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1. ABSTRACT 

 
Molecular simulation is increasingly used in 

many theoretical as well applicative fields in both Life and 
Material sciences. It relies on the capability of estimating 
the forces acting both inter- and intra-molecularly, 
providing configurations of minimum energy and sampling 
the configurational space consistently with the main 
statistical ensembles. In this context, the engine that 
approximates the temporal evolution and the force field that 
expresses the instantaneously occurring forces, i.e. 
Molecular Dynamics and Molecular Mechanics, 
respectively, are the crucial bases that need to be known 
and handled. Here, the fundamentals of these tools are 
provided, with particular attention to numerical and 
simulative aspects. 

 
 
2. INTRODUCTION: SAMPLING THE 
CONFIGURATIONAL SPACE 

 
A correct sampling of the phase space, consistent 

with the current thermodynamic ensemble, is instrumental 
to the estimation of free energy differences and profiles 
that, in turn, are key quantities for the description of the 
physical processes of practical interest, such as protein-
ligand binding (1). Different ensembles correspond to 
different experimental conditions and the most common are 
microcanonical, canonical and isothermal-isobaric. In the 
microcanonical ensemble (NVE), volume, number of 
particles and overall energy are conserved, in the canonical 
one (NVT) thermodynamic temperature is controlled in 
place of energy. Finally, in the isothermal-isobaric 
ensemble (NPT) temperature, number of particles and 
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pressure are controlled. For most applications, what is most 
important is to have an estimate of the probabilistic weight 
of the configurations of a system. For sake of clarity, we 
underline that we attribute to the term “configuration” its 
usual meaning in physics, that is an arrangement of N 
atoms in the Cartesian space described by the vector {x1, y1, 
z1, x2, y2, z2, …, xN, yN, zN}. This should not be confused 
with the meaning of “configuration” in chemistry, which 
refers to the absolute arrangements of atoms in a molecule 
provided by their chemical bonds. 

 
Regardless of the specific ensemble, 

configurational sampling can be performed via Monte 
Carlo (MC) methods, by suitable integration of the phase 
space sampling done through molecular dynamics (MD), 
and by means of hybrid variants of the two. 

 
The basic idea behind MC is to randomly 

generate configurations of the system compliant with the 
probability density function corresponding to the 
considered ensemble. MC moves can be performed in 
coordinate space only due to the possibility to separate 
potential from kinetic energy contributions to the partition 
function. Within the Metropolis formulation, the MC 
algorithm creates a Markov chain of states by making at 
each step a trial move (i.e. randomly drawing a new 
configuration state) and accepting or rejecting the move so 
as that, in the end, the final relative occupation of the states 
corresponds to the ratio of their statistical weights in the 
considered ensemble (2). Differently, MD methods attempt 
to solve the equations of motion supposedly mimicking the 
actual dynamics of a real system (3-4). The simplest set of 
equations are the Hamilton equations, where energy is 
conserved and therefore they are suited to sample the 
microcanonical ensemble. In order to recover the canonical 
distribution of microstates, or possibly to sample other 
ensembles, the equations of motion must be properly 
adapted. This may involve deterministic or stochastic 
corrections that account for the interaction with the 
environment. The algorithms that “correct” the Hamilton 
equations and that are used to sample ensembles other than 
the microcanonical one, are usually referred to as 
thermostats or barostats according to whether they aim at 
controlling the thermodynamic temperature or pressure, 
respectively. It should be noted that, under the ergodic 
hypothesis, when using MD the ensemble averages are 
actually calculated in the form of time averages (5). 
Similarly to what has been said about the MC method, and 
for the same reasons, also MD is most often used to sample 
points in the configurational space, rather than in the whole 
phase space. With some caveats, MD is also used to 
estimate correlation functions and corresponding 
observables such as the diffusion coefficient (6). 

 
MD methods became much more popular than 

MC in the community dedicated to the simulation of 
biological systems. This is mainly due to the fact that, when 
dealing with a system of several tens of thousands atoms, 
the probability of randomly performing a trial move 
compatible with the correct ensemble is so low that MC 
becomes computationally unaffordable. In spite of this, the 
importance of the role of MC in computer assisted drug 

design should not be underestimated: virtually all the 
docking applications are founded on MC background, and 
relative binding free energies are routinely estimated by 
means of MC frameworks, also because they adopt a 
simplified representation, e.g. implicit solvent, with much 
less degrees of freedom. However, the present work will 
primarily deal with MD based methods. 

 
It is worth pointing out that while, according to 

the principle of ensemble equivalence, in the 
thermodynamic limit – that is in the limit of an infinitely 
large system – the average values calculated for the basic 
thermodynamic properties are consistent among different 
ensembles, fluctuations (defined as the absolute deviation 
from the average value) are not. Thus, care must be taken 
in the choice of the proper statistical ensemble whenever 
properties depending upon fluctuation averages instead of 
the averages themselves are derived, and also when the 
simulated system is so small that the thermodynamic limit 
is far from being reached. A conceptually similar problem 
concerns the possibility to calculate entropy related 
properties, such as the free energy or the chemical 
potential, by making use of standard sampling techniques.  

 
In this work, we will first provide the basic 

numeric algorithms underlying MD, then we will focus on 
molecular mechanics, that is on the models (force fields) 
that provide the interatomic forces used throughout the 
dynamics. 

 
3. MD: NUMERICAL INTEGRATION OF THE 
EQUATIONS OF MOTIONS 

 
The basic idea behind MD is to study the time 

evolution of a microscopic system by solving the Newton’s 
equations of motion:  

 
 

 1) 
 

where fi is the net force acting on the ith (i = 1, …, N) atom 
having mass mi, the bold face identifies vectors and tensors, 
and the nth over-dot notation stands for n differentiations of 
positions over time. For convenience, while the formal 
description of the phase space envisions positions and 
momenta as independent variables, we will often consider 
the description in terms of positions and velocities. These 
are two equivalent approaches that lead to the Hamilton 
and the Eulero-Lagrange sets of equations, respectively. 
Eq. (1) represents a set of 3N coupled second order 
differential equations: once initial conditions are specified, 
positions and velocities for all the particles may be 
calculated by integration over time. Initial conditions for 
positions are often taken from experimental data, when 
available, such as crystallographic structures. The 
corresponding conditions for velocities are suitably drawn 
from their probability distribution, which is known for the 
most common statistical ensembles. 
 

For isolated systems, the forces acting on the 
atoms are only due to their interactions with the other 
particles constituting the system itself. As we will detail 
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later on, in the classical MD simulation, the physics 
underlying the atomic interactions is described by means of 
a properly parameterized scalar potential energy function 
(VFF(r) in Eq. (1)), and the model arising by such a 
representation is referred to as the force field. Whenever the 
forces can be calculated as the gradient of such a potential 
energy function, the mechanical system is said to be 
conservative and the total energy (the sum of the potential 
and kinetic energy) is a constant of the motion. Since forces 
depend upon the particle’s positions, Eq. (1) is an example 
of a many-body problem which can be analytically solved 
only for extremely simple systems. In any other case, 
numerical methods must be employed, unavoidably leading 
to approximate solutions with respect to the analytical 
trajectory. By using finite differences methods, the 
integration of the equations of motion is performed at 
discrete time intervals δt, called time steps, by means of 
algorithms referred to as integrators. The foundation for 
any integrator scheme is the Taylor expansion of the 
coordinates around the time: 

 

 2) 
 

For simplicity, in Eq. (2) the expansion is 
truncated at the fourth order. Similarly, the order of an 
integrator indicates the smallest term in the time step 
expansion not included explicitly. It represents a measure 
of the precision of the algorithm (higher order schemes 
introduce a lower amount of numerical error). The order is 
an important feature for an integrator, however when 
choosing an algorithm, many other intertwined aspects 
must be considered. From a purely mechanical perspective, 
the time reversal symmetry is the minimal requirement that 
should be satisfied. This means that at any point in time, if 
the momenta of all the particles change sign, the same 
trajectory must be covered back leading to the exact initial 
condition of positions and velocities. It is important to 
stress that this is not concerned with the finite precision 
which intrinsically affects numerical schemes: some 
algorithms satisfy the time reversibility requirement only in 
the limit of an infinitely small time step.  
 

An ideal integrator should preserve conservation 
laws as well. If the Hamiltonian is a constant of motion, the 
ability of an integrator to preserve it is referred to as 
stability. Clearly, numerical precision and, most 
importantly, the magnitude of the time step play a critical 
role in determining the stability of an algorithm. At equal 
time steps, high order schemes naturally provide better 
short term energy conservation with respect to low order 
schemes, but this trend is not necessarily preserved at long 
time scales, since other aspects come into play (see below). 
Conversely, a stable algorithm is able to tolerate a more 
aggressive time stepping without returning a significant 
energy drift. The latter feature is often referred to as the 
robustness of an algorithm. Finally, the accuracy of an 
integrator is defined as the divergence of the numerical 
trajectory from the analytical one, and it is determined by 
most of the factors considered so far. Due to the 

unavoidable introduction of errors during the numerical 
integration of the equations of motion, most of the 
algorithms used in MD lead to an exponential divergence 
of the calculated trajectory with respect to the analytical 
solution. This is a case of Lyapunov instability. Despite the 
fact that it is unfeasible to follow the “real” trajectory for a 
many-body system, such instability is not as problematic as 
it might appear since the ultimate aim is to generate sample 
configurations consistent with the equilibrium probability 
density so to be able to calculate average properties rather 
than depicting the detailed time evolution of a system. 

 
Concerning the statistical mechanical aspects of 

the integration of the equations of motion, it must be 
stressed that, according to the Liouville theorem, in a real 
Hamiltonian dynamics the volume of phase space occupied 
by a “cloud” of replicas of the system is conserved. This 
means that the points in phase space corresponding to a 
given value of constant energy encompass a certain 
volume that is kept constant during the time evolution of 
the system. As a consequence, any integrator that does 
not preserve the phase space volume implicitly violates 
the energy conservation laws. Usually, non-reversible 
algorithms are also non-volume preserving, leading to 
long term energy drift issues. Integrators that are both 
time reversible and volume preserving are said to be 
symplectic, and symplecticity is actually the minimal 
requirement needed for an integrator to conserve energy. 

 
In terms of efficiency, the calculation of the 

forces represents the real bottleneck for any MD code. 
Consequently, a well performing integrator is one 
involving the smallest number of force evaluations per 
iteration. Lastly, the choice of the time step is always 
dictated by a tradeoff between the accuracy of the 
numerical trajectory and computational resources. 
Clearly, to some extent, robust algorithms allow the use 
of larger time steps. However, as a general rule, to 
obtain acceptable energy conservation, the time step 
should be chosen to be at least one order of magnitude 
smaller than the fastest period of motion contemplated 
by the physics of the problem. When simulating 
biological systems, the highest frequency oscillations 
are represented by bonds involving hydrogen atoms, 
which have a period of approximately 10 fs. As a 
consequence, the time step used to perform biological 
simulations should be smaller than 1 fs, inevitably 
leading to a very hard sampling of the phase space. This 
is why some MD engines apply suitable constraints on 
hydrogen trajectories so as to avoid the calculation of 
the highest frequency forces, leading to the possibility 
of using a time step of 2 fs. In the following sections, 
the basic ingredients for some simple integrator schemes 
will be provided along with some notes covering the time 
step issue. 

