduces the sensitivity for IP3 to release 
Ca2+ from the ER to the cytosol. Thus, Sarco/endoplasmic 
reticulum Ca2+ ATPase 2b is up-regulated to more rapidly 
remove Ca2+ from the cytosol of RGS2-deleted cells. 
Furthermore, they found that deletion of RGS2 reduced the 
response of the cells to changes in the ER Ca2+ load and to 
an increase in extracellular Ca2+. These findings 
concentrate the central role of RGS proteins in Ca2+ 

oscillations. 
 
Ca2+ oscillations were first found playing critical 

roles in NFATc1 activation and osteoclast differentiation 
(89) in 2002. Takayanagi et al found that RANKL evokes 
Ca2+ oscillations that lead to calcineurin-mediated 
activation of NFATc1 and therefore triggers a sustained 
NFATc1-dependent transcriptional program during 
osteoclast differentiation. Inhibiting NFATc1 activity using 
dominant negative alleles blocks osteoclastogenesis, 
whereas overexpression of the wild-type protein stimulates 
osteoclast development from embryonic stem cells in a 
RANKL-independent manner. Both the transient initial 
release of Ca2+ from intracellular stores and the influx 
through specialized Ca2+ channels control the 
dephosphorylation of the cytoplazmic components 
(NFATc1 proteins) and lead to their nuclear localization to 
activate osteoclast specific genes(90). These results 
indicate that NFATc1 may represent a master switch for 
regulating terminal differentiation of osteoclasts and 
functioning downstream of RANKL. Further study (91) 
showed that mice lacking immunoreceptor tyrosine-based 
activation motif (ITAM)-harboring adaptors, Fc receptor 
common γ subunit (FcRγ) and DNAX-activating protein 
(DAP) 12, exhibit severe osteopetrosis owing to impaired 
osteoclast differentiation. In osteoclast precursor cells, 

FcRγ and DAP12 associate with multiple immunoreceptors 
and activate calcium signaling through phospholipase Cγ 
(PLCγ).  

 
Based on those studies, we proposed that some 

regulators such as RGS proteins might exist to regulate 
Ca2+ oscillations during osteoclast differentiation. By using 
differential screening, we found that RGS10 and RGS12 
are both prominently expressed in osteoclast-like cells. 
Regulator of G-protein signaling 10A (RGS10A), but not 
the RGS10B isoform, is specifically expressed in human 
osteoclasts. The expression of RGS10A is also induced by 
RANKL in osteoclast precursors and prominently 
expressed in mouse osteoclast-like cells. RGS10A silencing 
by RNA interference blocks intracellular Ca2+

 oscillations, 
the expression of NFATc1, and osteoclast terminal 
differentiation in both bone marrow cells and osteoclast 
precursor cell lines. Reintroduction of RGS10A rescues the 
impaired osteoclast differentiation. RGS10A silencing also 
results in premature osteoclast apoptosis (92). By 
generating and characterizing the RGS10 knockout model, 
we found that RGS10-deficient (RGS10-/-) mice exhibit 
severe osteopetrosis and impaired osteoclast differentiation. 
The deficiency of RGS10 results in the absence of Ca2+ 
oscillations and loss of NFATc1. Ectopic expression of 
RGS10 increases the sensitivity of osteoclast differentiation 
to RANKL signaling. Additionally, ectopic expression of 
NFATc1 rescues the impaired osteoclast differentiation 
from deletion of RGS10 (93). Our results further reveal a 
mechanism that RGS10 competitively interacts with 
Ca2+/calmodulin and phosphatidylinositol 3,4,5-
trisphosphate (PIP3) in a Ca2+-dependent manner to 
mediate PLC activation and Ca2+ oscillations, and  that 
RGS10 specifically regulates the RANKL-Ca2+ oscillation-
NFATc1 signaling pathway during osteoclast 
differentiation.  

 
Compared to RGS10, we found that knockdown 

of RGS12, the largest protein in the RGS family, could also 
block Ca2+ oscillations, NFATc1 expression and osteoclast 
differentiation (93). Furthermore, we found that calcium 
sensing receptor (CaR) is expressed in preosteoclasts and 
osteoclasts and that RGS12 interacts with N type Ca2+ 
channels and CaR during osteoclast differentiation (94). 
Interestingly, we found RGS10 knockout mice exhibit a 
severe osteopetrosis phenotype, impaired Ca2+ oscillation, 
and osteoclast differentiation, which cannot be rescued by 
RGS12. Unlike RGS10 (93), RGS12 does not binds with 
Ca2+/calmodulin (CaM) and PIP3 in a Ca2+-dependent 
manner during osteoclast differentiation. It acts on N-type 
Ca2+ channels and CaR. Most recently, by specific deletion 
of RGS12 in osteoclast lineage also caused osteopetrosis 
phenotype. The further study is going on. Those results 
demonstrated that RGS proteins may play different roles in 
regulating Ca2+ oscillations and osteoclast differentiation.  

 
5. REGULATION OF DIFFERENTIATION AND 

FUNCTION OF BONE CELL BY RGS PROTEINS 
 

5.1. Osteoblasts  
Osteoblasts are the mononucleate bone forming 

cells, which derive from the bone marrow. Osteoblasts 
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produce new bone called "osteoid" made of bone collagen 
and other protein, and are responsible for mineralization of 
this matrix. Many studies have shown that numerous 
GPCRs express in osteoblasts, including frizzled, the 
parathyroid hormone (PTH)/parathyroid hormone-related 
peptide (PTHrP) receptor type 1 (PTH1R), CaR, calcitonin 
gene-related peptide receptor, and relaxin family peptide 2 
(36). Those proteins are important for the differentiation 
and function of osteoblasts (36). RGS proteins selectively 
interact with G proteins and their corresponding GPCR 
(95). Transgenic mice with a constitutively active mutant 
CaR (Act-CaR), which target to mature osteoblasts by the 
3.5 kb osteocalcin promoter, show reduced bone volume 
and density of cancellous bone, accompanied by a 
diminished trabecular network. Constitutive signaling of 
the CaR in mature osteoblasts increases expression of 
receptor activator of nuclear factor-kappaB ligand 
(RANKL), the major stimulator of osteoclast differentiation 
and activation, which is the likely underlying mechanism 
for the bone loss (96). Moreover, it is proven that CaR 
promotes osteoblast proliferation (97, 98) likely through 
coupling to Gq and Gi signaling to stimulate IP3 
production, calcium influx, and ERK phosphorylation (99), 
suggesting the involvement of RGS proteins. Recently, a 
newly CaR, GPRC6A, is found to be widely expressed in 
bone, calvaria, and osteoblastic cell line MC3T3-E1. 
Overexpression of RGS2 or RGS4 and pretreatment with 
pertussis toxin (PTX) inhibits activation of GPRC6A by 
extracellular cations (100).  