 
3.1. Discretization strategies 
3.1.1. Verlet algorithm 

The Verlet algorithm (or position-Verlet) 
represents the prototype for all the integrators based on the 
direct solution of the equations of motion. By summing the 
expressions (t + δt) and (t – δt) of the Taylor expansion 
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reported in Eq. (2) one obtains the Verlet equation for 
advancing positions (7): 

 

 3) 
 

As it may be noticed from Eq. (3), velocities are not 
explicitly present in the Verlet algorithm. Still, they are 
needed to calculate the kinetic energy and other properties 
depending on them. By subtracting the expressions of the 
Taylor expansions of Eq. (2), it is possible to derive a 
useful relation to recover velocities: 
 

 4) 
 
However, from Eq. (4) it is clear that velocities at 
time t are available only once the positions have 
reached the next time step (t + δt). Beyond its 
simplicity, the Verlet algorithm has many appealing 
features: it is time reversible, stable (then it is also 
symplectic) and moderately robust. The main 
drawbacks of the Verlet algorithm are both the 
relatively poor precision (in the right hand side of Eq. 
(3) terms of different order in the time-step expansion 
are mixed together), and the definitely uncomfortable 
handling of velocities. 

 
3.1.2. Leap-frog 

The idea behind the leap-frog algorithm is to 
explicitly handle velocities, and it is based on the 
possibility to evaluate them at each half time step. From the 
derivation of the Verlet algorithm (Eq. (3)), after 
calculation of the forces at time t, the velocities may be 
updated according to (8) 

 

 5)  
 
then, the positions are advanced by using the following 
relation derived from Eq. (5): 
 

 6) 
 
An advantage of the leap-frog algorithm over the Verlet 
integrator is a greater precision. However, the calculated 
positions and velocities are shifted by a factor δt/2. In order 
to calculate the total energy, the current velocities at time t 
must be re-derived: 
 

 7)  
 

3.1.3. Velocity-Verlet 
The velocity-Verlet algorithm is an integrator 

able to store positions, velocities and accelerations at the 
same time t (9). Actually, velocities are evaluated at each 
half time step as in the leap-frog algorithm, but since they 
are evaluated twice per iteration, the synchronization with 
positions is ensured. The advancement in position directly 
follows the Taylor expansion of Eq. (2): 

 8)
 
Then, the velocities are propagated according to: 
 

 9) 
 

 10)
 
In between the velocities half steps, the evaluation of the 
forces at time (t + δt) is performed. Then, the net velocity 
update is obtained: 
 

 
 11)
 
The velocity-Verlet integrator is stable and well behaved, 
and, in addition, high order variants have been developed in 
order to increase its precision. 

 
All the Verlet-like integrators considered are 

efficient algorithms, involving just one force evaluation per 
iteration. A scheme summarizing their details and 
differences in propagating positions, velocities and 
accelerations is depicted in Figure 1. 

 
It is clear that, especially in case of large scale 

systems, using a time step smaller than 1 fs makes 
extremely long, if not impossible, an efficient sampling of 
the phase space, thus severely hampering the obtainment of 
converged ensemble averages estimates in a reasonable 
amount of computer time. Without claiming neither any 
completeness nor a thorough description (that would be out 
of the purpose of the present work), it is nonetheless worth 
giving the reader some flavor about some among the most 
widely used computational solutions aimed at increasing 
the simulated time at a given computational cost. 

 
The first solution comes from the observation 

that in conventional MD simulations, most of the time is 
spent to calculate the forces between every pair of atoms 
composing the system. The simplest way to deal with this 
problem in case of short range potentials is to use distance 
cutoffs in order to limit the force evaluation to the nearest 
particles. However, to do so the information on which 
particles are located within the cutoff radius is needed, 
and the effort to calculate it at each time step is almost 
comparable to that required to perform the full force 
evaluation. By using the Verlet neighbor list the cutoff 
radius rc is surrounded by an additional layer rl, and the 
list of the neighboring atoms is updated only every 10 or 
20 time steps (7). Thus, between updates, only the atoms 
included within the distance corresponding to the external 
layer are checked, hence saving computational time. The 
method is reliable as long as the external layer is large enough 
so that between consecutive updates no atom enters nor 
leaves the cutoff sphere where the interactions are 
calculated. In other words, during the update period, the 
particles displacements must be always smaller than |rl − rc|.
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Figure 1. Pictorial scheme of the advancement in position, velocities and accelerations for the Verlet-like integrator algorithms 
(adapted from (5)). The available, stored, variables at a given MD step are shown as blue boxes, whereas red dots represent the 
quantities to be calculated. The connections between these latter and those required to perform the calculation are depicted by 
arrows. In the first step of the Verlet integrator cycle, positions at time t and (t – δt) are available, as well as accelerations at time 
(t – δt). From positions at time t, forces and, consequently, accelerations are calculated. The cycle is advanced by updating the 
acceleration array. Then, also positions are progressed according to Eq. (3), leading to the new starting configuration for the next 
cycle. Velocities are never stored in this algorithm. Within the Leap-Frog algorithm, velocities are stored at each half time step, 
and this is illustrated in figure by a shift of a factor δt/2 in the velocity boxes with respect to position and acceleration boxes. The 
cycle starts with stored positions, velocities, and accelerations at the time step t, (t – δt/2), and (t – δt), respectively. As in the 
Verlet integrator, the first step of the cycle involves a force evaluation to calculate the accelerations at time t, and the concurrent 
update of the accelerations of the previous step. Then, in the two following steps, velocities and positions are advanced according 
to Eq. (5) and (6), respectively. Finally, the position array is updated, recovering the initial configuration of the cycle. Lastly, in 
the Velocity-Verlet integrator, velocities are again shifted by a factor of δt/2 compared to positions and accelerations, but since 
they are evaluated twice per cycle, they are alternately synchronized with the advancement of positions and accelerations. This 
double behavior of velocities is depicted in the figure as solid boxes centered at half time steps and dotted boxes at full steps. 
Positions, velocities, and accelerations at the time t are available at the beginning of the cycle. First, positions are advanced to (t + 
δt) according to Eq. (8), and at the same time the first evaluation of velocities (to be advanced to (t + δt/2)) takes place (Eq. (9)). 
Then, the force evaluation leads to the accelerations at the time (t + δt), whereas the second evaluation of velocities (Eq. 10) 
ensures their temporary alignment with full steps. The original configuration of the cycle is finally achieved by discarding the 
velocities at half steps. Notably, all the algorithms discussed here involve only one force evaluation per cycle. 

 
A more elegant way to reduce the computational 

demand is based upon the fact that in general different 
interactions evolve in time with different rates. Taking 
advantage from this understanding, Tildesley and 
coworkers developed a multiple time stepping algorithm 
where the total force acting on the atoms is split into two 

components that are evaluated at different time frequencies 
(10). The primary force component is due to the closest 
neighbor atoms located on a sphere of radius r1, whereas 
the secondary involves atoms included between r1 and an 
external shell of radius r2. In correspondence of the slowest 
time step, the forces due to the primary and secondary 
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layers are explicitly evaluated as well as the time 
derivatives of the secondary forces up to a given order. 
Then, primary forces are explicitly calculated at the 
shortest time step, and secondary components are estimated 
using a Taylor expansion exploiting the previously 
computed time derivatives.  

 
An alternative formulation based on the 

classification of forces upon the interaction type was 
provided by Martyna and colleagues (11). Accordingly, 
exploiting the Liouville formalism, a reversible and volume 
preserving multiple time stepping algorithm was derived 
(reversible reference system propagation algorithm, r-
RESPA). 

 
Another class of methods that is commonly used 

in order to increase the sampling efficiency is based upon 
the idea of eliminating the fastest oscillators (which usually 
correspond to covalent bonds involving hydrogen atoms) 
from the numerical integration of the equations of motion 
by appropriately constraining some degrees of freedom. By 
doing so, it is possible to safely scale up the time step 
without incurring into energy conservation problems. 
Within the SHAKE algorithm, which has been originally 
developed for the Verlet scheme, the equations of motion 
are solved while at the same time the imposed constraints 
are satisfied (12). A velocity-Verlet variant of the method, 
usually referred to as the RATTLE algorithm, was also 
derived (13). By constraining the bond stretching for bonds 
involving hydrogen atoms, the time step can be increased 
approximately of an order of magnitude. With these 
methods, time steps of 1.5 to 2.0 fs can be safely employed. 
It is important to note that for most of the applications the 
gain in speed comes with a negligible loss of accuracy in 
the overall representation. 

 
3.2. Numerical treatment of long-range interactions 

As it will be shown in more detail later in this 
work, there can be terms in the potential energy presented 
in Eq. (1) that connect remote as well as closer parts of the 
overall system. These are termed “long-range” interactions 
and mostly arise from electrostatics, as shown by the 
behavior of Coulomb law describing forces between 
charged entities. While in principle this does not involve 
any problem, the computational repercussions of 
calculating forces among all the interacting centers of a 
system can be daunting, as it scales as the square of these 
centers.  

 
The most naïve solution to this issue is to put a 

cutoff on these forces, however, it can be shown that this 
approach is appropriate only when the long distance 
potential energy decay is faster than r –3, which is not the 
case for the electrostatic potential generated by charges nor 
by that of dipoles. The consequences of this crude 
approximation are described by Steinbach and Brooks (14). 
There are alternatives that reduce the computational cost of 
the simulation while preserving the long-range character of 
these forces. Among them, we would like to mention the 
Ewald summation, the particle-mesh based methods and the 
fast multipole methods (15-16). Their detailed description 
is out of the scope of this work, we will limit ourselves to 

illustrate the basic underlying ideas of the first two and of 
their widespread contamination, the particle mesh Ewald 
method, and to discuss their use in the context of the 
simulation of biological systems. 

 
Under the assumption that system is overall 

neutral and periodic the Ewald summation technique 
consists in adding, and subtracting, a Gaussianly distributed 
screening charge at each charge’s site, assumed to be point-
like. The overall amount of each screening charge is equal 
and opposite to the co-centered original point charge. In 
this way, the forces exerted by the screened point charges 
have now become short-range and a distance cutoff can be 
applied without serious repercussions. On the other hand, 
the charges that we have to subtract in order to compensate 
for the added screening generate a potential that, due to the 
periodicity of the system, can be conveniently calculated in 
the Fourier domain. Ad hoc procedures have to be taken so 
as to avoid self-interactions. Full details, and the scaling 
order of the algorithm, O(N3/2), are described in the 
dedicated literature (17-20).  

 
The particle-particle/particle-mesh based 

approaches try to improve the Ewald summation by 
modifying the calculation occurring on the Fourier space. 
They exploit the fact that the electrostatic interactions can 
be very conveniently calculated in the Fourier reciprocal 
space if the charges are located on a regular grid. In this 
case the good scaling, O(NlogN), provided by the Fast 
Fourier Transform algorithm can be exploited (21). In the 
first of these schemes, described by Hockney and 
Eastwood, all the charges in the physical space were 
mapped onto the grid, leading to good performance but not 
very high precision (22). Since then, the method has been 
improved by splitting the calculation in a short-range and a 
long-range contribution, similarly to what is done in the 
Ewald summation method and originating the so-called 
Particle Mesh Ewald technique (23-24). Overall, the latter 
method is the most frequently used and most convenient for 
medium sized system, while better scaling alternatives, 
such as the fast multipoles approach, start showing their 
merits only for large systems (16). It is worth pointing out 
that the underlying hypotheses of neutrality and periodicity 
are not the most suitable for the simulation of biomolecular 
systems. More recently, ad hoc approaches have been 
devised specifically for the simulation of biomolecules in 
aqueous solution, that do not need either neutrality or 
periodicity but they are not so widely used (25-26). 

 
3.3. Non-hamiltonian dynamics: thermostats and 
barostats 

In the canonical ensemble, the thermodynamic 
temperature is kept fixed at a specified value by the 
presence of a thermal bath, which however permits 
fluctuations in the instantaneous kinetic energy. In order to 
simulate a closed system where energy is allowed to flow 
in and out, in the heat form, suitable algorithms named 
thermostats are employed. Although the aim of a 
thermostat is to control the temperature of the system, the 
analogy with the experimental heat bath is not necessarily 
strict. Indeed, thermostats are algorithms designed to 
properly alter the Newton equations of motion in order to 
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attain the canonical distribution of microstates, even though 
no heat flow is actually simulated. To reproduce the correct 
canonical ensemble statistics is clearly a more stringent 
requirement than simply controlling the temperature, and 
for the same reason not all the methods afterward reported 
should be rigorously called thermostats. 