 
RGS2 has been implicated in the regulation of G 

protein signaling in bone. RGS2 is expressed in rat 
metaphyseal and diaphyseal bone, mouse calvarial organ 
cultures, and cultured osteoblasts. The levels of RGS2 
mRNA are up-regulated in response to PTH, PTHrP, and 
prostaglandin E2 or by the promoters of protein kinase A 
activity, such as forskolin, cholera toxin, and cell-permeant 
cAMP analogues in osteoblasts (18, 19). Some studies have 
showed that the basal levels of endogenous RGS2 do not 
regulate Gs or Gq signaling in osteoblasts (70). 
Functionally, RGS2 increases the rate of GTP hydrolysis 
on the Gq subunit (9, 23) and also inhibits Gq-stimulated 
activation of PLC (24). In contrast, RGS2 has no effect on 
the rate of GTP hydrolysis by the Gs subunit (8, 23), but 
inhibits intracellular cAMP accumulation (8,13–16). Both 
Gq and Gs recruit RGS2 to the plasma membrane in 
mammalian cells (8), and bind directly to RGS2 (16, 20, 
21, 25). Further study found that forskolin-activated Gs 
signaling up-regulates RGS2 expression and suppresses 
Gq-dependent accumulation of inositol phosphates and 
nucleotide-stimulated calcium release in wild-type 
osteoblasts, but not in RGS2 deficient osteoblasts. 
Conversely, pretreatment with ATP to activate Gq 
signaling suppresses PTHrP-dependent cAMP 
accumulation in wild type but not in RGS2 deficient 
osteoblasts. Further studies showed that endogenously 
expressed RGS2 can limit Gs signaling. Thus, these studies 
imply that up-regulation of RGS2 by Gq signaling 
desensitizes Gs signals. Noticeably, up-regulation of RGS2 
contributes to cross-desensitization of Gs- and Gq-coupled 
signals (70). For example, up-regulation of RGS2 by agents 
that activate the Gs signaling pathway, inhibits P2Y and 

endothelin receptor-stimulated Gq signals; conversely, Gq -
mediated up-regulation of RGS2 inhibits PTH1R-
stimulated Gs signals, revealing cross-talk between these 
pathways. Those studies demonstrate that RGS2 expression 
is regulated by both Gs and Gq signaling in osteoblasts.   

 
Besides these studies, overexpression of 

osteoblast-specific transcription factor Runx2 directly leads 
to a stimulation of RGS2 promoter activity to promote 
RGS2 expression (34). Additionally, PGE2 rapidly and 
transiently increases the level of RGS2 mRNA in bone 
cells in vivo through the activation of cAMP signal 
transduction (33).  The effect of RGS2 on osteoblasts is 
primarily mediated by PTH, resulting in increased 
osteoblast activity and inhibition of the osteoclast 
activation (31, 101, 102). Runx2 sensitizes cAMP-related 
GPCR signaling by activating Gpr30 and repressing RGS2 
gene expression in osteoblasts to increase responsiveness to 
mitogenic signals (103). This is also in accordance with the 
findings from Tsingotjidou et al. (101). They demonstrate 
that RGS2 is a PTH-induced primary response gene in 
murine osteoblasts, and that RGS2 is induced primarily 
through the cAMP-PKA pathway and specifically inhibits 
Gαq-coupled receptors. 

 
5.2. Chondrocytes 

Chondrocytes are only cells found in cartilage 
which produce and maintain the cartilaginous matrix, made 
mainly of collagen and proteoglycans. James et al. found 
that RGS2 can induce the increased growth and matrix 
apposition of chondrocytes (104). Addtionally, 
overexpression of RGS2 in the chondrogenic cell line 
ATDC5 can accelerate chondricytic hypertrophic 
differentiation (104), as well as advance production of 
glycosaminoglycans and ALP, and induce parallel 
increases in the expression of the chondrogenic marker 
genes Fgfr3 and Ibsp (104), indicating RGS proteins are 
also involved in chondrocytic differentiation and function. 
It has been known that RGS proteins are closely involoved 
in CaR regulation. Some studies have shown that deletion 
of CaR in chondrocytes (cartilage-producing cells) results 
in mouse lethality before embryonic day 13 (E13). Mice in 
which chondrocyte-specific deletion of CaR is induced 
between E16 and E18, are viable, but show the delayed 
growth plate development (105). This study raises further 
question about whether RGS proteins are involved in this 
CaR regulation during chondrocytic differentiation and 
function.  