 
By altering the equations of motion, the dynamics 

of the system is unavoidably affected as well. Considering 
a macroscopic system in contact with a heat bath at the 
temperature T0, the rate of change on the average 
temperature can be expressed as (27): 

 

 12)  
 
where ζ is the system specific temperature relaxation time, 
which is a function of the ratio between the isochoric 
(constant volume) heat capacity and the thermal 
conductivity of the system. Thus, provided that the 
trajectory achieved is continuous, the thermostats that 
are able at best to represent the dynamics of the system 
are those inducing fluctuations rate of the order of ζ 
(27). 
 
3.3.1. Velocity rescaling methods 

Velocity rescaling is the simplest way to control 
temperature even though it is not the most convenient 
approach to be used (28). The idea is to rescale velocities 
by a factor of λ at every given number of time steps so that 
the instantaneous temperature T(t) given by the 
instantaneous kinetic energy provides the desired 
equilibrium temperature value. From energy equipartition 
principle, it is possible to express this temperature 
difference as: 

 

 13)  
 
Thus, the rescaling factor is derived as: 
 

 14) 
 

It must be kept in mind that instantaneous and 
thermodynamic temperature are different quantities: the 
former is a mechanical quantity, whereas the latter 
instantiates a macroscopic concept. As it has been 
previously discussed, to obtain the canonical distribution of 
states, the instantaneous temperature fluctuations are 
necessary. Unfortunately, in the limit of rescaling velocities 
at each step according to Eq. (14), the kinetic energy results 
to be constrained to its average value with a null variance, 
which contradicts the statistical mechanical behavior of the 
canonical ensemble. 

The weak coupling approach introduced by 
Berendsen and coworkers is similar in spirit to the velocity 

rescaling method (29). However, in this case the 
temperature is allowed to relax to the desired macroscopic 
value at a rate determined by a coupling parameter τ. From 
Eq. (12) the rate of the kinetic temperature change is thus 
expressed as: 

 

 15)
 
Considering a temperature difference evaluated at each 
time step δt, from Eq. (13) the following relation is 
achieved: 
 

 16) 
 
Thus, equating (15) and (16) the rescaling factor for the 
Berendsen thermostat is readily obtained: 
 

 17)
 

Note that, depending on the specific integrator 
used, the instantaneous temperature can be calculated in a 
previous instant than the current one. For the special case 
of τ = δt (tight coupling) the velocity rescaling method is 
recovered, whereas for values of τ → ∞ (infinitely loose 
coupling) the scaling factor approaches the unity, leading to 
a microcanonical sampling. Consequently, τ behaves as an 
empirical parameter whose choice somehow affects kinetic 
energy fluctuations; values of τ ≈ 0.1 ps are typically used 
in MD simulations of condensed-phase systems. As a 
matter of fact, even though the trajectory obtained is 
continuous, the canonical distribution in general cannot be 
rigorously achieved with this scheme, and for this reason 
more sophisticated methods are advisable. 

 
3.3.2. Stochastic velocity reassignment 

With the Andersen thermostat, the temperature is 
controlled by periodically reassigning the velocity of randomly 
chosen particles according to the desired Maxwell-Boltzmann 
distribution (30). Thus, by applying stochastic collisions to the 
atoms of the system, a virtual heat bath is actually mimicked. 
Closely resembling MC moves, these collisions allow the 
system to jump between different constant energy surfaces. In 
between successive velocity reassignments, positions and 
velocities evolve in time according to the Hamiltonian 
dynamics, and the sampling in a constant energy surface is 
recovered. If a proper collision frequency is chosen, in the limit 
of an infinitely long sampling, the Boltzmann distribution is 
ensured by the stochastic nature of the reassignment. 

 
3.3.3. Extended system methods 

The idea of the thermostat introduced by Nosé, 
and later reformulated by Hoover, is to consider the thermal 
bath as an integral part of the system (31-33). To do so, the 
system is extended by means of a pair of accessory 
“conjugated” variables that should account for the heat 
flow with the thermal bath. The original detailed 
formulation is a bit involved but, more recently, a simpler 
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one has been devised; according to this latter, the new 
equations of motions read (27): 

 

 18) 
 
This expression is very similar to a traditional Hamiltonian 
dynamics with the addition of a viscous frictional force 
with the important difference that here χ is not a positive 
constant but a further dynamical variable that can have any 
value in the real number set. Its role is to either inject to or 
withdraw energy from the system depending on the 
instantaneous temperature. Its dynamics is determined by: 
 

 19) 
 
Consistently with the intuitive behavior of this parameter, it 
increases if the current instantaneous temperature of the 
system is higher than the target one, and vice versa. τNH is a 
coupling parameter that controls how quick the correction of 
the kinetic energy acts. If it is large the energy flow is slow 
(loose coupling) leading to small temperature fluctuations. The 
dynamical system built in this way admits a conserved quantity 
in the extended space but it is no longer Hamiltonian in the 
sense that what is conserved is not the total energy. In 
conclusion, given an ergodic and conservative system, the 
Nosé-Hoover thermostat provides a deterministic dynamics, 
with a continuous trajectory that samples a canonical 
distribution of microstates. Improvements over the original 
definition, such as the so called Nosé-Hoover chains, were 
developed to overcome the non-ergodic behavior of the Nosé-
Hoover thermostat in the context of small or stiff systems or of 
systems at low temperatures (34). 

 
3.3.4. Stochastic dynamics 

Given the complexity introduced by the Nosé-
Hoover chains, it is worth wondering whether it is possible 
to sample the canonical distribution with simpler schemes. 
The most natural way to proceed is to use the Langevin 
equation of motion (35): 

 
 20) 

 
The right hand side in Eq. (20) includes: the forces 

on the atoms as derived from the potential energy function, a 
frictional term and a stochastic force Ri. The frictional 
coefficient γ (which has the units of time-1) has positive values 
and controls the damping of the thermostat, whereas the 
stochastic forces obey to a Gaussian distribution with zero 
mean and no correlation in time. It can be shown that the 
Langevin equations of motion sample the canonical 
distribution and, even though its dynamics is not deterministic, 
they produce a substantially smooth trajectory, in contrast to 
the Andersen thermostat. For those reasons, and its intrinsic 
simplicity, Langevin dynamics has recently become a very 
popular standard to control temperature in MD simulations. 
 
3.3.5. Potential pitfalls in the application of thermostats 

It is worth mentioning two problems that can 
arise when applying a thermostat to molecular systems 

involving distinct sets of variables with either (i) very 
different characteristic frequencies or (ii) very different 
heating rates. Then, the coupling of all the degrees of 
freedom to the same thermostat may lead to different 
effective temperatures for the mentioned distinct subsets, 
due to a too slow exchange of kinetic energy between them. 
A typical example is the so-called “hot solvent – cold 
solute problem” in simulations of biomolecular 
macromolecules. Because the solvent is more significantly 
affected by algorithmic noise (e.g., due to the use of an 
electrostatic cutoff), the coupling of the whole system to a 
single thermostat may cause the average solute temperature 
to be significantly lower than the average solvent 
temperature. A possible solution to this problem is to 
couple separately the solute and solvent degrees of freedom 
to two different thermostats. Another problem arises when 
the thermostat acts directly to the absolute atomic velocities 
without removing the velocity of the center of mass. In this 
case, the linear and angular momenta may be not conserved 
and the thermostat could lead to violation of energy 
equipartition (36). 

 
3.3.7. Barostats 

Realizing that the pressure is controlled by 
scaling the volume of the system under investigation, 
similarly to the temperature baths, analogue algorithms for 
pressure control may be derived. Along with the 
thermostat, a Berendsen variant for the pressure coupling 
was developed whereas Andersen proposed a barostat 
based on an extended system formulation (29). Depending 
upon the physics of the system, an isotropic or anisotropic 
rescaling of the box axis may be chosen. Eventually, with 
the aim of studying solid state phase transitions, it is worth 
mentioning that Parrinello and Rahman extended the 
Andersen formulation to allow the box to change its shape 
as well as size (37-38). 

 
4. DESCRIBING THE ATOMIC INTERACTIONS: 
MOLECULAR MECHANICS AND FORCE FIELDS 

 
Modeling molecular interactions is an important 

and long standing goal of physics which goes back to the 
late XIX century when the early phenomenological theories 
of real gases were developed (39). A detailed 
understanding of the atomic and molecular driving forces 
became possible after the advent of the theory of quantum 
mechanics (QM). In particular the Schrödinger equation 
(1926) provided a theoretically powerful albeit in practice 
extraordinarily complex route to calculate geometries and 
other molecular properties. At the atomic scale, if no 
nuclear decays are considered, the only relevant physical 
force is the electrostatic interaction between nuclei and 
electrons. The Schrödinger equation explicitly takes into 
account these interactions but, due to its inherent 
computational complexity, several approximations must be 
taken. Within the largely employed Born-Oppenheimer 
(BO) approximation (1927), the nuclear and electronic 
problems are separately treated. This is justified by the fact 
that electrons are particles much lighter (roughly 2000 
times) and faster than nuclei, hence it is reasonable to 
assume that in most cases electrons instantaneously 
rearrange their configuration over a given nuclear 
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geometry. In the first step of the BO approximation, the 
electronic Schrödinger equation is solved, under the 
assumption that nuclei are fixed in a given conformation, 
usually the equilibrium one. In the second step, the result of 
the previous one is used to derive an external field, the 
potential energy surface (PES), for a Schrödinger equation 
containing only the nuclei. Unfortunately, even with the 
currently available computational resources, and despite 
the simplification provided by the BO approximation, 
this kind of approach remains a cumbersome task and 
many other approaches to study the quanto-mechanical 
behavior of molecules have been devised. Another 
useful tool is provided by the Density Functional Theory 
(DFT), where the simpler, but still daunting, problem of 
finding the electronic density of a molecular system, 
especially in its ground state, is faced (40). From that 
density, all physical observables at the ground state can 
be derived. DFT can be used, for instance, in the context 
of biomolecular simulations, especially to describe 
enzymatic reactions, that have an inherent quanto-
mechanical nature. Also DFT, however, is too 
computationally demanding do describe the time 
evolution of many systems of practical interest and is 
out of the scope of this work. 

 
A much less costly alternative to model 

molecular geometries is represented by building classical 
interaction potentials between atoms, known as force fields 
or molecular mechanics. Still relying upon the BO 
approximation, force fields bypass the issue of solving the 
Schrödinger equation by expressing the potential energy as 
a function of the nuclear coordinates only, where the 
dependence upon electrons is implicitly treated by a 
suitable parameterization. As a consequence, this kind of 
approach can hardly describe the formation or breaking of 
covalent bonds nor any other mechanism where the 
knowledge of electronic structure or of its rearrangement is 
explicitly required (but see references for reactive force 
fields shown below). 

 
A force field is univocally defined only once both 

the functional form of the energy and the parameters are 
chosen. Distinct force fields may share the same functional 
form but differ in the employed parameters, thus diverging 
results may be expected. A common founding assumption 
for force fields is the concept of transferability, which is 
the possibility to treat in the same way (i.e. with the same 
set of parameters) identical chemical groups located in 
different molecular environments. Thus, for each structural 
unit, parameters are generally derived by maximizing the 
agreement of the force field outcome with either available 
experimental data or more costly QM-based calculations on 
small representative molecules. From a practical 
standpoint, the transferability concept is implemented in 
force fields in the form of atom types by which the 
information concerning the atomic number, hybridization 
and local environment are specified and stored. As a 
general rule, the larger is the number of atom types 
provided, the greater is the average accuracy achievable 
against a diverse set of compounds. From this perspective, 
force fields are usually classified as general or specific, 
depending on the design and hence the target of their use. 

Accordingly, Amber (41), CHARMM (42), OPLS (43), and 
GROMOS (44), are the most popular specific force fields 
used to simulate proteins in condensed-phase environment, 
whereas MM2 (45), MM3 (46-48), MMFF (49-51), and 
Dreiding (52), are examples of general force fields usually 
employed to calculate properties of small organic 
molecules in gas-phase. As already mentioned, since 
electrons are treated implicitly, no chemical reactions 
(where redistributions of the electronic density over 
nuclei occur) can be actually simulated with force fields 
(with the exception of reactive force fields (53), and 
transition states force fields (54), which will not be 
covered here). The information concerning the mutual 
connectivity among atoms defines the topology for the 
given system, which is (normally) kept constant during 
molecular mechanics calculations. The level of accuracy 
used to describe the underlying chemistry of the 
problem under investigation is usually referred to as the 
representation. For reasons of computational efficiency, 
earlier force fields used to treat explicitly only the 
hydrogen atoms bound to hetero atoms (United Atom 
representation, UA) (55-58). As computer power has 
grown over the years, All Atoms (AA) extensions have 
been developed as well (43, 59-60). Recently, the need 
to speed up the calculations especially in the field of 
polymers and biological membranes where large 
systems are involved and a very detailed atomistic 
description is generally not needed, prompted several 
groups to adopt a so called Coarse Grain (CG) 
representation (61-62). Within CG models, groups of 
atoms (typically 3 or 4) are joint together and modeled 
as single units called beads. 

 
The aim of the present section is to provide a 

general overview regarding the most commonly employed 
force fields for the study of protein-ligand interactions. For 
an exhaustive excursus on the protein force fields 
evolution, the reader is redirected to the literature (63). 
Here, some peculiar aspects regarding the functional 
form and the parameterization procedure will be covered 
mainly in the context of the most popular force fields 
designed for protein modeling (especially, Amber, 
CHARMM, OPLS and GROMOS), but gas-phase force 
field characteristics will be occasionally discussed too. 
Then, some intrinsic issues related to the use of simple 
functional forms and cheap but not optimal 
representations will be addressed in the light of the 
ability to reproduce selected interactions frequently 
encountered in protein-ligand binding. Finally, the topic 
of polarization will be briefly discussed. 

 
4.1. The functional form in additive force fields 

The functional form of the force field specifies 
the way different contributions to the potential energy of 
the system are taken into account as a function of the 
atomic (i.e. nuclear) coordinates. Since several types of 
force fields have been developed over the years with both 
different purposes and distinct ranges of applicability, only 
the fundamental aspects of the functional form will be 
covered here. Without any claim of completeness, a general 
functional form for a force field may be expressed as 
follows:  
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Figure 2. Schematic picture of atomic interactions and 
their relative topological relationships in a typical force 
field model. The molecular model of the alanine dipeptide 
in the C7eq conformation is taken as a reference 
compound. In the Figure, an example of a proper dihedral, 
an improper dihedral, and a Urey-Bradley interaction are 
highlighted in blue, red, and green, respectively. For each 
of these bonded contributions, the relative topological 
relationships of the atoms involved are illustrated by a 
progressive numeral index (the starting index is arbitrary). 
A non-bonded contribution between atoms separated by 
more than four bonds, in this case an intermolecular 
hydrogen bond, is represented by a dotted line. 
 

 21) 
       

As reported in Eq. (21), from a topological point 
of view, it is convenient to group the single contributions of 
a force field as bonded (b) and non-bonded (nb) terms. 
Clearly, this separation strictly applies only as long as a 
non-reactive force field description is considered. 
Accordingly, bonded terms are in turn composed by the 
stretching (1-2 interactions, i.e. between an atom and its 
topological nearest neighbors) and the bending (1-3 
interactions) contributions which are evaluated over all 
bonds and angles, respectively. In addition, the torsional 
term describing the 1-4 interactions over dihedrals of bound 
atoms is also considered as a bonded term. The second 
group of contributions concerns the non-bonded 
interactions, which are represented by the electrostatic and 
van der Waals terms. Differently from most bonded 
contributions, in the simplest force field models non-
bonded terms are treated as pair-wise additive forces acting 
among the atoms of the system. In this summation, all the 

atoms involved in a bonded 1-2 or 1-3 relationship are 
excluded, whereas for the 1-4 interactions a special non-
bonded treatment is usually applied (see later). The 
topological relationships among atoms and the respective 
force field interactions are summarized in Figure  2. 

 
Since a force field is intended to be used in 

conjunction with either optimization techniques or 
sampling schemes such as MD in which forces evaluations 
are performed, an intrinsic requirement of the functional 
form is to be at least once (and possibly twice) 
differentiable with respect to the atomic coordinates. 

 
In the following subsections, the many terms 

constituting the functional form of the force fields will be 
discussed and commented. 

 
4.1.1. Bonded terms 

The bonded contributions to a force field are 
constituted by the stretching, the bending and the torsional 
terms. 

 
4.1.1.1. Stretching term 

Since the energy of chemical bonds goes 
asymptotically to zero upon infinite elongation, in order to 
attain a realistic stretching behavior with force fields, 1-2 
interactions should be in principle described by means of 
suitable anharmonic function of the atomic coordinates. A 
valuable common expression for the potential energy is the 
Morse function (64): 

 

 22) 
 

Where l is the independent variable, that is the actual bond 
length. In order to describe a bond stretching by means of 
Eq. (22), three parameters are thus needed: (i) the 
dissociation energy D, which describes the well depth; (ii) 
the bond constant k; and (iii) the reference bond length l0. 
Taken together, D and k determine the curvature of the 
energy function around the minimum, which is located in 
correspondence of l0 (see Figure 3A). 

 
Although appealing, for several reasons the 

Morse function is rarely used in force fields. First of all, 
three parameters need to be derived for each bond type 
making the parameterization procedure an uneasy task. 
Moreover, at large distances the Morse function is 
associated to small restoring forces, potentially leading to 
pathological behaviors either during the optimization of 
highly distorted structures or when performing MD 
simulations (52). Eventually, from a purely computational 
point of view, it is always advisable to avoid employing 
functions containing the expensive exponential term (see 
Eq. (22)). It is important to realize that whenever a force 
field description is adopted, a correct chemical behavior of 
bond break and formation is generally not needed. Instead, 
for a given topology, it is rather more interesting to 
correctly reproduce the shape of the potential energy 
function in proximity of the minimum. Thus, the energy 
function for a bond stretching may be expressed as a Taylor 
expansion around the reference length l0: 
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Figure 3. Comparison of different functional forms used to 
describe the bond stretching (panel A). Panel B: typical 
behavior of the bond stretching curves described as 
quadratic polynomial functions for a series of selected atom 
types. Both relationships are considered with respect to 
interatomic distance L. 

 
 

 23) 
 
In Eq. (23), Vl(0) represents the offset of the energy at the 
minimum that it is usually taken to be zero. Since the 
expansion is performed around a minimum, the term 
involving the first derivative is null. Realizing that the 
second derivative of the energy with respect to the 
coordinates corresponds to the force constant of the bond, if 
higher order terms are omitted, Eq. (23) reduces to Hooke’s 
law: 
 

 24) 
 
The obtained expression represents the simplest functional 
form that can be used to describe bonds in force fields, and 
a reasonable approximation of the bottom of the bond 
dissociation curve can be achieved if a proper 
parameterization is provided. It is important to note that 
using Eq. (24) only two parameters (the force constant k 
and the reference bond length l0) must be derived for each 
pair of atom types. In order to achieve a better agreement 
with the Morse function, for moderate deviation around the 
reference value, higher order terms may be introduced in 
the expansion. As an example, both the MM3 (46-48) and 
the MMFF (49-51) force fields employ a polynomial 
expansion of the fourth order of the form: 
 

 
 25) 
 
Where kc is the cubic anharmonicity constant which is 
determined once for the whole force field. Since kc is 
usually negative, the expansion truncated at the third term 
is associated to the undesirable behavior that the energy 
goes asymptotically to minus infinity with the distance, and 
for this reason a quartic polynomial expansion is normally 
used (see Figure 3A). 

 
4.1.1.2. Bending term 

Similarly to the stretching contribution, the 
bending term is usually described in force fields with 
polynomial expansions of different order, and similar 
considerations apply. However, the conceptual difference 
between the two interactions should not be overlooked, as it 
occasionally emerges for peculiar geometries (this is the 
case, for instance, of molecules having a divalent atom in 
the position “2” of the topology such as alcohols and esters, 
where an energy maximum is expected at bending values of 
π). In these cases, the correct angular behavior may be 
accounted for by either using polynomial expansions 
truncated at the third order enforced by special boundary 
conditions (MMFF (49)) or alternatively using periodic 
terms similar to those employed to treat torsional angles 
(Dreiding (52)) (see below). More frequently, the bending 
term is simply accounted for by a polynomial expansion of 
the second order equivalent to Eq. (24).  

 
The bonded interactions such as the stretching 

and the bending terms are usually parameterized against 
experimental infrared data or either experimental or 
computational geometries obtained at a higher level of 
theory (QM calculations). It is important to point out 
that the geometrical parameter l0 has been termed 
reference value, and it should not be confused with the 
equilibrium length (the same considerations are valid for 
the bending analogue). In fact, the reference value is the 
actual bond length against which the force field is 
parameterized, whereas the equilibrium length is the 
bond length corresponding to an energy minimum in a 
molecular  
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Figure 4. Typical torsional energy for the ethane (A) and butane (B) molecules. For the latter, the contributions of each term in 
the expansion (V1: (3/2)·(1+cos(3ω)) and V2: (1.5/2)·(1+cos(ω)) ) are also shown. Panel C: comparison of the torsional energy 
between a double bond such as that of ethylene and an amide partial double bond. 
 
environment when all the other force terms are acting. 
Since parameters belonging to different terms are inter-
related, meaning that they are optimized in such a way to 
reproduce at best experimental or theoretical geometries 
when considered together, the force field parameterization 
becomes necessarily an iterative and complex multi-objective 
procedure. Different force fields adopt different strategies to 
preserve as much as possible the transferability of their 
parameters throughout different environments. 

 
Taken as a whole, the stretching and the bending 

terms can be considered as “stiff” interactions, in the sense that 
their contribution to the overall energy of the system is large 
even when small displacements around the reference values 
are considered (see Figure 3B). This is not surprising, since 
they represent strong bonding interactions, which allow to 
consider groups of atoms as distinct molecular entities. In this 
respect, the “softer” torsional terms (taken together with the 
non-bonded interactions) permit a much larger number of 
conformations. Their complex balance is responsible for the 
relative conformational equilibrium of molecules and therefore 
their value is more informative than that of the “harder” terms. 