 
5.3. Osteoclasts  

Osteoclasts are bone-resorbing cells by removing 
bone mineralized matrix and breaking up the organic bone. 
Those cells exert an important impact on skeletal 
metabolism. Disorders of skeletal insufficiency, such as 
osteoporosis, are characterized by enhanced osteoclastic 
bone resorption relative to bone formation. In recent years, 
significant progress in the mechanisms of osteoclast 
formation and activation, have been made, however, how 
GPCR/G proteins and RGS proteins regulate osteoclasts is 
largely unknown. Additionally, although numerous kinds of 
G-protein–coupled receptors and effectors such as 
calcitonin receptor, CaR, relaxin family peptide 1, GPR55 
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and cannabinoid receptor type 1 (36) have been identified 
in osteoclasts, the regulation of RGS protein has been 
relatively neglected. Calcium is an important signal for 
osteoclast motility downstream of tyrosine kinase signals 
(106). Osteoclasts, as calcium-mobilizing cells, have an 
active calcium regulatory system, including a membrane 
Ca2+-ATPase (107) and an endoplasmic Ca2+-ATPase 
(108). The basolateral membranes of osteoclasts are quite 
sensitive to elevated Ca2+; cytosolic Ca2+ rises, with cell–
matrix detachment and cessation of bone resorption (109). 
Takayanagi et al. (89) found that NFATc1, a member of the 
NFAT (nuclear factor of activated T cells) family of 
transcription factor genes, is the most strongly induced 
transcription factor gene following RANKL stimulation, 
and that RANKL stimulation results in the induction of 
Ca2+ oscillation and contributes to the sustained activation 
of NFATc1 (89). The NFATc1 expression is dependent on 
both the TRAF6 and c-Fos pathways (89). Our studies (92, 
110) as described previously, revealed that RGS10 and 
RGS12 are both essential for the terminal differentiation of 
osteoclasts induced by RANKL. Interestingly, recent study 
showed that RGS18 also play an important role in 
osteoclast differentiation (111). Here, we review their 
function and regulatory mechanism in following sections. 

 
5.3.1. RGS10  

Human RGS10 was first characterized by Hunt et 
al.(112), as a member of the RGS protein family. They 
found that RGS10 associates with the activated forms of 
two related G-protein subunits, Gαi3, and Gαz, but fails to 
interact with Gαs subunit. The mRGS10 gene is expressed 
predominantly in brain and testis (113, 114). It also 
expressed in atrial myocytes (115), B lymphocytes (114, 
116), and human monocyte-derived dendritic cells (29). By 
differential screening of a human osteoclastoma cDNA 
library, we found that the RGS10A isoform, but not the 
RGS10B isoform, is specifically expressed in human 
osteoclasts. The expression of RGS10A is also induced by 
RANKL in osteoclast precursors and is prominently 
expressed in mouse osteoclast-like cells. RGS10A silencing 
by RNA interference blocks intracellular Ca2+ oscillations 
and osteoclast differentiation. Reintroduction of RGS10A 
rescues the impaired osteoclast differentiation. RGS10A 
silencing also causes premature osteoclast apoptosis. 
RGS10A silencing affected the RANKL-Ca2+ oscillation-
NFATc1 signaling pathway (92).  To further understand the 
function of RGS10 in vivo, we generated RGS10-deficient 
(RGS10-/-) mice. Our result showed that RGS10-/- mice 
exhibit severe osteopetrosis and impaired osteoclast 
differentiation, which cannot be rescued by RGS12 (93). 
Ectopic expression of RGS10 dramatically increases the 
sensitivity of osteoclast differentiation to RANKL 
signaling. Deficiency of RGS10 results in the absence of 
Ca2+ oscillations and NFATc1. Ectopic NFATc1 
expression rescues impaired osteoclast differentiation from 
deletion of RGS10. We further found that RGS10 
competitively interacts with Ca2+/calmodulin and PIP3 in a 
Ca2+-dependent manner to regulate Ca2+ oscillations. 
Thus, our results reveal a mechanism by which RGS10 
specifically regulates the RANKL-evoked 
RGS10/calmodulin-Ca2+ oscillation-calcineurin-NFATc1 
signaling pathway in osteoclast differentiation. 