 
4.1.1.3. Torsional terms 

Considering a group of atoms in a 1-4 topological 
relationship, the dihedral angle is the one defined by the 
planes passing from atoms 1, 2, 3 and 2, 3, 4. However, 
depending upon the relative connectivity of the four atoms, 
two distinct types of torsional terms may be envisioned: the 
proper and the improper torsions. The former term is used 
whenever the atoms are linked as in a chain, whereas the 

latter applies when branched structures (by convention 
around the third atom of the sequence) are involved, and 
they are also known as out-of-plane bending term (see 
Figure 2). Because of their intrinsic periodicity, proper 
torsions are usually expanded in a cosine series: 

 

 26) 
 

where V is the energetic barrier, n is the periodicity (or 
multiplicity), α is the phase, and ω is the actual dihedral 
angle belonging to the ith term of the expansion. The 
summation runs over the N terms of the series (the 
occasional need for high order terms will be clarified later). 
The periodicity defines the number of minima (or maxima) 
located in the interval [−π; +π], whereas the phase 
characterizes the offset of the function along the x axis: a 
minimum at ω = 0 is obtained when α = π, whereas a 
maximum is achieved by using a phase of 0 radians. It is 
worth noting that the unity added to the cosine function in 
Eq. (26) has the effect to shift the function along the energy 
axis in order that only positive values of energy are 
considered (similarly to the offset encountered for the 
stretching and bending terms). Whenever along the central 
atoms of a proper torsion (atoms 2 and 3) a symmetry axis 
is found (such as in ethane), the cosine expansion is 
truncated at the first order. In any other case, higher order 
terms are used in order to finely tune the energy profile. A 
comparison of the torsional term for ethane and butane is 
shown in Figures 4A and 4B, respectively. Each ith order is 
characterized by a consistent set of Vi, ni and αi parameters. 
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From this perspective, the term “energetic barrier” used for 
Vi is somewhat misleading since each order contributes to 
the global energy curve. Having defined a general form for 
the torsional term, it is important to understand the different 
contexts where such contributions are employed in a force 
field. First, proper torsional terms are used whenever there 
is the need to enforce peculiar symmetries around atoms in 
position 2 and 3, typically when a non-negligible π bonding 
contribution is involved in the chemical bond between the 
central atoms such in the case of alkenes or amides (Figure 
4C). Clearly, for such examples the proper torsion accounts 
for the central bond twisting, but it is not sufficient to describe 
planar geometries observed at the 2 and 3 centers. For this 
purpose, improper torsions may be employed, and different 
functional forms can be envisioned. A periodic function 
similar to Eq. (26) where for geometrical reasons the 
periodicity and the phase are respectively always 2 and π, is 
usually adopted, such as in the Amber and OPLS-AA (which 
was initially built over the bonded Amber potentials) force 
fields, whereas CHARMM and GROMOS rather employ a 
simple harmonic functional form. 

 
It must be considered that proper torsional terms are 

defined for all the atoms involved in a 1-4 relationship, no 
matter the nature of the central bond. It is therefore legitimate 
wondering why they are actually used when a σ bond (i.e. a 
linear bond among two atoms) is involved. The reason for that 
has to be found in the influence of the external atoms (at the 1 
and 4 positions) onto the dihedral energy profile. In this 
context, torsional terms may be considered as useful 
corrections required to reproduce the proper torsional behavior 
once the non-bonded interactions are taken into account. In this 
respect, the already considered case of ethane is emblematic. In 
ethane, the proper torsion around the central carbon atoms is 
needed to account for hyperconjugation effects which are 
responsible to stabilize the staggered conformation over the 
eclipsed one more than it would be if only steric effects were 
involved (65). It is then not surprising that in the MM2, (45), 
and MM3, (46-48), force fields different orders of the cosine 
expansion of Eq. (26) are associated to a distinct physical 
interpretation, including electronegativity, hyperconjugation, 
conjugation and steric effects. Because of their corrective 
meaning, torsional terms are usually fitted after the 
derivation of all the other bonded and non-bonded 
contributions. From a parameterization point of view, 
dihedrals are usually tuned in order to reproduce the 
torsional energy profile of prototypical molecules obtained 
via QM calculations. 

 
4.1.1.4. Cross terms 

Additionally to the bonded terms considered so 
far, some force fields (such as MM3, (46-48), and MMFF, 
(49-51)) include further terms that are suited to describe the 
coupling behavior between internal degrees of freedom. 
Cross terms, sometimes also referred to as non-diagonal 
terms to be distinguished by the usual uncoupled (or 
diagonal) contributions to the potential energy, are often 
used in force fields aimed at reproducing molecular 
vibrations in addition to energies and geometries. In 
principle, all the combinations of the internal degrees of 
freedom contributions should be included, however most 
often only few of them are necessary to achieve a 

reasonable accuracy, and typically only pair-wise cross 
terms are considered. These terms are usually expressed as 
products of Taylor expansions of the energy as a function 
of the uncoupled degrees of freedom, truncated at the first 
order. As an example, the stretch-stretch cross term 
between the two distances l1 and l2 takes the following 
form: 

 

 27) 
 

where l1
0 and l2

0 are the two reference distances and k(l1, l2) 
the force constant. 
 

Similarly, the most important contribution, 
represented by the stretch-bend term, is expressed as 
follows: 

 

 
 28) 
 
where θ is the angle, θ0 its reference value, and the 
remaining symbols have the usual meaning. Eq. (28) 
describes the coupled energetic contribution between the 
stretching of two bonds and the variation of the angle 
between them. In other words, it accounts for the fact that 
the angle reduces or increases upon symmetric elongation 
or shrinkage of the two bonds, respectively. 
 

In general, in condensed-phase force fields, those 
contributions are not used. An important exception is 
represented by the CHARMM force field where the stretch-
bend term for atoms in a terminal angle (1-3 relationship) is 
treated with the so called Urey-Bradley potential (42): 

 

 29) 
 

The Urey-Bradley potential is equivalent in spirit 
to that in Eq. (28), where the coupling between the bond 
stretching and bending is implicitly described by a spring 
acting on the atoms lying in relative topological positions 
“1” and “3” (see Figure 2). Moreover, starting from the 
CHARMM22 release, the same force field also adopts a 
torsion-torsion cross term to better describe the potential 
energy as a function of the coupled backbone φ/ψ angles, 
which is implemented as a corrective tabulated potential 
(CMAP) (66). 

 
It is useful to conclude this brief overview of 

bonded terms by highlighting the fact that force fields are 
usually classified as “class I” if harmonic and diagonal 
bonded terms are involved, and as “class II” if non-
harmonic and off-diagonal terms are rather considered. 
Condensed-phase force fields for proteins definitely belong 
to the first group. 

 
4.1.2. Non bonded terms 

The non-bonded terms of a force field include the 
electrostatics and the van der Waals contributions. 
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Although bonded terms are usually well characterized, 
meaning that their performance is generally satisfactory 
under the employed approximations, accounting for the 
non-bonded interactions is considerably more problematic, 
and most of the efforts in the active research in force fields 
are spent to improve the models used for their 
representation (55). The main source of complexity in 
describing non-bonded interactions relies on their many-
body nature. Adopting the simplest force field model, non-
bonded interactions are treated assigning to each particle of 
the system electrostatic (partial charges) and van der Waals 
parameters. Accordingly, atoms are considered as 
interaction sites and the non-bonded energy of the system 
should be expressed as (5, 67):  

 

 30) 
 

where the first term on the right represents the effect of an 
external field (which is usually zero), whereas the 
remaining terms account for the interactions among 
particles. The expansion shown in Eq. (30) is usually 
truncated at the second term, meaning that only pair-wise 
additive potentials are considered. This approximation is 
largely adopted since the increase in computational cost 
upon inclusion of higher order terms is generally not 
justified. However, by considering only pair potentials, all 
the many-body effects are definitely lost, and for this 
reason force fields referring to this model are said to be 
additive. It must be emphasized that, even within a pair-
wise approximation, from a computational standpoint non-
bonded terms represent the most demanding terms of a 
force field. Indeed, while the computational cost due to the 
bonded terms scales almost linearly with the system size, 
the non-bonded part evaluated as pair potential scales, in 
principle, with the square power of the number of the atoms 
of the system since all the possible pairs of interacting sites 
have to be considered. For short range interactions, such as 
van der Waals forces, the use of a cutoff can largely reduce 
the computational burden. In contrast, long range 
interactions need ad hoc procedures, such as those 
described in Sect. 3.2. 
 

The pair-wise additive approximation results in 
the impossibility to quantitatively account for those 
interactions where polarization and cooperativity (which 
are many-body in nature) play a major role. For this reason, 
additive force fields are also intrinsically non-polarizable 
force fields. However, part of the many-body effects may 
be incorporated in an average way in additive force fields 
with a proper parameterization of the non-bonded 
contributions leading to the so called effective pair 
potentials (67-68). 
 
4.1.2.1. Electrostatic term 

Electrostatic interactions between molecules (or 
between distinct moieties of the same molecule) arise as a 
consequence of the uneven electronic distribution around 
nuclei, and, in the vast majority of additive force field 

models, they are accounted for by assigning point charges 
(qi) to each interaction site. Thus, the electrostatic 
interaction between the i and j pair is evaluated by the 
Coulomb potential: 

 

 31) 
 
where rij is the distance separating the charges, and εr is the 
relative dielectric constant of the medium, which in 
standard MD simulation is taken to be 1.  
 

Although different classifications may be found 
in the scientific literature and in textbooks, for sake of 
simplicity it is possible to distinguish three main classes of 
partial charges depending on the adopted derivation 
philosophy: (i) topological charges, (ii) charges derived 
from QM calculations, and (iii) empirical charges. 
Topological charges are not dependent on the molecular 
geometry, but rather on atomic connectivity. They are 
usually adopted by molecular modeling software employed 
in drug design, where a large chemical variability must be 
routinely accounted for in a fast and automatic way. As an 
example, in the popular Gasteiger-Marsili scheme, charges 
are calculated based upon an inter-molecular charge 
balance that is a function of the electronegativities 
(experimentally measurable quantities) of the directly 
linked atoms (more details concerning this charge 
derivation scheme will be provided in the context of the 
Fluctuating Charge polarizable model, see below) (69). A 
similar approach is also adopted by the MMFF force field 
(49, 70).  

 
A different charge derivation philosophy relies 

upon properties calculated by QM methods. The definition 
of partial charge is not univocal, and there is no well 
defined observable that can be associated to it. Therefore, 
its derivation is somewhat an arbitrary procedure that 
largely depends upon the specific properties that one 
wishes to reproduce. From this perspective, charge 
derivation procedures based upon electronic population 
analysis, where the molecular electronic density is 
partitioned and assigned to the atomic nuclei so that a 
fractional number of electrons are associated to each 
interaction site, should be mentioned. Many methods have 
been devised with this purpose, such as the Mulliken 
analysis, or the partition schemes based upon the Bader’s 
theory of atoms in molecules (71-72). However, a common 
perception in the scientific community is that charges 
derived by population analysis are in general inadequate to 
be used in force fields. Indeed, because of their derivation 
philosophy, partial charges of this kind mostly carry intra-
molecular information regarding the electronic distribution, 
but they are by no means suited to properly describe the 
inter-molecular properties of molecules, which is exactly 
what needs to be accounted for by the non bonded terms of 
the force fields. Conversely, the latter feature can be 
reproduced by deriving charges from the molecular 
ElectroStatic Potential (ESP), that is the potential generated 
outside the molecule by the QM charge distribution. Many 
methods have been developed with this purpose. Generally, 
a fitting procedure is employed in order to obtain the set of 
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partial charges that best reproduce the QM-ESP sampled at 
specific points in space located around the considered 
molecule. This is in general done by minimizing a cost 
function (χ2

ESP) defined as the sum of squares of the 
differences between the QM-ESP (Vi

QM) and the ESP 
generated by using the partial point charges via Coulomb 
law (Vi

FF): 
 

 32) 
 
where the summation over i runs over the N ESP sampling 
points, while that over A runs over the M atoms of the 
molecule (and, in the simplest force field models also to the 
non-bonding interaction sites). Eq. (32) must be solved 
iteratively with respect to the partial charges, which must 
maximize the agreement with the QM-ESP. The location of 
the sampling points is crucial both for the quality of the 
derived charges and for the robustness of the fitting 
procedure. As a general rule, these points should be located 
in those regions of space where the most relevant 
electrostatic inter-molecular activity occurs. For this 
purpose, in most of the fitting schemes, the QM-ESP is 
sampled only outside the van der Waals surface of the 
molecule. This is defined as the union of atomic spheres the 
radius of which corresponds to the distance where inter-
atomic repulsion starts exerting its effects. Usually, the 
points used in the ESP procedure are located on multiple 
van der Waals-like surfaces obtained by gradually 
increasing the atomic radii. The region of space enclosed 
by the van der Waals volume is excluded since it is not 
relevant for inter-molecular forces and because the high 
electron density in proximity of nuclei would dominate the 
fitting procedure introducing either noise or a strong 
dependence upon the grid resolution where the fitting is 
done. If molecules were rigid bodies, ESP-derived charges 
would be the best possible charge model in additive force 
fields. Unfortunately, they suffer in general of two severe 
drawbacks. The first limitation is that the derived charges 
strongly depend upon the molecular conformation chosen 
to calculate the QM-ESP. It is important to underline that 
the electronic density, and, by consequence, also the best 
fitting charges vary when the molecule changes 
conformation. Therefore, simulative methods that explore 
the molecular conformational space should in principle use 
conformation dependent partial charges (73). Within fixed 
partial charge models this is obviously not allowed, 
although this issue might be faced by polarizable force 
fields (discussed below). The second limitation concerns 
the fitting procedure, in which the most buried interaction 
sites are also the less robustly determined. This is a 
consequence of the nature of the fitted function (the ESP), 
which is highly sensitive to the more exposed atoms. This 
results in very large fluctuations of the partial charges in 
the buried interaction sites during the fitting procedure. In 
the end, buried non-polar atoms might have a large partial 
charge magnitude, with a detrimental effect on the quality 
of the intra-molecular description and wrong 

conformational energies. To face this issue, Bayly and 
coworkers developed a scheme named RESP (restrained 
ESP) (74-75). The basic idea of the method is to restrain 
the charges during the fitting to the arbitrary value of zero 
by adding hyperbolic penalties to the cost function (Eq. 
(32)) in a stepwise procedure. The rationale for the use of 
restraints is to damp the oscillations on the buried sites 
during the fitting, whereas the hyperbolic functional form 
ensures a limited impact of the restraints onto the more 
polar atoms (since the partial charges of these latter are 
greater in magnitude than those of non-polar atoms). The 
RESP procedure has been employed to derive amino acid 
charges within the Amber series of additive force fields 
starting from the so-called ff94 release (41). Since the 
method is intended to derive charges that are mainly used 
in methods such as MD and to limit the charge dependency 
on conformation, chemical equivalencies are imposed as an 
additional restraint to be satisfied during the fitting 
procedure. In addition, it should be mentioned that the 
RESP procedure is flexible enough to allow charge 
derivation from multiple QM-ESP belonging to different 
conformations of the same molecule simultaneously. In this 
variant, each QM-ESP is weighted during the fitting 
procedure according to the Boltzmann weight of the 
corresponding conformation (76).  
 

The last class of charge determination 
methodology consists of so-called empirical charges. This 
method, adopted for instance by CHARMM, can also relies 
upon QM calculations, but is meant to find a proper 
balance among solute-solute, solute-solvent (usually water) 
and solvent-solvent interactions. To this aim, charges are 
fitted to reproduce both interaction energies and minimum 
energy distances calculated between one or more water 
molecules (possibly considered in an ensemble of 
orientations) and each polar site of the molecules included 
in given datasets. In the variant adopted in the OPLS-AA 
and GROMOS force fields, charges are derived from 
experimental thermodynamic data. More specifically, they 
are derived along with van der Waals parameters by fitting 
the experimental heat of vaporization and densities of a 
variety of pure liquids having similar moieties to those 
found in proteins (see later). An advantage of this approach 
over the others is that many-body effects are automatically 
taken into account by the parameterization, even though in 
an average and unspecific manner (effective potential).  

 
QM calculations used to fit partial charges are 

usually performed in vacuum. Generalizing the evidence of 
what happens with bulk water, the empirical dipole of 
which is larger than the corresponding gas-phase value 
(2.35 D compared to 1.86 D), a widespread workaround to 
reproduce bulk properties by means of gas-phase derived 
partial charges, is to enhance the QM multipole moments 
before applying the charge fitting procedure. Within the 
RESP procedure, this is done simply by deriving the QM-
ESP at a level of theory (HF/6-31G(d)) that is known to 
overestimate the polarizability of molecules, so that the 
derived charges will consistently inherit a desired 
enhancement in magnitude (74-75). In contrast, in the 
CHARMM fitting procedure the solute-solvent interaction 
energies are scaled by a factor of 1.16 (further possible  
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Figure 5. Lennard-Jones, “12-6”, potential plotted together 
with the r –12 and r –6 components. 

 
adjustments are allowed) (42). Clearly, the effective 
potential approach may be considered progressively less 
satisfactory moving from the bulk of a component to its 
interface, where polarization effects can only be properly 
modeled by using polarizable force fields (see later). 

 
It is important to note that the point charge model 

is not the only way to represent electrostatic interactions. 
An alternative are the so called distributed multipole 
models where multipoles up to a certain order are assigned 
to the molecule and are not necessarily located at the 
nuclear positions. As an example, atom centered multipoles 
are employed in the MM2, MM3 and AMOEBA force 
fields (47-48, 77). 

 
4.1.2.2. Van der Waals term 

The van der Waals term consists of an attractive 
and a repulsive term representing the dispersive and the 
exchange interactions, respectively. The dispersive 
interactions (also known as London forces) are due to 
the instantaneous correlation of mutually induced 
multipoles arising from fluctuations in electronic clouds 
between non-bonded approaching atoms. As an 
example, they are responsible for deviations from the 
ideal gas behavior for rare gases and, more generally, 
for any attractive interaction between non-polar 
molecules or groups of atoms. Involving polarization 
between electronic clouds, dispersive interactions are 
intrinsically non-additive in nature. However, they are 
generally safely modeled in force fields by using a r -6 
distance dependent function. The other contribution is 
due to exchange interactions, which are repulsive and 
can be rationalized in terms of the Pauli’s exclusion 
principle. This principle states that two electrons cannot 
be in the same quantum state, and in particular have the 
same spin state and position. Exchange interactions are 
effective at shorter distances compared with dispersive 
interactions, and mainly for reasons of computational 
convenience they are usually modeled in force field by 
means of a r -12 distance dependent function, even 
though QM calculations would rather point at an 
exponential behavior. Taken as a whole, the van der 
Waals interactions described here give rise to the 
Lennard-Jones 12-6 function: 

 33) 
 

where rij is the separation distance, εij is the well depth (not 
to be confused with the dielectric constant of the 
electrostatic term), and σij is the collision diameter (the 
separation distance corresponding to a null van der Waals 
potential) between the considered interaction sites (see 
Figure 5). Given the well depth and the collision diameter, 
it is possible to derive the minimum energy distance r0

ij as 
the point where the derivative of Eq. (33) with respect to 
the separation distance is zero (r0

ij = 21/6σij). Thus, the 
Lennard-Jones potential can be alternatively expressed in 
terms of the minimum energy distance: 
 

 34) 
 

The determination of the parameters needed to 
define the Lennard-Jones potential for all the atom types of 
a force field may be a cumbersome procedure. Therefore, 
the parameters needed to evaluate the cross interactions (i ≠ 
j) are often derived from those available from pure atomic 
species (i = j) using simple combination (or mixing) rules. 
Within the Lorentz-Berthelot mixing rules, adopted by the 
Amber and CHARMM force fields, the collision diameter 
and the well depth are calculated by means of the 
arithmetic and geometric mean of the pure species, 
respectively: 

 

 35) 
 

 36) 
 
As a consequence, between the minimum energy distance 
and the van der Waals radii of the considered atoms holds 
the following relationship: 
 

 37) 
 

It must be noted that the previous mixing rule is 
not the only one adopted. For instance, both OPLS-AA and 
GROMOS employ the geometric mean to determine the 
collision diameter. The parameterization of the van der 
Waals terms strongly depends upon the purpose of the 
force field. If it is intended to reproduce gas-phase 
properties, the parameters are usually derived from 
crystallographic data. Conversely, in the case of 
condensed-phase force fields, van der Waals parameters are 
derived by reproducing experimental thermodynamic data. 
This strategy, first introduced by Jorgensen to develop a 
revised version of Amber-UA which led to the so called 
Amber-OPLS force field, had so strong an impact on the 
community that it has been adopted by all the condensed-
phase force fields with only minor variations (55, 57-58, 
68). In particular, collision diameters and well depths were 
empirically obtained by matching densities and enthalpy of 
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vaporization (calculated by means of Monte Carlo 
simulations) with the experimental observables for a series 
of organic liquids (hydrocarbons, alcohols, amides, 
thioesters, etc.) representing the functional groups (or atom 
types) found in neutral amino acids (58). Since the 
corresponding thermodynamic properties are clearly not 
available for the functional groups representing charged 
amino acids, experimental heats of hydration and QM-
derived water interaction energies for ammonia and 
carboxylate derivatives were rather employed to 
parameterize those (58). This procedure directly leads to 
the derivation of an effective potential where the many-
body effects may be considered accounted for in an average 
way. 

 
Since non-bonded interactions only apply to 

atoms that are not directly involved in bonding 
relationships, atoms belonging to a 1-2 and 1-3 topological 
relationship (see Figure 2) are excluded from the non-
bonded evaluation. In contrast, 1-4 atoms usually 
experience a scaled non-bonded interaction, in addition to 
the usual dihedral terms. In the OPLS-AA force field the 1-
4 non-bonded interactions are scaled of a factor of 1/2, 
whereas in the Amber force field a differential scaling is 
adopted: 1/2 and 1/1.2 is employed for the van der Waals 
and the electrostatic interactions, respectively. No scaling 
factor is adopted in the CHARMM force field, whereas a 
system specific approach is used within the GROMOS 
force field. The van der Waals scaling is an attempt to 
correct the too steep repulsive term of the Lennard-Jones 
12-6 potential compared to the more appropriate 
exponential form (proportional to exp(–r/r0)), which would 
be particularly appropriate for 1-4 atoms. Besides, the 
motivation for the electrostatic scaling lies in the fact that 
for 1-4 bonded atoms it is reasonable to expect some charge 
redistribution along the dihedral leading to a decrease in 
magnitude of the interactions. As a matter of fact, this latter 
is another example of accounting for polarization effects in 
additive force fields. 

 
4.2. Force fields revisions and extensions 

As it may be inferred from the previous 
discussion, force fields are not invariant entities, as they 
rather change over the years either for revisions or 
extensions. Usually, general force fields undergo revisions 
whenever an extension covering a larger atom type data set 
is needed. Indeed, gas-phase force fields are extremely 
optimized against available experimental data, limitations 
and pitfalls are known and well documented, therefore 
revisions over the same data set are in general not needed. 
Assessing the quality for specific force fields, such as those 
designed to model peptides, is not a trivial task. Moreover, 
the parameterization strategy of fitting around energy 
minima may be suboptimal when the system explores 
conformations which are far from those minima. As a 
matter of fact, to properly validate the performance of 
condensed-phase force fields an extensive configurational 
space sampling is required to allow a statistical comparison 
against experimental data (63). It is therefore reasonable 
that as soon as a significant increase in computational 
power occurs, allowing longer simulation and more 
extensive sampling, limitations in the available force fields 

are recognized and revisions invoked (78). Rather than a re-
derivation of all the parameters in the light of the 
discovered deficiencies, the strategy to re-parameterize 
only dihedral terms exploiting their corrective meaning is 
more often preferred. Accordingly, by taking advantage of 
the increased computational power, the OPLS-AA amino 
acids dihedrals were completely re-derived at higher level 
of QM theory leading to the OPLS-AA/L force field (43, 
79). Conversely, in the case of Amber ff94, deficiencies 
were mostly identified in the φ/ψ backbone dihedral 
parameters that were completely refitted giving rise to the 
ff99 and later to the ff99SB releases (41, 80-81). The recent 
ff99SB-ILDN is the result of a further refinement of the 
latter revision where the efforts were mostly focused 
towards corrections of the χ1 side chain dihedrals for some 
critical amino acids (78). In parallel to these ff94 variants, 
it has to be mentioned that a new generation of the Amber 
force field based upon a higher level of QM theory for 
charges derivation was developed too (ff03) (82). A 
somewhat different strategy was employed to derive a 
revision for the CHARMM22 force field. In this case, as 
already mentioned, an energy correction map based on a 
grid-based interpolation procedure to better reproduce the 
QM-PES in the φ/ψ space is used, and for this reason the 
obtained release is referred to as CHARMM22-CMAP 
(66). 