5.3.2. RGS12 
RGS12 is the largest protein in the RGS protein 

family based on its protein molecular weight. It was first 
identified by Snow et al (117). RGS12 mRNA is expressed 
in rat spleen, lung, prostate, testis, ovary, kidney and brain 
(117). The expression of RGS12 is also detected at 
different embryonic stages during mouse development 
(118). Due to its multi-domain architecture, RGS12 protein 
has the potential to regulate multiple signaling pathway 
components. It contains a RGS domain, which is 
responsible for GAP activity (119), and another Gα-
interaction region, the GoLoco motif, which has guanine 
nucleotide dissociation inhibitor (GDI) activity toward Gαi 
subunits (120, 121). RGS12 also has a pair of Ras-binding 
domains (RBDs) (122), suggesting that RGS12 may 
integrate signaling pathways involving both heterotrimeric 
and monomeric G-proteins. The long RGS12 splice variant 
has an N-terminal PDZ (PSD-95/Dlg/ZO-1) domain 
capable of binding the interleukin-8 receptor B (CXCR2) or 
its own C-terminal (119) and a phosphotyrosine-binding 
(PTB) domain that associates with tyrosine-phosphorylated 
N-type calcium channel (123). Several lines of evidences 
showed that cytosolic Ca2+ oscillations are generated 
mainly by influx of extracellular Ca2+ through multiple 
channels, which include L- and N-type channels, and Ca2+ 
influx is necessary for maintenance of oscillations(123-
126). Additionally RGS12 is capable of direct interaction 
with the N-type calcium channel through its PTB domain 
and modulates channel activity directly (123, 125, 126). 
Interestingly, by analyzing RGS12 gene expression pattern, 
we found that RGS12 is also prominently expressed in 
RANKL induced osteoclasts. Silence of RGS12 expression 
using RNA interference impairs phosphorylation of PLCγ 
and blocks Ca2+ oscillations, NFATc1 expression, and 
osteoclast differentiation. We further found that N-type 
calcium channels are expressed in RANKL induced 
osteoclasts and that RGS12 directly interacts with the N-
type calcium channels. Compared to RGS10 (93), RGS12 
does not binds with Ca2+/calmodulin and PIP3 in a Ca2+-
dependent manner during osteoclast differentiation. Instead 
of these bindings, it acts on N-type Ca2+ channels and CaR. 
Most recently, by specific deletion of RGS12 in osteoclast 
lineage by breeding RGS12flox/flox mice with CD11b-cre and 
Mx1-cre also cause osteopetrosis phenotype and impaired 
Ca2+ oscillations, which cannot be rescued by RGS10 
(Manuscripts submitted). We also found that 
overexpression of RGS12 PTB domain dramatically 
promotes osteoclast differentiation. Those results 
demonstrate that RGS10 and RGS12 proteins play different 
roles in regulating Ca2+ oscillations and osteoclast 
differentiation. Our data support that RGS12 regulates 
osteoclast differentiation through calcium channel-Ca2+ 
oscillation-NFATc1 pathway. 

 
5.3.3. RGS18  

Another RGS protein, RGS18, has been reported 
to play an important role in RANKL-induced osteoclast 
differentiation as a negative regulator (127).  Iwai et al. 
analyzed RGS18 expression in the macrophage/monocyte 
lineage cell line and the primary osteoclast precursor 
monocytes derived from mouse bone marrow, and found 
that both cell lines express mRNA for 10 different
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Table 2. RGS proteins in the regulation of bone  
Gene name Function Mechanism References 

RGS2 Increased osteoblastic activity Regulation of GPCR, PTH levels and  Ca2+ oscillations 
(31, 33, 34, 66, 67, 
69-71, 86, 101-104, 
130) 

Axin2 A key negative regulator of bone 
remodeling Regulation of Wnt signaling (50-53) 