 
Aside from revisions, specific peptide force fields 

are also subjected to extensions in their range of 
applicability. A comprehensive overview of the attempt to 
incorporate chemical species other than peptides in the most 
popular condensed-phase force field may be found in the 
literature (83). As a short summary, it should be recalled that 
parameters for nucleic acids were present in the Amber force 
field since the earlier versions (Amber-AA), even though they 
have been consistently revised over the years (59). In contrast, 
CHARMM27 was intentionally developed to provide a set of 
nucleic acids parameters consistent with the underlying protein 
force field (84-85). On the other side, lipids have been 
extensively studied and parameterized to be used with the 
united atom version of the GROMOS force field, whereas only 
recently a GROMOS96 lipid dataset was released (86-87). A 
similar evolution holds for the CHARMM force field, where 
lipids were supported since earlier versions (CHARMM19), 
even though only later a thorough re-parameterization was 
undertaken (CHARMM36) (60, 88). Very recently, a 
consistent set of lipid parameters to be used together with the 
Amber force field has been developed too (89-90). In the field 
of drug design, and in particular to study protein-ligand 
interactions, the availability of parameters to treat small 
organic molecules consistently with the peptide counterpart is 
obviously of pivotal importance. For all the most important 
condensed-phase force fields an impressive effort has been 
done in order to cover a remarkably broad range of chemical 
space. From this perspective, virtually all condensed-phase 
force fields, such as OPLS-AA, Amber (GAFF), and 
CHARMM (CGenFF), come with a real general force field 
companion (91-93). 

 
4.3. Polarizable force fields 

Electronic polarization consists in the 
redistribution of the electron density in response, reaction, 
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to an external electric field. Under the hypothesis of linear 
response, which is usually, but not always, assumed, the 
effect of such reaction can be schematized as the induction 
of dipoles at several interaction sites, in the considered 
molecule, having a magnitude proportional to the local 
field Etot: 

 
 38) 

 
where α is the electronic polarizability tensor of the 
molecule under investigation. It is worth recalling that by 
linear response one intends that the reaction field is locally 
proportional to the permanent field and, by consequence, 
also to the total field, which is the sum of the two. This 
model can be formalized by performing an hypothetical 
Taylor expansion of the induced field as a function of the 
total field truncated at the first order (94-95). This 
procedure is completely different from the so-called 
multipole expansion, which is often done in electrostatics. 
The latter can also be an expansion of an electric field, 
although it more often involves the potential, but it is done 
with respect to the inverse distance to a point in space, 
regardless of the nature of the field, whether it is permanent 
or induced, or total.  
 

From an inter-molecular standpoint, 
polarizability is closely related to non-additive and 
cooperative effects, and it can be modeled in traditional 
force field only in an average way with effective pair 
potentials. The development of polarizable force fields is 
an active area of research and for all the major condensed-
phase additive force fields a polarizable extension has been 
developed too. However, the process to add polarizability 
to the already existing terms without a reparameterization 
may become problematic, and for this reason more recent 
force fields (such as AMOEBA) include the polarization 
term consistently since the beginning of their development 
(77, 96-97). 

 
In the following, we present four models that 

incorporate electronic polarizability in classical force 
fields: (i) the Continuum Dielectric model (ii) the Point 
Polarizable Dipoles, (iii) the Drude oscillator model, and 
(vi) the Fluctuating Charge model. In any of these 
approaches, polarizable terms are schematized as a 
supplementary polarization contribution added to the 
familiar bonded and non-bonded terms: VFF = Vb + Vnb + 
Vpol. In this description, the potential energy accounting for 
the permanent electrostatic interactions is included in the 
Vnb term.  

 
4.3.1. Continuum dielectric model 

The Continuum Dielectric (CD) model is 
probably the simplest approach to polarizability, although 
not the most widely used. It assumes there is a linear 
response of the molecule to the local electric field, that the 
induced dipoles are point-like and, unlike other approaches, 
that they are spread over the matter rather than being 
localized at given sites. A point-like dipole is such that the 
absolute value of its positive and negative charges, which 
are equal in magnitude, tends to infinity while their 
distance tends to zero in a way that the product of the two, 

i.e. the dipole moment, stays constant. The CD model 
borrows its formalism from the traditional electrostatics of 
continuum media, which provides expressions for 
calculating the electrostatic energy of polarizable systems 
(98). In this description, the polarization energy can be 
singled out from the total electrostatic energy as follows: 

 

 
 39) 

 
This expression decomposes electrostatic energy in two 
contributions (here identified by the superscripts perm and 
pol, respectively), that due to the permanent charge 
distribution (which is the one considered in the traditional 
force fields), and that due to polarization effects, also called 
reaction field energy since Φpol is the potential generated 
by the polarization charge in reaction to the local electric 
field (98). By using Green’s lemma the polarization term 
can be rewritten as: 
 

 40) 
 
A suitable manipulation of Eq. (40), performed by addition 
and subtraction of the total electric potential Φtot = Φperm + 
Φpol, allows a partitioning which leads to a deeper physical 
interpretation of this term: 
 

 41) 
 

The last three terms of Eq. (41) represent the interaction of 
the polarization charge with the permanent field (Vstat), the 
always unfavorable energy contribution required to distort 
the electron distribution to create the polarization (Vdist), 
and the mutual interaction between the polarization charges 
(Vind/ind), respectively. 
 

Expressions in Eqs. (39) to (41) are quite 
widely applicable, and are consistent with the general 
relationship, D = ε0 E + P, between displacement, 
electric and polarization fields. The continuum 
description of linear dielectric media specializes the 
latter relationship so as that a direct proportionality 
between them holds: D = ε0εrE, P = ε0(εr – 1)E. Here, εr 
is the, possibly space-varying, relative dielectric 
constant of the medium, accounting for how strongly it 
polarizes (although the dielectric constant is most often 
considered as a scalar quantity, in principle it could be a 
tensor, just like the polarizability tensor, to which the 
former is closely related). 
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When molecules in solution are studied, there are 
CD approaches that keep the traditional atomistic 
description for the solute and treat only the solvent as a 
continuum, while other methods model both the solute and 
the solvent as polarizable media, with different dielectric 
constants. This formalism is extended to consider also the 
ionic strength of an aqueous solution in the Poisson-
Boltzmann equation, the solution of which allows the 
derivation of the so-called reaction field (99-101). 
Alternative to the numerical solution of the Poisson-
Boltzmann equation is the set of analytical methods based 
on the generalized Born formalism (102-104). Fundamental 
is the choice of the dielectric constant value, that in this 
kind of approaches is an effective parameter quantifying 
the entity of the response and accounting for all the 
rearrangements that are not described explicitly. Its actual 
value is debated and in some applications also different 
dielectric values are used to reproduce inhomogeneous 
polarizabilities (105-106). 

 
The resulting electrostatic energy is a free energy 

in the sense that the electrostatic contribution of most of the 
degrees of freedom, namely those giving rise to water 
molecular polarizability, salt effects and those that are 
accounted for by the dielectric constant value, are 
implicitly equilibrium averaged. The most advanced 
derivation of a force field describing a polarizable solute in 
an implicit solvent are due to Tan and Luo (107-108). 

 
In the Poisson-Boltzmann approach, the 

polarization charge which originates Φpol can be derived, 
for instance, by using Gauss’ law for the P field once the 
equation is solved (for details, see (101)). One advantage of 
this model with respect to others, such as the PPD and the 
Drude models, is that it avoids the so-called polarization 
catastrophe. The latter is a phenomenon that can occur 
when neighboring point dipoles interact with each other. It 
can be partially corrected by an ad hoc damping (109). 

 
4.3.2. Polarizable point dipoles model 

The point polarizable dipoles (PPD, also known 
as induced point dipoles) is so far the most popular method 
to include polarizability in force fields, being adopted by 
Amber (ff02 (110-111) and ff02EP (112)), OPLS-AA 
(OPLS-PFF (113-115)), and by a CHARMM22 extension 
(PIPF-CHARMM (116)) that is under development. 
Moreover, the already mentioned AMOEBA force field 
(77, 96-97), which includes the polarization term since its 
foundation, also adopts an induced point dipole approach. 
The PPD model represents the reaction to the local field as 
a set of inducible dipoles (variable in magnitude and 
direction) as in equation (38), located in predetermined 
sites. These induced dipoles generate a field which 
algebraically adds up to the permanent field. It can be 
interesting to find a formal correspondence between this 
model and the expressions given in the continuum 
dielectric model. This can be done by assuming that the 
polarization field vector P, the physical dimension of which 
is dipole moment per volume unit, has the following form: 

 

 42) 

where xi are the positions of the interacting polarizable 
sites. Assuming that the distribution of permanent charges 
is finite in space, and using Gauss’ law for polarization 
charge, a useful identity can be found: 
 

 43) 
 
This expression holds regardless of the specific nature of 
the potential Φ provided that the appearing electric field E 
corresponds to the negative of its gradient. By applying Eq. 
(43) to Φperm, by substituting the expression in Eq. (42) for 
P, and by means of Eq. (40), one obtains the following 
expression for the polarization energy term in the PPD 
model: 
 

 44) 
 
where the subscript i to the electric field Ei indicates the 
field at the point xi. 
 

Moreover, by applying Eq. (43) also to Φtot, by 
using again the expression in Eq. (42) for P, the energetic 
partitioning in Eq. (41) can be tailored to the PPD model: 

 

 45) 
 
It can be useful to recast the three components of 

Vpol as follows. Assuming that, as in the simplest case, the 
permanent field Ei

perm is generated only by point fixed 
charges, Vstat can be expressed as: 

 

 46) 
 

where the induced dipole at the ith polarizable site does not 
interact with the fixed charge at the same site. Similarly, 
Vdist can be written as: 
 

 47) 
 
where the last equality holds only if the polarizability 
tensor is isotropic and diagonal, and α(xi) is its diagonal 
element. Consistently with intuition, the energy needed to 
create the dipoles grows with the intensity of the dipole 
moments and decreases with the local polarizability. The 
set of diagonal elements per interaction site i of the 



Molecular mechanics and dynamics 

597 

polarizability tensor are the parameters needed by this 
model, and can be estimated either experimentally or 
theoretically. Finally, it is possible to rewrite Vind/ind 
according to: 
 

 48) 
 
where Tij is the dipole interaction tensor, which relates the 
electric field generated by a dipole to its dipole moment, 
and that can be derived from geometrical considerations. 
As already mentioned, a pathological behavior affecting the 
point polarizable model consists in a singularity arising in 
the induced dipoles at a small distance from the interaction 
sites (polarization catastrophe). This undesirable effect may 
be avoided either by excluding short range interactions or 
by attenuating them using a distance dependent switching 
function (96, 110-111, 113-116). 
 
 The last step needed to implement the PPD model 
consists in determining the set of all induced dipole 
moments {µi}. One way to do it is by solving for {µi} the 
following relationship, which can be obtained by 
instantiating Eq. (38) in the case of point dipoles and by 
decomposing the total field in its two contributions: 
 

 49) 
 
The very same expression can be obtained by suitably 
recasting Eq. (45), differentiating it with respect to {µi} and 
imposing that the result is null so as to identify the dipole 
configuration that minimizes the energy. Expression in Eq. 
(49) is obviously consistent with the PPD model, where the 
electric field at the ith site due to polarization can be 
expressed as the sum of the fields generated by all the other 
induced dipoles, which are expressed through the tensor Tij. 
Conversely, Eperm is generated by all permanent field 
sources, which can be point charges or other permanent 
multipoles. For instance, the Amber ff02 (110-111) and 
ff02EP (112) use only permanent atomic and off-site 
charges, OPLS-PFF (113-115) also employs permanent 
dipoles, whereas an expansion up to the quadrupole is 
considered in the AMOEBA (77, 96-97) force field. 
 

Eq. (49) represents a system of linear, non-
homogenous, equations relating each induced dipole to all 
the remaining ones. To solve this system, three methods are 
available: (i) the analytical approach by matrix inversion, 
(ii) a self-consistent iterative optimization approach, and 
(iii) the extended Lagrangian approach, where auxiliary 
degrees of freedom (in this case the dipole momenta), 
endowed with fictitious masses and velocities, are 
introduced in the Lagrangian of the system, and the 
extended system is evolved together with the solution of 
the global equations of motion. The reader is redirected to 
specific reviews for more details (117-118). 

4.3.3. Drude oscillator model 
The Drude oscillator model is also known as shell 

model: the former nomenclature is mostly employed in the 
community of condensed-phase simulations, whereas the 
latter is preferred in the solid state physics field. The basic 
principle is the same, and it goes back to the Drude theory of 
polarizability (1902) which was originally derived to describe 
London forces. In the context of force fields, the Drude 
oscillator model has been extensively used to develop 
polarizable water models, and it has also been employed in a 
CHARMM27 extension for nucleic acids (119-120). Within 
this model, each polarizable center is described by a pair of 
interaction sites connected by a harmonic spring of elastic 
constant ki. The core site is located at the nuclear position and 
it is associated to a partial charge qi

C = zi + qi
pol, whereas the 

Drude particle site consists in a partial charge qi
D = – qi

pol so as 
to preserve the formal atomic charge zi. Polarizability is thus 
accounted for by the relative displacement of these sites by 
mimicking the valence electron density redistribution 
occurring in atoms subjected to external electric fields. 
Similarly to the PPD model, the corresponding energy 
partitioning can be derived from the continuum electrostatics 
theory. It is interesting to observe that, although this model 
engenders dipoles, which have the form µi = qi

pol(ri
C – ri

D) = –
qi

pol di, there is no constraint on the fact that they can be 
considered as point-like dipoles. Therefore, the assumption 
done in Eq. (42) cannot be done. The electrostatic interaction 
among non polarizable charged centers can rather be evaluated 
by the classical Coulomb potential as in non polarizable force 
fields. Moreover, being primarily electronic in nature, van 
der Waals interaction sites are centered on the Drude 
particles rather than into the cores. 

 
As per polarization, by applying Eq. (40), we 

obtain the following expression for the reaction field 
energy corresponding to the Drude model: 

 

 50) 
 

Similarly, the two following energy contributions can be 
derived: 
 

 51) 
 

 52) 
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The remaining term, Vdist, could also be 
calculated by means of the same strategy. However, one 
should consider that qi

pol and di are not independent 
parameters. Moreover, as Eqs. (50) and (51) show, 
interactions between the core and the Drude particle 
belonging to the same polarizable center are excluded. 
Indeed, those interactions account for the Drude expression 
of the Vdist term, that, according to this model, can be cast 
as follows: 

 

 53) 
 
By comparing Eq. (53) to Eq. (47), one can find the 
equivalent, isotropic and diagonal, polarizability induced 
by the Drude model: 
 

 54) 
 
From Eq. (54) one sees that the partial charge and the force 
constant of the Drude sites may be derived from 
polarizability values obtained either experimentally or 
theoretically. In any case, it must be recognized that qi

pol
  

and ki are not independent parameters, and their relative 
value may be chosen by convenience considerations. In the 
case of the Drude oscillator model, the dipole moments are 
calculated via self-consistent solution of the system of 
equations obtained by nullifying the gradient of the energy 
with respect to {di =│riC – riD│}. 
 

The Drude oscillator model is particularly suited 
to be coupled with the extended Lagrangian approach. In 
this case, fictitious masses are assigned to the Drude 
particle sites. By using this approach care must be taken in 
the choice of spring constants and masses because of their 
impact on the integration time step of the overall dynamics. 
 
4.3.4. Fluctuating charge model 

All the polarizable models considered so far can 
be reconciled in a general framework for treating 
polarizability within a classical continuum electrostatics 
framework. Based on these premises, in previous sections 
we were able to clearly identify the Vstat, Vind/ind, and Vdist 
components of the polarization energy term following a 
unified procedure for CD, PPD and the Drude oscillator 
model. Unlike these methods, the Fluctuating Charge (FQ) 
model is rather based upon a different perspective which, 
historically, goes back to the development of earlier 
derivation schemes to compute partial charges. The theory 
behind the FQ model is grounded in the Sanderson’s 
principle of electronegativity equalization (1951), which 
states: “When two or more atoms initially different in 
electronegativity combine chemically, their 
electronegativities become equalized in the molecule.” For 
this reason, the method is also known as electronegativity 
equalization model. The FQ model was firstly employed in 
force fields by Rappé and coworkers in the development of 
their Universal Force Field (UFF) (121-122). More 
recently, it has also been implemented in OPLS-AA and 

CHARMM22 extensions (123-125). The approach is based 
upon the idea that charge can flow within a molecule and 
find a configuration where electronegativity is balanced. In 
this context, polarization is intrinsically taken into account. 
Since there is no compulsory locality in the displacement of 
the equalizing charges and the distinction in inducing and 
induced charges is lacking, or at least less evident, the 
formalism of classical continuum electrostatics is more 
difficult to apply in this context.  

 
The energy required to introduce a charge q on a 

neutral atom can be Taylor expanded at the second order 
(126): 

 

 55) 
 
According to this expression, the energy of the unperturbed 
state is V0 and the energy required to introduce a formal 
charge on an atom can be calculated by substituting q in 
Eq. (55) with the added charge. By taking advantage of the 
definitions of ionization potential (IP = V(+1) – V(0) ), 
being the energy required to extract an electron from a 
neutral atom in the ground state (A → A+ + e), and electron 
affinity (EA = V(0) – V(–1) ), being the energy required to 
extract an electron from a singly charged negative ion (A- 
→ A + e), it is possible to derive useful expressions for the 
linear and quadratic coefficients of the Taylor expansion: 
 

 56) 
 

 57) 
 
where χ0 is the Mulliken absolute electronegativity and η0 
is the absolute hardness, that is the ability of an isolated 
atom to attract electrons and its resistance upon charge 
flow, respectively (127-128). Eq. (55) can be rearranged to 
describe the energy of a group of N atoms belonging to a 
molecule: 
 

 58) 
 
In Eq. (58), the generic potential energy term V0 
encompasses all the bonded and van der Waals force field 
contributions. The off-diagonal hardness coefficients 2ηij

0 
can be taken to be proportional to rij

–1, so as that the third 
and last term of the right hand side of Eq. (58) recovers the 
standard Coulomb potential. Moreover, since one is here 
considering the energy required to add a charge q to atoms 
that are subjected to the electric field generated by the 
already existing charges, it is possible to relate the second 
term of Eq. (58) to the Vdist energy of the previous models. 
Eq. (58) is solved by nullifying the gradient of the energy 
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with respect to the {qi} under the additional constraint of 
total charge conservation (Σqi = qtot): 
 

 59) 
 
At the minimum of this energy, the partial derivatives are 
null and the electronegativities of the atoms in the 
molecular environment are equalized (in contrast to what 
happens when atoms are isolated), from whence the name 
of electronegativity equalization principle. Remarkably, 
Parr and coworkers have shown that the Mulliken 
electronegativity closely approximates the negative of the 
chemical potential for the ground state of a many-electron 
system in Density Functional Theory (129). In this context, 
applying Eq. (59) to derive a polarized set of charges for a 
molecule is equivalent to minimize the chemical potential 
of the system, which provides a physically sound 
interpretation to the Sanderson’s principle and to the whole 
procedure as well. This should not be overrated though, 
since as in any force field-based model the quality of the 
results is strongly dependent upon the parameterization. 
Clearly, the parameters in the FQ model are represented by 
atomic electronegativity and hardness, which may be 
derived either from experimental data or, more often, from 
QM calculations.  
 

It is interesting to note that in principle Eq. (58) 
could be generalized to consider also an inter-molecular 
charge flow, and for this reason it is sometimes claimed 
that FQ is the only polarizable model able to account for 
charge transfer effects. However, this statement should not 
be taken too literally since it must be kept in mind that this 
is still done in a classical force field framework. An evident 
advantage of the FQ model relies on the fact that, 
differently from PPD and the Drude oscillator models, the 
number of interaction sites is the same as in non polarizable 
force fields, thus the overall computational cost is relatively 
limited.  

 
 From the above discussion, it emerges that the 
FQ model bears some resemblance with charge derivation 
procedures, with the important difference that the charges 
have to be re-derived for each configuration sampled by the 
MD or MC engine. From this standpoint, it is appealing to 
compare the FQ model with the Gasteiger-Marsili scheme, 
which has become quite popular, especially in the 
pharmaceutical community, as a fast method to calculate 
partial charges. The Gasteiger-Marsili method (also known 
as Partial Equalization of Orbital Electronegativity) can be 
thought of as an approximate and empirical solution to Eq. 
(59), where the orbital electronegativity (defined as the 
change in energy due to the variation of the occupation of 
that orbital) of the ith atom in the molecule is expressed as: 
 

 60) 
 
where ai is the Mulliken electronegativity of the isolated 
atom (as in Eq, 59), while bi and ci are other empirical 
parameters derived by the experimental ionization 
potentials and electron affinities (69). Rather than fully 

equalizing the electronegativities of directly bonded atoms 
(which led to chemically unacceptable results in earlier 
analogous implementations), the Gasteiger-Marsili scheme 
conceives a successively damped charge transfer from the 
less electronegative atom i to the more electronegative 
atom j according to the formula: 
 

 61) 
 
where χi

+ is the orbital electronegativity of the positive 
ion of the less electronegative species, and the 
superscript k stands for the iteration step. Eq. (61) is 
solved under the usual total charge conservation 
constraint. Because of the damping factor (1/2)k, as the 
iterations proceed the charge transfer becomes more and 
more reduced, simulating a resistance in charge flow 
growing with the increasing electrostatic field (69). The 
charges derived by the Gasteiger-Marsili method depend 
on the parameters {ai}, {bi}, and {ci}, and on the 
connectivity of the atoms in the considered molecule, 
but they do not depend upon the conformation of the 
molecule itself. For this reason, these charges are often 
referred to as topological charges. In general, the 
method is no longer considered accurate enough to be 
used with current force fields, nor it is considered 
theoretically sound due to the requirement of a full 
equalization of electronegativity as demonstrated by 
Parr and coworkers (129). 

 
5. CONCLUSIONS 

 
In this review, we treat two among the most 

important bases of molecular simulation, namely Molecular 
Dynamics and Molecular Mechanics. In the first part, 
specific attention was devoted to the numerical aspects 
related to the integration of the equations of motion and to 
the algorithms used to impose the control variables, such as 
temperature and pressure, that characterize the most 
frequently used statistical mechanical ensembles. In the 
second part, the main elements of the force fields are 
described in some detail. A specific section is devoted to 
the polarizable force fields, which represent an often 
necessary extension of the Molecular Mechanics aimed at 
improving its accuracy. 
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