RGS5 Osteoblast differentiation  Regulation of PTH levels (74) 
RGS10 Osteoclast differentiation   Regulation of Ca2+ oscillations and NFATc1 (92) 
RGS12 Osteoclast differentiation Regulation of calcium channel, Ca2+ oscillations and NFATc1 (93, 94) 
RGS18 Inhibiting osteoclastogenesis Regulation of acid-sensing OGR1/NFAT signaling pathway (127) 

 
 
Figure 1.  RGS proteins in the regulation of GPCR, PTH, and Wnt signaling pathways during bone remodeling. Binding of Wnt 
to the FZD receptor induces ß-catenin accumulation, which translocates to the nucleus to activate target gene transcription, which 
is important for osteoblast differentiation. Axin2, a member of the RGS family, is found to form a stable complex with β-catenin 
to prevent its activation without Wnt. In osteoblasts, binding of PTH to its G-protein-coupled receptor (PTHR/PTHrPR) induces 
the expression of RGS proteins such as RGS2 and RGS5 via activation of the cAMP/PKA- pathway. RGS2 predominately binds 
to the Gq-subunit of the G-protein complex and inhibits activation of the PKC/Ca2+ dependent signaling cascade, which is 
involved in osteoblast differentiation. RGS5 likely regulates osteoblast differentiation through the regulation of PTH levels. In 
osteoclasts, PKC/Ca2+-induced NFATc1 is crucial for osteoclast differentiation. PLC is suggested to regulate the NFATc1 
expression through IP3/DAG. RGS10 and RGS12 regulate the activity of Gαq and Gαi/o to activate PLC, which is critical for 
calcium oscillation and the activation of NFATc1. NFATc1 activation leads to osteoclast differentiation. RGS18 negatively 
regulates osteoclast differentiation through acidosis-induced osteoclastogenic OGR1/NFAT signaling pathway.  
 
mammalian RGS, including RGS18. Interestingly, they 
found that expression of RGS18 is down-regulated by 
RANKL. Silence of RGS18 using RNA interference 
prominently promotes RANKL induced osteoclastogenesis. 
Without RANKL stimulation, treatment with RGS18 
siRNA does not induce osteoclast formation, suggesting 
that RGS18 absence is not sufficient to stimulate 
osteoclastogenesis. Blocking of an ovarian cancer G-

protein–coupled receptor (OGR1), they found, can reverse 
the effect of RGS18 inhibition for osteoclastogenesis. 
Meanwhile, RGS18 is not involved in control of Gi 
signaling. Hence, they suggest that RGS18-targeted 
inhibition is dependent on Gq-protein signaling pathway 
via OGR1. Further study showed that overexpression of 
exogenous RGS18 inhibits the acidosis-induced NFATc1 
activation (127). Thus, the authors conclude that RGS18 
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acts as a negative regulator of the acidosis-induced 
osteoclastogenic OGR1/NFAT signaling pathway, and 
RANKL stimulates osteoclastogenesis by inhibiting RGS18 
expression.  

 
6. SUMMARY AND PERSPECTIVES 

 
The importance of GPCR and G protein signaling 

for determining bone cell growth and differentiation has 
been recognized for many years (129). After their discovery 
in the mid-1990s, RGSs were quickly appreciated as key 
players in the regulation of GPCR/G protein signaling. Many 
studies have been performed in osteoblasts, osteoclasts, as well 
as chondrocytes, each focusing on one or a few RGS proteins 
(Table 2). They have provided a wealth of information 
regarding the function and mechanisms of RGSs as modulators 
and integrators for GPCR and G-protein signaling as we 
described above and in Figure  1. Those studies not only 
enhance the understanding of RGS proteins in bone biology; 
but also open up a new approach to targeting RGS proteins in 
drug discovery. As more reports are being published on the 
function of this group of proteins, increasing attention would 
focus on RGS proteins as exciting new candidates for 
therapeutic intervention and drug development. 
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